CHAPTER II

SUPERFLUIDS

.. 4

2.1 Basic Properties of Liquid He

The two isotopes of helium have the lowest normal boiling

. : 4 3
points of all known substances 4.12 K/ fors He and 3.19 K for "He.
. 3 4 .

When the temperature is reduced fumther; both "He and He remain
liquid under the saturated.wvapour pressure, and would apparently
remain as such riaoht down 0 /absolute zero. To produce the solid
phase application of arather high pressure .25 atmospheres or
more (Fig.2.1 and Fiq.2.2)/ are required.

At a given instant of time, onejparticular atom in liquid

He occupies a certain volume-bounded'by the atoms immediately
surrounding it. Owing to the motion of the atoms, this volume varies,
but we can say thatj, on average, the atom is contained within a sphere
of volume equal to-the atomic volume V, and that the, sphere has radius
1/3 : . . .
RV . From the guantum mechanical uncertainly relation, it can be
infered that a_particle inside.such a.cavity has uncertainly in its
momentum AP v h/R, ‘and consequently, that'it processes kinetic energy
2

& ho/2m

‘ 2 2
of localization-or«zero~pointsy E o™ (&P )= /2m R, ,nwhen m, is

2/3

4 4

4 . 2
the mass of a He atom. In terms of the atomic volume Eo ~ h /2mv
and this dependent of Eo upon V is shown schematically in (Fig.2.3).
Calculation of the potential energy of the liquid is not easy; it

depends upon the choice of model interaction between two atoms.
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It will have ceneral form of the lowest curve in Fig,2.3. Since m,
'is small, the zero point energy is comparable in maanitude to the
minimum in the potential curve. Thus the total enerqgy of the liquid
reacﬁés a minimum at a considerable greater atomic volume than the
potential enerav minimum. The interatomic forces are stronqg enough
to producé the 1iquid phase at a low enough temperature,.but the

high zero point eneray keeps the densitVv of the liquid rather small.
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Immediately below theirnfrespective.boiling points, both
3He and 4He behave lLike loxdinary, liquids with 'small viscosity., However,
at 2.17 X liquid 4He undergoes a change which is not shared by 3He.
This transition is siénalled by specific heét anomaly, whose
characteristic shape has lead to the naﬁe A-point being given

to temperature ( TA) at which it accurs. Furthermore, observation



of the liquid at the instant that its temperature, if when is reduce
below'T>'reveals a remarkable alteration in its appearances. Liquid

helium is maintained at temperature below 4.2 K, but by lowerina the

bubbles of vapour

vapour ahove bath boiling can occur. Above T>,

form within the bulk of the liquid in the customarv way and the
whole liquid is violently agitatéd as these riée to the free surface
and escape. On the.other Yand, as soon as: the transition point
is reached the liguid becomes guite still#and no more bubbles are
formed. We infer that TA marks the transition between two different
forms of liguid 4He, knoéwn conventionally as Helium I above the
A-point and Helium [ .below iti TLondon has proposed that the transi-
tion between liquid HedI and He II"is the result of the same process
which cause the condensation of an ideal Bose-Einstein aas,

Below TA' liquid 4He I isi capable of two differrent motions
at the same moment. Each of these has its own local velocitv, re-
spectively 3n and 35 for the-normal fluid ‘and the superfluid. Like-

wise each has its ownteffective-mass-density o and I The total

density p of the He I is given by J

0 £ o= Hip 5 (2-1)
and the totaliicurrent density by

3 = 0¥ +p 3 . (2-2)

This approach in which the two fluid are treated independently

is most useful when the velocities are small. At higher velocities



the superfluid becomes dissipative, the normal fluid exhibits tur-
bulence, and there is the possibility of interaction between the
two. Tisza(l5) has developed phenomenological theorv bas;d on
this, Later Landau(16) has developed the microscopic theory usina
two-fluid model.

An example of the flow properties of liguid 4He below the
A-point is provided bv the behavior &f f£#lm which covers an exposed
surface of a body partially-dmmered in He [I. MNormal adsorption on a
surface in contact with any liguid or its saturated vapour is common
enough, but in He I, gthe Films are unusallv thick. Optical measurement
revealed that a typigal thickness under saturated vapour is 30 nm or

about 100 atomic laver, sufficientlyv wide to permit superfluid flow

through thé film. Owing to the presence of the film on its walls,

an empty beaker lowered inta a He II bath begins to fill with liquid,
even though the rim is kept well above the bath surface (Fig.2-4).
Filling continues until the inner level reaches' the level of the
bath, at which point its stops. The beaker is now raised, it

empties itself again, and if it is raised clear of the bath, drops

are seen to fall'from the base of the beaker.
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Fig.2.4 Film flow of He I over the walls

of a beaker.
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We conclude that the superfluid fraction flows through the film
whenever there is a height difference between the two bulk liguid levels.
In other words, the £ilm acts like a siphon, the driving force for the
superfltuid being provicded by the gravitational potential difference
between the ends of the film. By observing the rate at which the beaker
liquid level change,the superfluid velocity mayv he determined; (a tvpical
value is 20 cm.s—l). On the other hand, /bv.virtue of its viscosity, the
normal fluid fraction is almost stationarv in the film.

Other propertiessof liquid 4He below the A-point is manifesta-
tion of a thermomechandical effect which clearly shows that heat
transfer and mass tramsfer in He T are inseparable. The steadv supply
of heat to the bulk liguid, achieved for example by passing direct
current throuch a resistor, .and'its removal elsewhere into a constant
-temperature reservoir causes internal convection (Fig 2,5). tormal
fluid flows from the source to the sink.of heat whilsf superfluid flows
in the oppsite direction, under the constraint that the total density
remains constant everywhere. Thus heat is not transferred in He [ by
the ordinary processes of conduction and simplé convection of the whole
fluid. Only the fiotmal Fluid fraction Gdrriés heati'superfluid flow by

itself cannot #ransport heat.

——————— e - — e e

Normal Toperfluid
companant componant o
Fig 2,5 Tuternal covvection m He I Heat s supphed b heater FEand temipraturs are Lett

constant. )
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The pure superfluid constitutes thé qround state of He [,

The 4h’e,atom ﬁas a resultant spin of zero, and so it is a boson., -
Thus an assemblv of 4He atoms is governed by Bose-Einstein statistics.
As it well known, an ideal boson gas of particles with non-zsro rest
mass exhibits the phenomencn known as the Bose-Einstein concdensation,
At low temperature, the particles tend to crowd in to the same quantum
state, the lcwesf single-particle energy level of the system, forming

a condensate. The condensation begins at certain critical temperature
and is complete at absoitite zero. | It seems eertain that liquid 4He
behaves in a very similazway. The A-point is the temperature which
marks the onset of c?ndensation, and the condensate is associate with

the superfluid fracticen of He [,

2.2 The Two-Fluid Model
The dvnamics of He'll" can be understood in terms of the phe-
nomenological theory as féllows. At temperature other than zero,
He behaves as iff @t Were a mixture of two different liquids, One
of which is a superfluid and moves with zero viscosity along a
solid surface. The other,is a normalgviscous fluid. No friction
occurs between these tworparts of the liquid in thelrelative motion,
ie, no momentum is transfered from one tosthe other. Thé total density

of helium 1 is

= + -—
p ps o} (2-3)

where P, is superfluid density, and p, is normal density, This

theory of superfluid was developed‘by Landau(l16), and are called
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tow-fluid model for liguid helium I. We shal} denote by vs and vy
the velocities of the superfluid and normal flow respectively. The
total mass current density is given by

> S

J = 0535 + pnGh (2-4)
the theory of Landau is not concernéd with the Bose-Einstein con-
densation, He treated the superfluid flow hv expressing the macro—
scopic hydrodynamical variables in terms.of gquantum-mechanical
operator. Initially he proposed that it should consist of two branches

(Fig.2.6), one for phonons«and another separated from the first by an

energy gap. When he foumd that this spectrum did not yield the correct
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Fig 2,6 - Landuu's (1941) initial suggestion for the form of Hell cxcitation spectrum.
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Fig 2.7 Phonon-roton spectrum suggested by Landau (1947) Broken fines indicate defininons of
superfluid critical velocity . Doticd line shows free-particle parabola for comparison
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4
thermodynamic behavicr for He LI, he replaced it with the continuous
spectrum shown in Fig,2.7, At low energies the curve is a straicht

line, corresponding to the phonon dispersion relation
€ = up, | (2-5)

where ul is the velocity of sound. At higher energies, the spectrum
deviates from the straight line, passing first through a maximum

and then a minimum., The excitations ‘with energies near this minimum
provide the only major“eontribution to the thermodynamic parameters
besides that of the phon6nsy .and their energy momentum relation can

be expressed in the form

g = A% qp - pQ)2 (2-6)
2u
X

where ur is an effective mass.' We shall see shortly that the existence
of the finite energy gap A for tﬁese excitation, qalled rotons, is
crucial for the occurrence 6f superfluidity in He O, For the phonon
gas, Bose-Einstein distribution function is appfopriate, but the roton
distribution function includes the factor exP(A/kBT) which is very
large in the He I temperature range and this.means that Maxwell-
Boltmann statistic¢s can Ee used. for the rotens. The ‘number densities

of phonons and rotons are found to be

kBT 3
Nph = 9.60 h—ul—
2 1/2
. _ 2po(urkBT) exp(—A/kBT) (2-7)
r (2n)3/2h3

Below 0.6 K the number of rotons excited is negligihle and the phonons

are the only significant excitations, but above 1 K the roton play
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the dominant role from the thermodynamic viewpoint.

Consider, firstly, He U at O K moving through a narrow tube,
Superfluid flow is maintained as long as it is slow enough. However,
above a certain critical velocity vsc' the atoms move so fast that
when they collide with the irreqgularities in the tube wall, and so they
arc removed from the around state inteo tle excited states, Tn terms of
the quasi-particle model, thermal excitations are created in the
liquid with equivalent#l6ss _of kinetic energy from the superfluid.

On reaching the velocity ¥ the flow of He U ceases to be friction-
less,

To estimate the walue of Vsc' we imagine a body of large
mass M moving at constant velocity v through the superfluid which
is at rest in the laboratory system of coordinates. The critical
velocity Voo is equal to thé minimum valde of v at which an exci-
tation can be created. Suppode ‘that the appearcnce of an excita-
tion with energy ¢ (p¥ and momentum S causcs thewelocity of the

body to change from vito V.. The process must conserve energy

1l
EMVZ = }Mvi + e(p) (2-8)
2 2
and momen tum
MV = M$l + P, (2=9)

If we eliminate Vl between eqgs. (2-6) and (2-7), we obtain

e(p) - .V + _p_2_ = 0. (2-10)

2M
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We assume that M is so large that the last term in eq. (2-8) can ke

neglected., If 6 is the angle between ﬁ'and Vv, we then have

pv cos8 =  e(p) (2-11)

and since cos6 < 1, the conditien

<4
v

€ (p)

P

must be satisfied for'excitations to be created. Thus the critical

velocity is given by

vSC = Eigim (2-12)
p in

Supcerfluidity coan therefore occur if

sC

a condition which is known as the Landau criterion for superfluid.

Minimum values of €{p)/p~are found where

de (p) = € (p) (2-13)

dp p

N

There aretwo solutions of eq, (2-11) on the He IL excitation curve.
One occurs at the origin, and indeed at all points of the linear

part of the spectrum. In this region

Vee = e(p) = u (phonons) (2-14)

o )
013255 |
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which indicates that the critical velocity for tﬁe creation of
phonons is the velocity of first sound.

To find the second solution to eq .(2-11), we draw the
straight line which passes through the origin and touches the

.

curve close to the roton minimum(Fig 2.5). From this we obtain

v - A & _a'cg ms (2-15)
sC —

In Fig. 2.7, we show thesfree-particle parabola, corresponding

: 2 . .
to the dispersion relation € = p /2m, . Wc sce immediately that con-

4
dition eq ,(2-11) can e satisfied on this curve only at the oriqgin,
giving

Vec = 0 (free particle) (2-16)

A critical velocity of zero-means that superfluidity is impossiblé
in any system where~free particle motion can take|place. Thus it
is the energy gap A, together with the lack of any other thermal
excitations below the iLandau curve, which ensures a finite value
of superfluid critical veélocity in He I.

London (10) first proposed a conne€tion between’the X tran-
sition in! liquid 4He and the'/phencmena of ‘Bose-Einstein condensa-
tién. Frohlich(17) and Cummings et al(l8) defined quantities
such as condensate density (pc) and depletion density (pd)
respectivelv, Total density of liguid Helium I at between tem-

perature 0 X to 2.17 K is

o = O+ P (2-17)
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and it is a two fluid modél. éowever, it has been developed further
by using the macroscopic tl:eory. Penrose(19) has used the reduced
density matrices with a two fluid model. Use of reduced density
matrices has. been taken to the derivation of a closed set of thermo-

hydrodynamic equation of 4He I in the bulk system. We will present

this in the chapter IV,
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