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CHAPTER III

REDUCED DENSITY MATRICES

In this chapter we will study properties of the reduced density
matrices and show its usefulness for solving the many-body pro! lem
having "off-diacoral long-rarge order'(ODLRO). For bosons and fermions
it is shown row OLLRC can be introducedsinto the rgduced density
matrices, The use of ODLRO has heen applied in the treatment of su-

perfluid helium,

th
3,1 N Order Reduced Density Matrices
For a system dn a pure state, these pure system can be described

by the means of the density matrix D,

) ) 1 " "

- - > A ! ! oM S °
D(xl,o.nlxN't;Xl,o--,XN,t) — w(xl,.-.:(N,t) ‘\U (Xl,-..,xN,t) (J_l

In the usual case, 'the system is in a mixed staté, a state which is

impossible to describe by a single wave function.. We assume that the

Schrodinger equation, hoy; = HY;, can be solved.exactly to obtain the ei-~
ot

genfunction wi,wj,...,'corresponding to,energy eigenvalue Ei,Ej,..., re-

spectively. There will be an uncertainty as to whether the system is in

the state wi,wj,.o.; and, so. the mixed.state will be.regarded as an in' o-

herent mixture of pure state wi with the statistical "weights" W, i.e,

in thermal equilibrium,

exp (-~ Ei/kHT )

. g exp ( /k )
E 3 T '
j ] J B
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v
and LW, = 1
i=1l 1

where v is the number of states in the system, The density matrix which

can describe the system in mixed state is a weight average of the D(i)

t N SV " v H )

L 5 . -~ _,’l * " _)v
D(xl;...,xN,t;xl,...,xN,t) = iglwiwi(xl,...,xN,t)wi(gi,...,xN,t)

(3-2)
The density matrix was first introducedsby Landau(l6)

A Hamitonian operator H of] an N-body system of identical particles

is
L) (3-23)

where the particles interactiin'pair wvia the spherically symmetrical two
body potential V(r). The Hamiltonian operator H must be invariant under
the interchange of all the coordinate of.any two particles. The complete
properties of the system can be described by thel N-particles wave function
> > - > . s ) . .
w(xl,xz,...,xi,...,xn,t), which is either symmcetric or antisymmetric under
the interchange of two coordinates.
> > ->
’

&S x2,...,>?i,...,>‘<*N,t) = % wz,;l,...,;i,...,xN.u (3-4)

where g denote |the collectionfofrall (the coordinatesiof (the i th particles,
including the position coordinates;land the spin. The plus sign refers to
bosons, and minus sign refers to fermions. The particles of integer spin
obey Bose statis ics and are called bosons and the particles of half

spin obey Fermi statistics and are called fermions, The N-particles



wave function are thus assumed here to obey the Schrodinger cquation,

R
inow -h, N
st - Gk

>

2 1 - - >
b+ = 5 V(T - 3 e,
Vb SR V(R X)) WG, )

-
reeerX
I\

g8 (3-5)

this equation conld be solved under using various approximations

The combined quantum and statisticalseipectation of an observable,
such as the average density < p(x)> of the system of N points particles,

is

V) N
- -> 5 - - > - -~ .
= T 5 L T 51 % =X, )Y Kreoos¥ 1}
< px) > izlwif...fw (xl,xz, A N,t)izlé(y hl)vi(xl, 57 RO
dii,...,dﬁ&

SR I §ie 2 8P KK X,
. li e ll 2""[ I\]' i ll '.‘

;L ¢ 2,...,x\,t)d? ye..GX

2 N
(3-6)
Even if the N particle wave function Y could e obtained exactly by
solving the Schrodinger équation (3-5), it would contain-too many uninteresting
detials to be of ény use. However, the density matrix will provide all
possible informations It is far too difficult  to soive explicitly. An elegant
method for solving ithe N-body problem'is to "introduce the "reduced density

matrices and @DLROMW The (reduced<dengity matriceg,) for equal (times, are

defined as follows:

U N > > o' > > > > 4
; = ; cee 3-7
Ql(xl,xl) (F-1) f°"fD(xl’x2""’XN'xl'X2""’XN)dxz’ ,de ( )
L. Ly N L O > S S S > - >
Qz(xl,xz;xl,xz) = 52 f...fD(xl,x2,x3,...,xN,xl,xz,x3,...,xN)dx3,...,de

.

(3-8)
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etc, for Qn the n th order reduced density matrix. The reduced density
matrices as defined in eguation (3-8)satisfy the ccupled equaticn of
motion,
indQn _.(:ﬁ) ? (V. =7 )0+ 1
3t 2m'r=1""¢ r ""m 2

.t (Vx - %) - v{x =% )0
’

' ] L "

n > a —}"—» 5! > >" s
+fr§l{V(xr— y) - V(Kr y)}Qn+1(xl,...,xn,y,xl,...,“n,y)dy

(3-9)

for the Hamiltonian of equation (3-3).When Qn+l vanishes, the equation of
(1]

motion for Qn is equivalent to the Schrodinger eguation. In the seccnd

gquantization representation, Qn can also be defined, for equal times, as

y \ 1
the trace over the nonrelativistic field operator ¥ and ¢

_*l _)-l -—f-" +" . +* +ll * +ll . —¥I -).l
Qn(xl""'xn;xl""’xn = Tr{Q(t) P (xl),...,w (xn;ﬁ(xn),...,w(xl)}

(3-10)
Qn depends on 2n space-points—and-on-time-t-(for~equal times). If N is the

mean numbers of particles, and if N is greater than n, then Qn satisfies

the relation.

' " " " n

] 1] " [}
> . D> - > > > 9> -> -> > >
fﬂn(xl":”xn—l'xn’xl’f'"Xn—l'xn)dxn = (N—n+l)Qn;l(xl,...,xn_l,xl,...,hn_l)

(3-11)
and Qn follows generally the symmetry relations.
1 ) t 1 L L1} " 1]
Q_ (% X% X ;X X 00X yeee, X))
n l,oooy r_ly rlooo, nu l’o--, r_ll rl r n
! ' ! >t " <" " >"
= ; yeoesX )
Qn(ﬁl,ooo[xrlxr_l,.-.,xn:xl,--.,xrlxr_l I n
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l ] ] 1 4 " " " "

+Q (3? > > > > > -
- eee X X see X 11X ese s X X e 0o X
n lI 14 14 r_-ll ’ nl l' !’ r—l’ r’ I n)

r

" " ? .
+' _»ll _>I +l ? L]

*
= X % . T >
= Qn(xl,...,xr_l,xr,...,xn,xl,...,xr_l,xr,...,xn)
(3-12)

where the plus sign refers to bosons and the minus sign refers to fermions.
Comparing equationg(3-6) and (3-8), we can see that Ql(§,§) = < p(?) >, The

reduced density matrix is a Hermitian matrix, i.e,

* N {2
Q.(X; %) — Ql(Z;Sc*)

and

L G

* "
92(§ ,if’;x YY)

) ”
0,6 7%

i

Thus Ql posses a complete set ©f normalized and orthogonal eigenvector Wz
Q. (X %) £ A UGy () (3-13)
! ’ r E =) k

S
where k denote the various eigenvectors corresponding to the eigenvalues

" " 1"

nkfszl(k*'; X )wky(sz ) dx = ngwg(k")
where

1 S SV _ 6
f‘\bk(x )wz(x )dx = ]-<-> E

The eigenvalue nﬁ-is the occupation numbers of the "single particle"”

1
state f, Integrating equation (3-13) over X , and using the completeness re-

lation
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a3

we obtain N = In when ¥ (3-14)
k

K

3.2 off-Diagonal Long-Range Order (ODLRO)

In the many body system of bosons or fermions, Yang(20) has
shown that there is an off-diagonal long-range order {(ODLRO) of the
reduced density matrices in the coordinate space representation. The
general characteristics of the gaseous,.the liquid, and the solid
phase are describable in_elassical mechanical terms, In quantum
mechanics, the long range correlation in the solid is exhibited in
the diégonal elementiof 92 in coordinate space and is quite different
from the concept of the offi-diagonal loné-range order. Since the
off-diagonal element have no classical analog, the off-diagonal
1ong—range‘order is a éuantum phenomena not describle in classical
mechanical term.

The ODLRO as it was called by ¥Yang(20), is due to the
appearance of a factoriied part-in-the-reduced-density matrix.
Penrosé(19) first suggested this occurrence for a system of an in-

teracting Bose particles, For the ideal Bose '‘gas, the eigenstate

of the Hamiltonian./is the simple product| of single particle states.

1 .1/2

w_}z(i) £ (5 exp ik %)
1 .3
and z — (j— ) Sdk
k v

for a translational-rotational invariant system of the ideal Bose

gas, and

n, = 1
k exp(ei— u)/kBT -1

~
m
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Therefore, at temperature, above the transition temperature T (3,13 K)
c

N 1 2.2
Q. (% ; %) a XECAP(—HI /AD)

1/2
where ¥ = X - x and (T = 27h(2mk,T) / , the de Broglie thermal wave-

] "
Thus Ql(§ ; X ) approaches zero when' z' >> AD' and the "size" of a
single ideal Bose particles is abeout AD(T). This means that there is no
probability of finding the same particle | simultarecusly in far removed reaion

space., Below Tc' a macroscopicgnumber of particles bkegin to condence out.

Then
L} " 1/2 * _\!l 1/2 ] +l n
. 2 - v , (= 2 . ¥ 2.
Ql(§ ; X ) n, wo(x ) ng wo(x W\ Al(x ;X ) (2-15)

—»' —>" ) * _~." .:.' . . . .

where Al(x ; X)) = kgonﬁug(x )¢K(x Jo.. For a translational-rotational invariant
1 1" L 5 1"

system (bulk system), Al(i i X )= Al(|§ sl I) is a function which approaches

zero, and vanishes at 0 K.-Then all particles are in thed coordinate, n. = N/V,

0

at 0 K. For the Bose system, Penrose suggest that the appearance of the facto-

]
rized part in Ql for the condensation in an interacting Bose system, which X

and X are sufficiently distant. Thus- for the Beose system

Ql(ﬁ Y L ¢(§')¢*(§") + Al(i'; Z 9 (3-16)

"
-

]
must hold, where ¢1 is the one point macroscopic wave function and Al(i ; X )

L} "
is negligible only if Iﬁ - % l is larger than a characteristic length of the

order of interatomic distance. This equation defines a two fluid system with

* "
density ¢(;)¢ (;) for the so-called condensate part and Al(§ : X ) for the
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depleting part ¢l as well as Q1 are physically meaningful quantities and
the ratio | ¢ (%) |2 : Ql(?{ﬁ) has been measured; it is of the order of
10 % according to Curmings et al. Thus ¢l should be a basic quantity of
a consistent theory of superfluidity.

The factorization (ODLRO) can occur in Q. only for the Bose sys-

1

tem, but not for the Fermi system because of the exclusion principle.

Yang(20) has shown that the presence of+ ODLRO in .@ leads to its presence
m - -

in Qn for n > m. In the interactino Bose svstem, Q. shows the presence of

1

ODLRO, thus Q2 shows the'presence of ODLRO. There are several conditions

which 92 must satisfydin any system of identical particles,

Q& g %" T AN G (3-17)

" 1 " > i

> > -+ . >
for a normal system whenever x “is far from x or y is far from x or vy

fo,G 3 % D (-Da & %) (3-18)

the symmetry conditions expressed in (3-12)

t ] " " * _‘n [ ] "
Q,E oy XY HY LR Zi T T (3-19)
Q +| +| " "
[ 2(Y ,X ’ X :Y )I
1] 1 ” "
= 92(§ 7% ; '§% ),/ for the Bose systenm,
' ] " " ] " L "
QLE Y%, F) — QG ¥ E ;X)) (3-20)
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QX ,yiXx,y) —m QX ;X)) ;7) (3-21)

only for X %~ %X ; ¥y ¥ § and
1 "

)
When X =X =%, and y =y , Q_(%,9;%,¥) is proportional to the

2

joint probability that; given one particle is at point 2, what is the pro-
N v

bability of finding the other at y? When |§ - §|—+m, it will be equally

probable to find the second particle one place as another for a liquid,

f 2
then 92(?,§;§,§) will approach a constant ( N /V2 ) in bulk system ,

P
i

2 2
B6(x LY = P g(|§ - §|) (3-22)

Where p = N/V = bulk density of /liquid, and g(f,?) is called the "pair dis-

JE VU

tribution function" g(‘? - ?I)———@ ¥, When |§ - ;[-—+ © , thus Qz(i,y;x,y)

nav be called the "pair gorrelatiom function"
QE LY E LY = T ~ ) (3-23)
for a translationally invariant system, and

Q,% ¥ %90 = o, x=yh

for a translation-rotation invariant system (bulk system)
. . . . c a4
For a system with a hard core interaction (a system like liquid He)

the "core” conditioniis

1 [}
QX ¥ X,y —0 (3-24)

for |X - ¥] < 2r
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where r, is the radius of the "core" region. This expresses the fact that

the atoms are impenetrable

1 1 * " * " ]
R, ¥ %,y = 6 (X)0 (T I6 (ks (T ) (4-25)

for all four points apart, when ODLRO occurs in Ql

From the equation (3-9), the equation of motion for Ql and Qz can

thus be written

150 (_»l _)_u WD (7'2 v"2 (_>| L
T (2 vy} e LA | SN TR )
ot 2m
] " ] "
+I{V(x1_§)-v(§l_;)}92(;1’;; zl,f)dy (3-26)

and

! 1 " " (] 13 1 ' " "
. 2 %22 =2, &4 2 v o 1l _ 0 Ty S
l"‘-g-%?-("1”‘2"1!”‘2’ ?% Ta vy oty -5 08, + V& %) -v(X -E)) ),

+LAVEE ) & Vi, -Y) - v<§l—§) - v&l ¥)}
R Y ?1,§2,?)d§ y (3-27)

These last two equations are important for deriving the macroscopic law of

mass, momentum and energy conservation. . |
Frohlich(17) has derived the Navier-Stokes eguation, as an exact

result fromithe reducedidensity matrices, with neither continuum assump-

tions nor intermediate "master equation" required,

2
PV + p (VW)Y = SR 4 N -V xVx Y (3-28)

ot

2

where P is the pressure, and Ny n, are the coefficients -of.viscosity, For

a non—interacting system, a derivation of the Euler equation can be obtained

from equation (3-26) immediately
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