CHAPTER V

RESULTS

5.1. Spectral SignaturesAnalysis and Spectral Signatures of Minerals, Rocks

Signature differences were studied and compared at different multispectral
wavelengths and between ASTER and Landsat TM (Thematic Mapper) images. Surface
temperature and brightness are the physical properties accessible in the thermal infra-red
to high-frequency range. These parameters are affected by the chemical nature of rocks
and their rock types. Thermal inerti conventional term used in remote sensing for
the heat capacity of rocks, is /«: property which facilitates the spatial
interpretation of spectral signa

Spectral signat eful for ishing minerals and certain rocks of
homogeneous composzutefintW reflectance which varies with
wavelength and gives #i riations in anplitu signal. A multispectral satellite
image is composed of scyefal iMages whi 'MCorded simultaneously over the
exact same area. Each 1magé shows'i ce refleetion of sunlight within certain wave
lengths called channels ject, hasiits own spectral signature. The
surface of the water refiécts , C amounts in channel 1, channel, 2,
3...channel 7 (landsa#®*TM) or hafii ...etc. The spectral signatures of

different area types are to e mleaSured-byMultiSpee software (See figure- 5.1).
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In the Selection Graph window channels 1, 2,3...14 are seen on the x-axis.
The pixel values are seen on the y-axis. The graphs show the pixel values of the selected
area or rock has in channels 1, 2,3 ,... channel 7 (landsat TM) or channel 14 (ASTER)
image respectively. Where channel 1 to 3 will be the VNIR. Channel 4,5,..9 will be
SWIR and channel 10,11,..14 will be TIR value .Note that the y-axis in the Graph



47

window changes with every measuring, so be careful when reading the average pixel
values.
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The spectral information represented by#the digital n in one or more
spectr. ,'%1 ﬂ}ﬂ? % ﬁﬂ}nd VH 1’)1 on this spectral
informatign! This of classtfi nis térmed spectral pattern fecognition. We need to
distinguish between information classes and spectral classes. Information classes are

those categories of interest that the analyst is actually trying to identify in the imagery
such as different geologic units or rock types and water. Spectral classes are groups of
pixels that are uniform (or near-similar) with respect to their brightness values in the
different spectral data. The objective is to match the spectral classes in the data to the
information classes of interest.
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Using the rock formation, spectral sub-classes may be due to variations in mineral
composition, age, species, and density. It is the analyst's job to decide on the utility of the
different spectral classes and their correspondence to useful information classes.

5.2.1. Scatter Plots

Scatter plots are the most commonly used methods to project high dimensional data
to a 2D space. In this method, n*(n-1)/2 pair-wise parallel projections are generated,
where n is the number of dimensionality. Each scatter plot gives the analyst a general
impression regarding relationships within the data between pairs of dimensions.
Figure5.4 show a 2D scatter plot of classification with band 4 and 5. The pixels within
one class cluster together and can be conmdered as a pattern. Thus the characteristics of
classes can be interpreted by “pattern reco;,m jon” based on the statistic approach. For
example, the separability analysis calculatéss dSj;stamces between two different classes
for various band combmauons Then t}}e bart h large distance can be selected as
useful features. -
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Fig-5.452D) sgatter plotting of aridsat TMI(R,G,B): (5:4.3)

This image shows a scatter plot of the area using TM bands 4 and 5. Signatures
created from the supervised classification are outlined on this image. The AREA was
used to view the statistics concerning each rock formations , and group. This information
will later be compared to data generated from the unsupervised classification example.
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5.2.2.Maximum Likelihood Classification

This attempt was made to classify the various rock units use in ENVI .4 and image
processing using supervised classification techniques. In supervised classification,
spectral signatures are developed from specified locations in the image. These specified
locations are given the generic name 'training sites' and are defined by the 2D scatter
plotting method. Generally a vector layer is digitized over the raster scene. The vector
layer consists of various polygons overlaying different rock formation types.

The AREA module in the study area was used to view the statistics concerning
each lithologic group. This information will later be compared to data generated from the
Landsat TM and ASTER data set. 17
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Band Min Stdev Eigenvalue
1 46 5.516390 4775.83
2 22 5.819751 348.36
3B 28 13.465797 146.83
3N 33 15.588628 67.67
4 14 7.490231 35.98
5 13 .996186 22.43
6 11 A4 4:58.070114 19.30
7 1084 1.4.376785 15.09
8 9 m ™ 7| 3.997393 9.88
9 12 1 2.389600 3.86
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Band Min Max Mean Stdev Eigenvalue
1 1.000000 91.000 28.3794 10.710511 | 809.148434
2 117.0000 146.000 129.63314 4.449776 102.203484
3 2.0000 173.000 73.398075 23.279031 26.187318
4 4.0000 121.000 55.719706 13.339452 | 6.705614

5 14.0000 85.000 31.439388 7.259128 4.003247

6 18.0000 65,000 28.535006 | 3.573378 2.777190

7 61.0000 137.000 77.043663 5.671835 0.978222

Table-5.1(b) Accuracy assessment of the classification Result of Landsat TM (R,G,B);

AST(321), Maximum Likel
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Cover Type Number Pixels Area (Ha)
Water 3218 62.055
Shale, schist 103 176.085
Metamorphic rock 5910 340.695
Forest 10119 539.640
Sedimentary rock X \\ 56 349.830
Limestone, dolomite | 20.250
Sandstone, quartzite . 7 - _ 1.530
Overall Accuracy = (2851218 0000
Kappa Coefficieni®™ 0,023€ : ,
lavie-5.2. Suallingly 8 ULl o UICUVED Lypes Ll a  sceiie
At this area, tHe i3 ?’i’ ,[ ' ’1’t crpret. Decisions need to be made

dact

concerning which rock4yp °h category falls *‘ To make these decisions, other
materials and knowledge Jof ¢”atea ,arg wiseful. \Ground truthing what is seen in the
digital image with what Wasfactual® pr B, The image was recorded makes this task
more efficient and more acelirafgz1f thi détge is not available, scientific reasoning
may be used to group the various tocks into rock formation. Five classes were
identified from the original«12" G ns andvate shown in the image (see figure-

f the pixel~based maximum likelihood

in.

5.7 show the resulistof
classification approagfigs, respectively.). A\

This scene & part of a 1984 study of howa:curately we can identify rock
units using Landsat TM dm from arid (vegetation, forest) terrains. First we present a

Maximum Li od @S i i%ﬂﬂmﬁw Landsat TM on 10
February,1989 &E A . ¢ @igital image processing

system. Its clasSification accuracy c‘js an estimated 16%; that df»' the rock units or

formations ctly identifi T ast ofy surface exposures
(sourceﬁfﬁoﬁ;a bév r %’c ?)Zie ) Q%T:g 1‘:1‘2 iew of shadow and

slope effegts, soil cover, and other variables.

The above classification applies a different set of training sites and, unlike the
one above, includes VNIR Band 2, NIR band 7 and 4 of Landsat TM and SWIR band 9,
7, and band 5 of ASTER. The formations are exceptionally distinct. Red was assigned to
water. The large section of blue occupying the metamorphic rock formation corresponds
to strongly weathered slope wash along steep slopes.
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5.3.Classification Accuracy Assessment

The accuracy of the final product depends on the quality of the input data
(rubbish in, rubbish out) and on the accuracy of all processing that is performed on the
data. Therefore, every step in the workflow will be discussed in order to get some insight
in the final accuracy of the end product.

Ground truth is necessary to assess the accuracy of a classification. This
ground truth is in addition to the ground truth used in the actual classification process.
Sometimes Classification Error Matrix is called Confusion Matrix using by ENVIL.4.
Compares the relationship between known reference data (ground truth) and the
corresponding results of the classificatiof

Alternatively, an error matrix gencrat€e other sources may also be provided.
The elements of the errorsmattix are uysed t5-derive a number of accuracy measures,
which have been divided gent c¢ rreo%and Kappa coefficient.

y x\{{‘?&i verall accuracy of 15.95% was

. The average accuracy is the average of the
ilar average with the accuracy
s\for that class in the total training
ate estimate of accuracy.

accuracies for each class, au€
of each class weighted byfthefpuor
or testing sets. Thus, th€ oy

5.4. Univariate and Mul

The results of thg n
They show that band 2 has the*
the largest variance due to the:
the various materials“gon
and band 3 has the 1a
in this band, of the varia

as shown in Table-5.3(a) and (b).
¢ due to its low contrast and band 4 has
in the spectral response in this band, of
nd 9 has the smallest variance
rgnces in the spectral response
R image.

AULINENTNEINS
AN TUNNINGA Y
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Band ™ 1 ™ 2 ™ 3 ™ 4 ™™ 5 ™ 6 ™ 7
Number

Mean 28.13 129.63 73.40 55.72 31.44 28.54 77.04
per band

Stdev 10.71 4.45 23.28 13.34 7.26 3.57 5.67
per band

Variance | 88.86 21.03 450.14 343.80 40.46 12.40 36.15

i

Table-5.3.(a). Univarig \ nl ! £ y

bands of Landsat TM image.

——

Band | ASTI 7 :?: S AST6 | AST7 | AST8 | AST
\

Number // \\\ 9
Mean | 76.54 19,3 / E b\ 402 2944 |2562 |22.1
per [ ’ 8
band _ d\
Stdev | 5.36 . 044 {0/348 840 |694 [623 |3.59
per ey
band
Covaria | 28.68 96_| #1084 129 4136 | 7049 |48.18 |387
nce ' : 6

s of ASTER image.

ﬁ %;l E_ﬂ s% %% wﬂfl(f])ipresents the multivariate
statistics . ica at bands M-2, and TM-5 are highly correlated.

Therefore thelr lnformatlon is reduridant. The losest correlation®é obtained for bands
TM-4 WOL ﬁﬂmmmw ﬂﬂ hmg differences
onthe b sp il a d 2 and band 9,
and band 7 are highly correlated. The lowest correlation is obtamcd for bands 2 and 4

(0.43%) making them the most important in establishing differences on the basis of
spectral information.
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Band ™ 1 ™ 2 ™ 3 ™ 4 ™ 5 ™ 6 ™ 7
™ 1 1 0.670999 | 0.934678 | 0.297491 | 0.878254 | 0.845434 | 0.736113
™ 2 | 0.670999 1 0.656057 | 0.279218 | 0.668277 | 0.65954 | 0.608764
™ 3 |0.934678 | 0.656057 1 0.532287 | 0.770213 | 0.801208 | 0.629011
TM 4 |0.297491 | 0.279218 | 0.532287 1 0.115228 | 0.301022 | -0.00189
T™ 5 | 0.878254 | 0.668277 | 0.770213 | 0.115228 1 0.922276 | 0.867201
™ 6 | 0.845434 | 0.65954 | 0.801208 | 0.301022 | 0.922276 1 0.863414
T™ 7 10.736113 | 0.608764 | 0.629011 | -0.00189 | 0.867201 | 0.863414 1
Table-5.4.(a).Correlation matrix t TM image for the study area.
(b).Correlation e for the study area.
9 AST

Band | AST1 | AST?2 AST4 | 6 AST 7 | AST8 | AST9
AST1 1 0.9 037 0.48 0.47 0.48 0.50
AST2 | 0.912 043 55 0.53 0.54 0.56
AST3 | -0.13 | -0. > 5 0.17 0.15 0.14
AST4 | -0.37 | -0. e 0.02 | 0.01 -0.01 | -0.02
ASTS5 | 0.31 0.3 . 4 0.95 0.94 0.93
AST6 | 0.48 0.55 @ D 1 0.99 0.98 0.98
AST7 | 047 | 05 . .6 \ 99 0.98 | 0.98
AST8 | 0.48 0.54 SE 4 0- 9 0.98 0.98 1 0.99
AST9 | 0.50 0.56 14 Ju= 0.93 0.98 0.98 0.99 1

5.5. Low Pass Filters

Digital image
cover categories from e ge
out including image rétification.
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Figure-5.8(a) and ( b) Image showing pixel values of the 3 x 3 window
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5 x 5 window
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Figure-5.9. Image showing t ndow.
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Figure- 5.10. Window operation for spatial filtering.
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The value for the cell at the centre of the window is computed as a simple
arithmetic average of the values of the other cells (see figure-5.10 ) . Mean can be
computed by multiplying the cell values in the window by the n x m values in the filter.
Mean of 3 x 3 and 5 x 5 for the window center can be computed by multiplying each cell
value by a weight of 1/9, 1/25 and adding all results. That can be replaced by the mode,
which is the most common value.

The low-pass filter has the effect of removing extremes from the data, that
will be producing a smoother image (see figure- 5.11 ). Diversity of the four directional
axes within the window are alternative options. The diversity is useful operations for
indicating the local complexity of the spatial pattern.

Original : ’- High-pass=original-
=3 low-pass

7 <7

Figure- S.Fj] ﬁﬁrﬁﬂ &miﬂﬂﬂ)ﬂg and (b) the effect of
AMIAIN TN INYAE

5.6. Geological Mapping

A geological map is the result of integration of ground observations and
measurements made on outcrops that are often discontinuous. It is a complex geological
document which combines the chronology, geometry and geomorphology on a
topographic and drainage base. It is the final document resulting from interpretation of
observed facts and hence is greatly influenced by the concept of mapping and the
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structural hypotheses adopted. Some of the factors that strongly affect the results of
mapping are:

a. Stratigraphy, which predominantly influenced, i.e., the effect of major stratigraphic
boundaries on the (chemical nature) composition of rocks

b. Lithology: certain maps highlight differences in the nature of rocks while preserving
the stratigraphic connotation.

The efficiency of remote-sensing 1nterpretat10n which is very sensitive to the relief.
That is enhanced when geomorphology is fully taken into account. Lineament
distribution and its general orientation are shown in Figure-6.1. Major lineament trend
can be summarized as N-S, NW-SE under considering exaggeration due to imaging
orientation. N-S structure is the most dommant orientation.

The geological map of study complled from geological hardcopy maps at
1:2000,000 scale and 1:500, 000 f / dein 1981, 1983 by  (Geology of Burma
and Mineral resource of Thai ‘Isthe area from longitude 97 degree to
98 degree East . The extentof the 1g1 cCiapried map is 1: 250,000 scale geological

hardcopy map of study™&fea"(See fidure-5.12 ). The map is mainly composed of
geological body layer (o® bodies were classified according to
their generic type to sedifficy .i‘f ﬁg'\-"‘? rock. Each class was divided

into many rock types depgn@ t lo %ﬁ aracteristic and age. Each polygon
was assigned code valli€, ail g « ain a 2 digit string. Each code
indicates the type of rocksf baseg .J 1 ..r: \

1 olo

Function a§"a i e on o p is drawn either directly or on
a digitizing overlay. With#thell 3 a T™M% nages, we now can extend this is
the advantage of covéragg a #s them to examine in physical scene as the
geological of earth on afre o%a :-,; he ability to analyze multispectral bands
quantitatively in spectral siggature!atterns them to apply Multispec, ENVI 4 processing
routines to image classification/and en 1416 ain compositional properties of earth

materials as lithology. The capa ging different types of remote sensing
products such as refle ctance: vithitepographic elevation data, drainage
patterns and with othgr kinds of infor ”-'":"—:‘:m';‘:r;:‘;}' geological maps; structure
lineaments enables néw s ions among various natural

properties of earth pherﬂn
ﬂﬂﬂ’lﬂﬂﬂ‘ﬁﬂﬂ?ﬂ‘i
9 W%Nﬂiﬁu URIAINYIAY
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Fig-5.12. Geological map of study area ( (a). overlaying map and , ( b) new map)
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Symbol Lithology Age
% Shale, bone beds, evaporates, limestones Triassic
NN
Undifferentiated sediments of Eastern Burma Paleozoic- Mesozoic
Limestone, dolomite Paleozoic-Triassic

Paleozoic, undifferentiated

Carboniferous

Metamorphics, undifferentiated

Mesozoic and Cenozoic

@gg\tsg Sandstone, shalgloil ite, fimes and locally Tertiary
o909 rare conalomerate

/s
Marine: sandstone, tufface M , limestone, and Middle Triassic
conalomerate

e, MaSSIve || -lﬂ-_l@ﬂf!wo-r.ha..uv--q.....---..-Kjf“ M|dd|e perrman
creey] shale g3

g ﬁ Upper Carboniferous to lower
EOZOZEOZQ Sandstone, Shale and chert Permian

fggﬁ“ytéﬁsmeﬂmﬁzw‘ﬂgsﬂ,ﬁ Middle Carboniferous
B TR TR SN TN B

” 224 Quartzite, phyllite ,schist, sandstone, shale, and tuff Silurian to pevonian

oo

bis

(X
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We can do new map on how Landsat Thematic Mapper TM data and
ASTER for this region is manipulated to identify different rock types, map them
overlaying area using supervised classification, and correlate their spatial patterns with
independent information on their structural arrangement. New geologic map is also
stratigraphic map, that is, we extended to record the location and identities of sequences
of rock types according to their relative ages. The fundamental rock unit is the formation
(abbreviated as Fm or fm), defined simply as a distinct mappable set of rocks af
sedimentary, then usually layered) that has a specific geographic distribution. A
formation typically is characterized by one or two dominant types of rock materials, so
we can extended one or two of their rock units.

The spectral response of gach pixel in a Landsat TM image and ASTER in
study area , due to the limited spatial res . on, be considered as a mixture of spectral
signatures from forest, water, limestone, /s -"ﬁ Atary rocks and metamorphic rock. As
illustrated in figure 12(b) aiew map, a new +*Eadn bers were extracted from the TM
and ASTER image such"as"sediffientaiy a d.metamorphic rocks, limestone, shale, and
schists. These endmembers™Weie sl siori "{_\ t from each other, thus could be

CLI10
d'ind

used with confidence foreelfssi ;{ : “1x\s’§;* as selected in the TM image
where it was selected in thef / f ar ;\ﬂ,#}{a\ latabase. Results of new mapping
effort is summarized #fonddiffé ' L i ap, environment variables

1 COL0E]
(geographic region, eleytiof, /s Dpe=as) i\ \}n-\»\‘- classification and political

boundary.

AU INENTNYINS
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