CHAPTER 2

MICRC-MECHANICAL MODEL

the heart of modern material

engineering. They are beneficial to matCHial i @vorable performance can be

obtained by adjusting charactefis! i ils 7 Jowe\ e , due to the highly complex

Relations between microstructll

Concrete is heterogenous afiate [ e Aggregaie paxticles randomly embedded in
cementitious matrix. Even in€ach ghas€. properties @f ¢ te vany from one position to another
in the entire domain. It is very*diffj ) alig VIOr in a continuous manner.
Progressive cracking mechanism and inear -:‘_ alsé make the concrete response
more sophisticated. Wlth dxfferent aildfe-efi S EHteTia A al approaches, many simulation

models have been developed to describe ﬁ?‘ﬁf'ﬂ_{'ﬂh‘g <
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In this chapter, a § ;’; Ij?"gi microstructure will be
developed in order to simulat e respe bjccted 0 static monotonic loading,
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especially in compression. Fractgre mechanics and te element analysis will be used as a

potential tool. Aftemﬁs uﬂ,{a Wdﬁtﬂxﬁt%’l} ﬂmﬁs will be performed

to evaluate feasibility Mploduce concrete wxgx compressive strength greater than 150 MPa. If
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2.1 Failure Mechanism of Concrete

Failure responses of concrete material subjected to different loading conditions arc
governed by the initiation and propagation of internal cracks during loading. When a concrete
specimen is initially loaded, distributed microcracks are randomly formed throughout the
specimen. These microcracks begin to increase in length, width, and numbers beyond the

proportional limit, causing deviation of stress to strain ratio. After that, the microcracks begin to



localize into a macrocrack that critically propagates at the peak stress. Strain softening is observed

under the propagation of this crack.

To model this behavior using discrete crack fracture mechanics, it is assumed that an
initial crack begins to propagate when the stress at that point is exceeding its tensile strength ( £, ).
When the crack extends in concrete, new crack surfaces are formed along the path of the initial

crack tip. The newly formed crack surfaces may be in contact and are tortuous in nature, leading

to toughening mechanisms in the fracture process fzgne. They may continue to sustain some

normal tensile stress, which is charactel STE3 ytlon relationship (Jenq and Shah,

1985), as shown in Fig. 2.1. Thus, ¥ athematically ase rate required to propagate

crack (G, ) is the summation of ila YTE COT atm@cracking surfaces (G, ) and

the energy rate to overcome co (G,), e,
(2.1)
The value of G, may befévallia dtbased dntir -,\ . \‘a\‘ racture mechanics (LEFM)
and is called critical energy r e ‘work done by the cohesive
pressure over a unit length of the éfacigvith glusii thilkiiess, 1 s Wallle can be calculated as
(2.2)
where w, is the displacemegif@ttheinitial erack i )
, i ) ‘
With the concept of t ! ictitiou borg etial, 1976), it is assumed that
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the energy needed to create the niw surfaces is small c&' mpared to that required to separate them,

the energy rate term ﬁ u ﬁs’}%ﬁﬁ WH{] ﬂ ﬁ should be replaced

by critical crack separafién displacement ( w,.) .gor w,>w,.. Then eq. (2.1) becomes
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The mtegral in eq. (2.3) is the area under stress-separation curve, and is denoted as G,,.
The material fracture toughness G,. represents the energy absorbed per unit area of crack and is
regarded as a material fracture parameter. It is noted that when the shape of o (w) is given, the
material fracture property can be determined by the values of £, and G,.. In this study, linear
decay of stress-separation curve is assumed, resulting in

2G,
M)(. =
/:

(2.4)



The finite element method is a powerful tool to analyze such cracking behavior of the
entire concrete specimen from a microstructural viewpoint. It is necessary to link the stress-
separation relation to the constitutive equation. Based on the smeared crack model (Bazant and

Oh, 1983), the ultimate strain (&, ) is easily computed by introducing the element size (ht, ), i.e.,

& =—= 2.5)

2.2 Simulation of Concre

Based on the ideas prese i oY on, simulations of concrete response for
this study will follow the al g. 2.2. Details in each step

will be described as following:
1.) Define aggregate arrang

For the sake of simplicity, only s considered in this study. According

to a given size distributio varticles are perated in a two-dimensional
L4 28 e e, |

concrete domain by a procedie 00) ) The largest particles are
placed first by assuming a u :E rm probab pution, follo 'J'”T- by the next smaller size.
The clearance of 1 mm betwegh aggregate particleg and of 0.5 mm between particles and

specimen boundaries ﬁ %t@rw Bam @W sgqra‘iy The sample of the

modeled internal structal'e is shown in Fig. 2. 3‘
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The quadratlc triangular element with straight sides and midside nodes is implemented to
represent the whole domain of concrete in two dimensions. The finite element mesh is generated
based on Delauney triangulation (de Schutter and Taerwe, 1993). To force the mesh to coincide
with aggregate and specimen boundaries, a number of poinis and line segments are introduced
before mesh generation. The distances between the prescribed points on aggregate boundarics
play a dominant role in determining fineness of the mesh. An example of mesh gencration is

shown in Fig. 2.4. Elements in the ring area represent interface zone around aggregate particles.



3.) Assign material properties and constitutive relations

Four material properties for each phase are involving in the simulation, i.e., tensile
strength ( ), elastic modulus ( £'), Poisson’s ratio ( £ ), and fracture toughness (G,.). Because
the failure pattern of concrete specimens is a result of the combinations of tensile cracking at
micro level, it is assumed that stress-strain relation of elements under compressive and shear

stress is perfectly linear elastic. While, that under tensile stress is linear up to tensile strength ( f;)

material properties is related
4.) Calibrate the mo

Since the concept of crac (Bazant /4 ©83)is applied in the model, it is
necessary to calibrate the model to tte ol letden si ). This is accomplished by
assuming the element size as a function of it e calibration is performed based on
axial elastic modulus testing ep involves : ange elastic modulus to all

elements and applying a pre§c ‘Hﬂ one end, while the other

end is held fixed in the loadi 3 directione perpendi :,.. direction. The boundary

conditions are illustrated in Fig. 2 1s.By calculating t&t}reaction at the fixed end, the resulting

clastic modalus of mﬁe%gfg AHNINEYINT

5.) Perform szmulatzon and analyze th€ output

AT NEIAY. .o,

will be used as a tool for the computer simulation. ANSYS 5.4 is advantageous in performing
non-linear analysis with user-defined material elements. Moreover, It is well familiar to crack
simulation. There is also much flexibility in adjusting involving parameters and decisive

algorithms. However, a difficulty in pre- and post-processor may impede such a simulation.

With ANSYS® 5.4 , the simulation will be performed with displacement control. That is,
deformation will step-by-step grow at one end, while the other end is held fixed in the loading

direction and free in the perpendicular direction. The simulation will be terminated when the



clement strain is out of limit, making the iteration diverged. For each load step, the internal stress
of all elements will be saved, and thus reactions as well as applied stress can be determined.

Afterwards, the overall stress-strain relation of the concrete specimen under loading is obtained.

2.3 Compressive Response of Concrete

The compressive behavior of 100x100-mm concrete specimen will be simulated. At first,

approximately 64% of the whole a. T wesh is shown in Fig. 2.7.The
material properties of each pha o Table th St simulation, the interface is

neglected by assigning the propértie

o\
The simulated stress-straig#fre ghé deple \ g 2.8, It can be observed that the

: ) ;
concrete specimen behaves almosg anly fc n¢ ultimate load, and then

followed by a non-linear part. dgBregiof ue I ith increasing displacement
until the ultimate load is attained. Fhergafter, e eGigen so \ ns'and the load-carrying capacity

radually deteriorates until the specinen fat&-4 he yattern of the specimen is shown in
g y p P

Fig. 2.9. Though the model considered on ﬂ"f ' he micro level, the shear band type

of cracking can be noticed \eflecting v ailire sl Todeling. It is also seen

L7 A
that cracks mostly propagate atthe ws. Even with no difference

. .o . . i - .
between interface and matrix,*the interface still play a significant Tole in controlling concrete
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The dependenc§lof the results on mesh size or number of elements, or the so-called mesh

¢ o 2
sensitivity, 1saswqrmmﬂ ﬁﬁlﬁ?ﬂﬁj\fr ﬁhﬁ this, three
different meshegjare generated with the same aggregate arrangement and material properties. The
numbers of elements are 10012, 20136 and 40148 elements. The ratio is more or less 1:2:4. The
simulated stress-strain relations of all three models are shown in Fig. 2.10. There is a convergence
of stress value for a given strain when the number of elements increases. This mesh sensitivity is

owing to the existence of element size in the model (Bazant and Planas, 1998).

With a given size distribution, aggregate particles are normally located randomly in the

specimen domain. To investigate this uncertainty, four different patterns of aggregate



arrangement are prepared for the simulation, as shown in Fig. 2.11. Size distribution and fraction
area of aggregate in concrete are reserved. The last pattern of aggregate arrangement represents
the casc of aggregate segregation. Fig. 2.12 shows the simulated stress-strain curves of these four
models. The predicted response follows the similar trend. The difference in the ultimate loads of
the aggregate pattern no. 1 to no. 3 is within 5%, whereas the ultimate loads of the aggregate

pattern no. 4 is about 10% lower than the average of the others.

Variation in compressive response of conegete specimens with different size, which is
shown in Fig. 2.13, is plotted in Fig. : | aft ditnensions are 50x50 mm, 100x100
mm, and 150x150 mm. It is obviotisethaét i ée reduces when specimen size

’ ———

increases. This agrees with the Wi cakestMinke@Mihashi and [zumi, 1977).

The experiment is do 0sed model. Three mixes of

mortar are consisted of ordin d with fineness modulus of

3.04, tap water, and napthalene- ement ratio is varied for each

mix in order to produce mortars wi , t strength. They are 0.30, 0.25, and

0.20. For all mixes, silica fume is added by ement to improve the performance

of the interface zone, whilesafid/ nt ratio is a O Superplasticizar is applied to guarantee
r L)
I

the flow value of 150%.

» i¥

To produce concrete, thef mortars will be blended with limestone coarse aggregate. The

maximum aggregate ﬁ ulﬂ Q,Jnvl ﬁ ﬂﬁt%%}&ﬁgﬁate smaller than 10

mm in diameter are apfioximately 60%. The le proportlon of mortars and concrete is tabulated
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Tensxlg strength, elastic modulus, Poisson’s ratio and fracture toughness of mortars and
coarse aggregate are evaluated. In the case of mortars, they are tested at th_e age of 28 days. Direct
tensile strength of briquette specimens is performed according to ASTM C190. Compression of
50x50x50-mm specimens is used for evaluating elastic modulus and Poisson’s ratio. The
longitudinal and transverse strain are detected by strain gauges. While, conforming to the
suggested method of RILEM (1985), 40x40x160 notched prisms are performed in a three-point

bend test to figure out the fracture toughness. The mortar test results are shown in Table 2.3. The
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average 28-day tensile strength is 5.2, 7.8 and 9.2 MPa for water/cement ratio of 0.30, 0.25 and

0.20, respectively. Slight differences in Poisson’s ratio and fracture toughness can be detected.

Rock cylindrical specimens with a diameter of 100 mm are cored from the aggregate
quarry to test for their splitting tensile strength, elastic modulus, and Poisson’s ratio. The test for
splitting tensile strength follows ASTM C496, whereas ASTM C469 is applied for measuring

elastic modulus and Poisson’s ratio. The fracture toughness is determined by bending a sawed

The concrete behavior : at the age 6f28.days. According to ASTM C469,

150x150x150-mm specimen is employed # ipros € e displacement-controlled
universal testing machine. Thé"axigigde o154l od t cchanical dial gauges and
electrical strain gauges. The su€Ss-sifaij ‘ three ‘con mixes are depicted in Fig.
2.15. For the entire response, thes€ 1s & g¢ .d grecin ‘Stiffness and strength between the
experimental result and the simulated gne. secn . 2 the similar failure pattern as in

simulation, i.e. shear band cracking, fSugpeeted. =

\

LT
2.5 Effect of Concrete Components 2] 7 V4
ot )

The understanding inTinflue operfiés on the overall concrete
) i¥

characteristics provides valuable mformatmn on how to engineer concrete-making materials

towards improved peﬁnﬁﬂa‘ﬂa w H ﬁﬁ.%ﬂé’] ﬂd‘i concrete modeling

will be varied without fiterference of different aggregate conﬁguratlon and ﬁmte element mesh.
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parametric studg.

2.5.1 Effect of Aggregate Properties

Firstly, to evaluate the effect of aggregate elastic modulus, the modulus has been changed
dramatically to cover both practical and extreme margins. Shown in Fig. 2.17 are the simulated
responses of varying aggregate elastic modulus from 10 to 120 GPa, corresponding to the
modulus ratio of aggregate to matrix equal to 1/4-3. An increase in the elastic modulus of

aggregate obviously raises the modulus of concrete, but reduces the degree of non-linearity. The



compressive strength of concrete seems maximum when the aggregate modulus equals to the
matrix one. A drastic drop is found when the ratio of aggregate to matrix elastic modulus is less

than 1.0.

The effect of aggregate tensile strength differing from 8 to 40 MPa is illustrated in Fig.
2.18, in which the aggregate tensile strength is up to 5 times of the matrix. The same concrete

elastic moduli are observed, but the deviations from linearity occur at different strength levels.

certain limit. An approximately the samesult ¢ Stie crete specimens are also detected.

fractusestoughness in the range of 0.04 and

0.12 N/mm does not change consid, , pea) . ?ete, but alters the post-peak
! nfs 1 \3‘;\% m 0.1 to 0.3, no significant

discrepancy in the simulated stress-gffai conerete is reporte Fig. 2.20.

By varying the matrix el s, be Ja 60 GPa, about 1/8 to 2 times of
aggregate modulus, in Fig. 2.21, impEeven astied modulus of concrete is found
corresponding to the increase in the matsi e_highest compressive strength takes
place when the ratio of agg - : _,5 shows the compressive
response of concrete with natti = 6 MPa. Like aggregate
tensile strength, compressive II.I ength of co

) ] . .
ances when the tensile strength of matrix

enlarges.

‘a W ,
It is shown i@uﬂgumﬂfncjeﬂﬂﬂolnghen tensile fracture
toughness 1 aﬁﬁiﬁwrﬂ ﬁ%‘jﬁoﬁﬁvﬁiﬁlﬁ g,\il %fld compressive
strength. Th;ic of va Poisson’sia 1X 18 al glig E[s , En ig. 2.24.
2.5.3 Interaction on Concrete Strength

It is already demonstrated that enhancement in concrete compressive strength is
dominated by improvement in the tensile strength of both aggregate and matrix. An increasc only
in tensile strength of each phase has a limited effect on the overall concrete strength. The chart in
Fig. 2.25 is a interaction between tensile strength of aggregate and matrix on concrete strength

obtained from the proposed simulation model. This interaction reveals the possibility to
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manufacture concrete with each strength level. For example, ulra-high strength concrete with
compressive strength higher than 150 MPa requires aggregate with tensile strength at least 16
MPa and matrix with tensile strength higher than 8 MPa. These tensile strength values may be a
guideline in qualifying the potential materials for making ultra-high strength concrete. Therefore,
to achieve ultra-high strength, the development of matrix and selection of coarse aggregate with

tensile strength greater than such values will be discussed in the following chapters.
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Table 2.1 Material properties for simulating compressive response

Phase E (GPa) [ (MPa) G r (N/mm) v
Aggregate 80 16 0.080 0.15

Matrix 40 8 0.064 0.25
Interface 40 8 0.064 0.25

Designation Cement
(kg/m’)
M20-MMV 1035
M25-MMV 984
M30-MMV 938
C20-MMV 717
C25-MMV 692
C30-MMV 669

Table 2.3 Mechanica?
; P

Materials

M20-MMV
M25-MMV
M30-MMV
Aggregate

P, "

36&"&

1

78 aJ
Al

i: "

Silica Fume
(kg/m?)

155
148
141

108
104
100

model verification
b

v

: 0.24
0.06 0.24
J06Y 4 f& 025

oll I|d o.17

qmaﬂmfﬁwﬁwmé‘ ]
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Fig. 2.2 Algorithm for simulation of concrete response



Fig. 2.4 A part of finite element mesh




o) E

a.) under compressive or s

Y YYLLL T

Fig. 2.6 Boundary conditions for simulation and calibration
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Fig. 2.8 Simulated stress-strain relation of concrete under compressive loading



Fig. 2.9 Simulate crack paj
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Fig. 2.10 Simulated stress-strain relation of concrete with different number of elements
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Fig. 2.12 Simulated stress-strain relation of concrete with different aggregate arrangement
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Fig. 2.14 Simulated stress-strain relation of concrete with different specimen sizes
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Fig. 2.16 Failure of concrete specimen under compressive loading
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Fig. 2.18 Stress-strain relationship of concrete with various tensile strength of aggregate
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Fig. 2.20 Stress-strain relationship of concrete with various Poisson’s ratio of aggregate
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Fig. 2.22 Stress-strain relationship of concrete with various tensile strength of matrix
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Fig. 2.24 Stress-strain relationship of concrete with various Poisson’s ratio of matrix
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