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Reagents for Microtubule Staining (Geuens ez al., 1986)

Buffer A

0.1M NaMES

1 mM MgCl,

1 mM EGTA
0.05 mM EDTA
4% PEG-8000
pH 6.75

MgPBS

150 mM NaCl

30 mM NaHPO4-Na;HPOq4
1 mM MgCl,

pH 7.4
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Immunoblotting Reagents

Note: Prepare solutions with Milli-Q or equivalently purified water

Transfer Buffer
25 mM Tris base, 0.2 M glycine, 20% methanol (pH 8.5)

SDS Sample Buffer (1X)
62.5 mM Tris-HCI (pH 6.8 at 25°C), 2% w/v SDS, 10% glycerol, 50 mM DTT,
0.01% W/V bromophenol blue or phenol red

Blocking Buffer

1XTBS, 0.1% Tween-20 with 5% W/V nonfat dry milk; for 150 ml, add 15 ml
10X TBS to 135 ml water, mix. Add 7.5 g nonfat dry milk and mix well. While stirring,
add 0.15 ml, add 0.15 ml Tween-20 (100%)

10X TBS (Tris-buffered saline)
To prepare 1 liter of 10X TBS; 24.2 g Tris base, 80 g NaCl; adjust pH to 7.6 with
HCI (use at 1X).

Primary Antibody Dilution Buffer
1X TBS, 0.1% Tween-20 with 5% BSA; for 20 ml, add 2 ml 10X TBS to 18 ml
water, mix. Add 1.0 g BSA and mix well. While stirring, add 20 pl Tween-20 (100%). If

background is high, a better signal to noise ratio can be obtained by diluting the primary
antibody in 5% milk (in place of 5% BSA) in 1XTBS/T

Phototope ® -HRP Western Blot Detection
Biotinylated protein marker, secondary anti-rabbit antibody conjugated to
horseradish peroxidase (HRP), anti-biotin antibody conjugated to HRP, LumiGLO

chemiluminescent reagent, peroxide
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Wash Buffer TBS/T
1X TBS, 0.1% Tween-20
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Rat IL-6 ELISA Kit
(Pierce Endogen, 2003)



INSTRUCTIONS

Rat IL-6 ELISA Kit

ER2IL6 ER2IL65

PIERCE
ENDOGEN

PERBIO
3747 N. Meridian Road
P.O. Box 117
Rockford, IL 61105

1368w

Number
ER2IL6

ER2IL65

Description

Rat Interleukin-6 (IL-6) ELISA Kit, sufficient reagents for 96 determinations

Kit Contents:

Anti-Rat IL-6 Precoated 96-well Strip Plate, 1 each
Lyophilized Recombinant Rat IL-6 Standard, 2 vials
Sample Diluent, 12 ml, contains 0.1% sodium azide
Biotinylated Antibody Reagent, 12 ml, contains 0.1% sodium azide
30X Wash Buffer, 50 ml

Streptavidin-HRP Concentrate, 75 pl
Streptavidin-HRP Dilution Buffer, 13 ml

Premixed TMB Substrate Solution, 12 ml

Stop Solution, 13 ml, contains 0.18 M sulfuric acid
Adhesive Plate Covers, 6 each

Rat Interleukin-6 ELISA Kit, sufficient reagents for 5 x 96 determinations
Kit Contents:

Anti-Rat IL-6 Precoated 96-well Strip Plate, 5 each

Lyophilized Recombinant Rat IL-6 Standard, S vials

Sample Diluent, 75 ml, contains 0.1% sodium azide

Biotinylated Antibody Reagent, 55 ml, contains 0.1% sodium azide
30X Wash Buffer, 200 ml

Streptavidin-HRP Concentrate, 250 pl

Streptavidin-HRP Dilution Buffer, 70 ml

Premixed TMB Substrate Solution, 5 x 13 ml

Stop Solution, 55 ml, contains 0.18 M sulfuric acid

Adhesive Plate Covers, 30 each

For research use only. Not for use in diagnostic procedures.

Storage: Upon receipt store all reagents at 2-8°C. Do not freeze reagents. Product shipped with ice

pack.

Refer to the expiration date stamped on the kit box. Do not use kit beyond the stated expiration date.

Telephone: 800-8-PIERCE (800-874-3723) or 815-968-0747 « Fax: 815-968-7316 or 800-842-5007
www.piercenet.com ¢ Customer Service: cs@piercenet.com ¢ Technical Assistance: ta@piercenet.com
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Introduction

The Pierce Endogen Rat Interleukin-
measurement of rat IL-6 in culture supernatants, EDTA plasma, sodium

6 (IL-6) ELISA is an in vitro enzyme-linked immunosorbent assay for the quantitative
citrate plasma, heparin plasma and serum.
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Procedure Summary

N

S

1. Add 50 pl of Sample
Diluent to each well. Add
50 pl of standards or
samples to each well in
duplicate.

N\
/ :
SRR,
5. Wash plate THREE
times.

N

9. Add 100 pl of Premixed
TMB Substrate Solution to
each well.

2. Cover plate and incubate
at room temperature
(20-25°C) for 2 hours.

AN

6. Add 100 pl of prepared
Streptavidin-HRP Solution
to each well.

10. Develop plate in the
dark at room temperature for
30 minutes.

3. Wash plate THREE
times.

7. Cover plate and incubate
at room temperature for
30 minutes.

11. Stop reaction by adding
100 pi of Stop Solution to
each well.

4. Add 100 pl of
Biotinylated Antibody
Reagent to each well. Cover
plate and incubate at room
temperature for 1 hour.

N

8. Wash plate THREE times.

12. Measure absorbance on a
plate reader at 450 nm minus
550 nm. Calculate results
using graph paper or curve-
fitting statistical software.

Telephone: 800-8-PIERCE (800-874-3723) or 81 5.968-0747  Fax: 815-968-7316 or 800-842-5007
www.piercenet.com * Customer Service: cs@piercenet.com ¢ Technical Assistance: ta@piercenet.com
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Additional Materials Required

Precision pipettors with disposable plastic tips to deliver 5-1,000 pl

Plastic pipettes to deliver 5-15 ml

Ultrapure water

A glass or plastic two-liter container to prepare Wash Buffer

A squirt wash bottle or an automated 96-well plate washer

1.5 ml polypropylene or polyethylene tubes to prepare standards — do not use polystyrene, polycarbonate or glass tubes
Disposable reagent reservoirs

15 ml plastic tube to prepare Streptavidin-HRP Solution

Microcentrifuge to prepare Streptavidin-HRP Solution

A standard ELISA reader for measuring absorbance at 450 nm and 550 nm. If a 550 nm filter is not available, the
absorbance can be measured at 450 nm only. Refer to the instruction manual supplied with the instrument being used.

Graph paper or a computerized curve-fitting statistical software package

Precautions

All samples and reagents must be at room temperature (20-25°C) before use in the ELISA.

Review the instruction booklet carefully and verify all components against the Kit Contents list (page 1) before
beginning the assay.

Do not use water baths to thaw samples. Thaw at room temperature.

When preparing standard curve and sample dilutions in culture medium, use the same medium used to culture the cells.
For example, if RPMI with 10% fetal calf serum (FCS) was used to culture cells, then use RPMI with 10% FCS to dilute
the standard and samples. Do NOT use RPMI without serum supplement.

If using a multichannel pipettor, always use a new disposable reagent reservoir.

Use new disposable pipette tips for each transfer to avoid cross-contamination.

Use a new adhesive plate cover for each incubation step.

Once reagents have been added to the plate, take care NOT to let plate DRY at any time during the assay.
Avoid microbial contamination of reagents.

Vigorous plate washing is essential.

Avoid exposing reagents to excessive heat or light during storage and incubation.

Discard unused kit components. Do not mix reagents from different kit lots.

Do not use glass pipettes to measure TMB Substrate Solution. Take care not to contaminate the Solution. If the solution
is blue before use, DO NOT USE IT.

Individual components may contain antibiotics and preservatives. Wear gloves while performing the assay to avoid
contact with samples and reagents. Please follow proper disposal procedures.

Some components of this kit contain sodium azide. Please dispose of reagents according to local regulations.

Additional Precautions for the 5-plate Kit

Dispense only reagent volumes required for the number of plates being used. Do not combine leftover reagents with
those reserved for additional plates.

Use only one bottle of the TMB Substrate Solution per 96-well plate. Do not combine leftover substrate with that
reserved for other plates.

Equilibrate to room temperature only the reagent volumes required for the number of plates being used.
Use only one vial of standard per 96-well plate.

Telephone: 800-8-PIERCE (800-874-3723) or 815-968-0747 < Fax: 815-968-7316 or 800-842-5007

www.piercenet.com ¢ Customer Service: cs@piercenet.com ¢ Technical Assistance: ta@piercenet.com
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Sample Preparation

Sample Handling

e  Serum; EDTA, heparin and sodium citrate plasma; or culture supernatants may be tested in this ELISA.

e 50 pl per well of serum, plasma or culture supernatant are required.

e Store samples to be assayed within 24 hours at 2-8°C. For long-term storage, aliquot and freeze samples at -70°C.
e Avoid repeat freeze-thaw cycles when storing samples.

e Test samples and standards must be assayed in duplicate each time the ELISA is performed.

e  Gradually equilibrate samples to room temperature before beginning assay. Do not use heated water baths to thaw or
warm samples.

e Mix samples by gently inverting tubes.

o If samples are clotted, grossly hemolyzed, lipemic or microbially contaminated, or if there is any question about the
integrity of a sample, make a note on the template and interpret results with caution.

Sample Dilution

e Ifthe rat IL-6 concentration possibly exceeds the highest point of the standard curve (i.e., 2,000 pg/ml), prepare one or
more five-fold dilutions of the test sample using the Sample Diluent provided. For example, a five-fold dilution is
prepared by adding 0.05 ml (50 pl) of test sample to 0.2 ml (200 pl) of Sample Diluent. Mix thoroughly between
dilutions before assaying.

Reagent Preparation
For procedural differences when using partial plates, look for (PP) throughout this instruction booklet.
Note: When using the 5-plate kit, only one standard per plate is supplied. Therefore, partial plates cannot be used.

Wash Buffer
1. Label a clean glass or plastic two-liter container “Wash Buffer.” The 30X Wash Buffer may have a cloudy appearance.

2. Add the entire contents of the 30X Wash Buffer bottle (50 ml) to the two-liter container and dilute to a final volume of
1.5 liters with ultrapure water. Mix thoroughly.

(PP) When using partial plates, store the reconstituted Wash Buffer at 2-8°C.

Note: Wash Buffer must be at room temperature before use in the assay. Do not use Wash Buffer if it becomes visibly
contaminated during storage.

Note: If using a 5-plate kit, add 30 ml Wash Buffer to 870 ml water for each plate used.

Standards
e (PP) Reconstitute and use one vial of the lyophilized standard per partial plate.
o  Prepare standards just before use and use within one hour of reconstitution. Do not store reconstituted standards.

1. Reconstitute standard with ultrapure water. Reconstitution volume is stated on the standard vial label. The standard will
dissolve in approximately 1 minute. Mix by gently inverting vial. Use the Sample Diluent provided to prepare standard
curve serial dilutions.

2. Label eight tubes, one for each standard curve point: 2,000, 1,000, 500, 250, 125, 62, 31, and 0 pg/ml, then prepare 1:2
serial dilutions for the standard curve as follows:

3. Pipette 150 pl of Sample Diluent into each tube.

Telephone: 800-8-PIERCE (800-874-3723) or 815-968-0747  Fax: 815-968-7316 or 800-842-5007
www.piercenet.com ¢ Customer Service: cs@piercenet.com Technical Assistance: ta@piercenet.com
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Pipette 150 pl of the reconstituted standard into the first tube (i.e., 2,000 pg/ml) and mix.
Pipette 150 pl of this dilution into the second tube (i.e., 1,000 pg/ml) and mix.

Repeat the serial dilutions (using 150 pl) five more times to complete the standard curve points. These concentrations,
2,000 pg/ml, 1,000 pg/ml, 500 pg/ml, 250 pg/ml, 125 pg/ml, 62 pg/ml, 31 pg/ml, and 0 pg/ml are the standard curve.

Serial Dilutions using 150 pl

sy JIuuuuL

2000 pg/mi 1000 pg/mi SO0 pg/ml 250 pg/ml 125 pg/mi 62 pg/ml 31pg/ml 0 pg/ml

Assay Procedure

A.

Sample Incubation

(PP) Determine the number of strips required. Leave these strips in the plate frame. Place remaining unused strips in the
provided foil pouch with desiccant. Store reserved strips at 2-8°C. Make sure foil pouch is sealed tightly. After
completing assay, retain plate frame for second partial plate. When using the second partial plate, place strips securely in
the plate frame.

Use the Data Template provided to record the locations of the zero standard (blank or negative control), rat IL-6
standards and test samples. Perform seven standard points and one blank in duplicate with each series of unknown
samples.

Add 50 pl of Sample Diluent to each well.

Add 50 pl of reconstituted standards or test samples in duplicate to each well. Mix well by gently tapping the plate
several times.

Note: If the rat IL-6 concentration in any sample possibly exceeds the highest point on the standard curve, 2,000 pg/ml,
see Sample Preparation-Sample Dilution section.

Carefully cover plate with a new adhesive plate cover. Ensure all edges and strips are sealed tightly by running your
thumb over edges and down each strip. Incubate for two (2) hours at room temperature, 20-25°C.

Carefully remove adhesive plate cover. Wash plate THREE times with Wash Buffer as described in the Plate Washing
section (section B).

Plate Washing
Gently squeeze the long sides of plate frame before washing to ensure all strips securely remain in the frame.

Empty plate contents. Use a squirt bottle to vigorously fill each well completely with Wash Buffer, then empty plate
contents. Repeat procedure two additional times for a total of THREE washes. Blot plate onto paper towels or other
absorbent material.

Note: For automated washing, aspirate all wells and wash THREE times with Wash Buffer, overfilling wells with Wash
Buffer. Blot plate onto paper towels or other absorbent material.

Biotinylated Antibody Reagent Incubation

If using a multichannel pipettor, use a new reagent reservoir and pipette tips when adding the Biotinylated Antibody
Reagent. Remove from the vial only the amount required for the number of strips being used. Take care not to touch the
samples in wells with the pipette tip when adding the Biotinylated Antibody Reagent.

Telephone: 800-8-PIERCE (800-874-3723) or 815-968-0747 « Fax: 815-968-7316 or 800-842-5007

www.piercenet.com ¢ Customer Service: cs@piercenet.com < Technical Assistance: ta@piercenet.com
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F.

Add 100 p! of Biotinylated Antibody Reagent to each well containing sample or standard.

Carefully attach a new adhesive plate cover, ensuring all edges and strips are tightly sealed. Incubate plate for one (1)
hour at room temperature, 20-25°C.

Carefully remove the adhesive plate cover, discard plate contents and wash THREE times as described in the Plate
Washing section (section B).

Streptavidin-HRP Solution Preparation and Incubation

Prepare Streptavidin-HRP Solution immediately before use. Do not prepare more Streptavidin-HRP Solution than
required.

Do not store prepared Streptavidin-HRP Solution.

Use a 15 ml plastic tube to prepare Streptavidin-HRP Solution.

If using a multichannel pipettor, use new reagent reservoir and pipette tips when adding the prepared Streptavidin-
HRP Solution.

Briefly centrifuge the Streptavidin-HRP Concentrate to force entire vial contents to the bottom.

(PP) Use only the Streptavidin-HRP Solution amount required for the number of strips being used. For each strip, mix
2.5 pl of Streptavidin-HRP Concentrate with 1 ml of Streptavidin-HRP Dilution Buffer. Store Streptavidin-HRP
Concentrate reserved for additional strips at 2-8°C.

For one complete 96-well plate, add 30 pl of Streptavidin-HRP Concentrate to 12 ml of Streptavidin-HRP Dilution
Buffer and mix gently.

Add 100 pl of prepared Streptavidin-HRP Solution to each well.

Carefully attach a new adhesive plate cover, ensuring all edges and strips are tightly sealed. Incubate plate for 30 minutes
at room temperature, 20-25°C.

Carefully remove the adhesive plate cover, discard plate contents and wash THREE times as described in the Plate
Washing section (section B).

Substrate Incubation and Stop Step
Use new disposable reagent reservoirs when adding TMB Substrate Solution and Stop Solution.

Dispense from bottle ONLY amount required, 100 pl per well, for the number of wells being used. Do not use a glass
pipette to measure the TMB Substrate Solution.

(PP) Do not combine leftover substrate with that reserved for the second partial plate. Take care not to contaminate
remaining TMB Substrate Solution.

Pipette 100 pl of TMB Substrate Solution into each well.

Allow enzymatic color reaction to develop at room temperature in the dark for 30 minutes. Do not cover plate with
aluminum foil or a plate sealer. The substrate reaction yields a blue solution that turns yellow when Stop Solution is
added.

After 30 minutes, stop the reaction by adding 100 pl of Stop Solution to each well.

Absorbance Measurement

Note: Evaluate the plate within 30 minutes of stopping the reaction.

Measure the absorbance on an ELISA plate reader set at 450 nm and 550 nm. Subtract 550 nm values from 450 nm values to
correct for optical imperfections in the microplate. If an absorbance at 550 nm is not available, measure the absorbance at
450 nm only.

Note: When the 550 nm measurement is omitted, absorbance values will be higher.

Telephone: 800-8-PIERCE (800-874-3723) or 815-968-0747 + Fax: 815-968-7316 or 800-842-5007

www.piercenet.com * Customer Service: cs@piercenet.com ¢ Technical Assistance: ta@piercenet.com
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G. Calculation of Results

e The standard curve is used to determine rat IL-6 amount in an unknown sample. 25
Generate the standard curve by plotting the average absorbance obtained for —|
each standard concentration on the vertical (Y) axis vs. the corresponding rat 2]
IL-6 concentration (pg/ml) on the horizontal (X) axis.

Standard Curve Example

e Calculate results using graph paper or curve-fitting statistical software. The rat
IL-6 amount in each sample is determined by interpolating from the
absorbance value (Y axis) to rat IL-6 concentration (X axis) using the standard
curve.

Ayso minus Asso
i

:

e Ifthe test sample was diluted, multiply the interpolated value obtained from
the standard curve by the dilution factor to calculate pg/ml of rat IL-6 in the
sample. 0

0 ) 550 ‘ 1&9 ) 15‘00 2000
e Absorbance values obtained for duplicates should be within 10% of the mean Rat IL-6 (pg/mi)

value. Duplicate values that differ from the mean by greater than 10% should be considered

suspect and repeated.

Performance Characteristics

Sensitivity: <16 pg/ml

The sensitivity or Lower Limit of Detection (LLD)' is determined by assaying replicates of zero and the standard curve. The
mean signal of zero + 2 standard deviations read in dose from the standard curve is the LLD. This value is the smallest dose
that is not zero with 95% confidence.

Assay Range: 31-2,000 pg/ml
Suggested standard curve points are 2,000, 1,000, 500, 250, 125, 62, 31, and 0 pg/ml.

Reproducibility:

Reproducibility of this assay is evaluated in each sample matrix. To determine the intra-assay precision, 20 replicates of
samples containing two levels of recombinant rat IL-6 are assayed on a single plate. To evaluate inter-assay precision,
samples are tested by three operators who perform at least three separate assays on more than one day. Twelve duplicate
sample values are used to calculate inter-assay precision data for each level of IL-6. Data are indicated in the table below:

Intra-assay Precision Inter-assay Precision
Sample Level Mean SD Cv Mean SD CvV
(pg/m) (pg/m) (pg/ml) | (pg/ml) (pg/ml) (pg/ml)
Serum 1 1,032.3 854 83 970.6 76.0 7.8
2 201.9 18.5 9.2 203.5 14.0 6.9
EDTA 1 1,059.9 111.1 10.5 1,0053 70.8 70
Plasma 2 272.2 224 82 343.7 31.1 9.1
Citrate 1 901.4 84.7 94 943.6 64.0 6.8
Plasma 2 112.1 10.0 8.9 102.7 8.3 8.1
Heparin 1 978.9 89.7 9.2 1,067.5 1164 10.9
Plasma 2 225.5 14.8 6.6 227.0 13.8 6.1
Cell Culture 1 1,139.4 1234 108 1,341.5 107.6 8.0
Supernatant 2 247.9 17.1 6.9 327.1 34.3 10.5

Specificity:

This ELISA is specific for the measurement of natural and recombinant rat IL-6. This ELISA does not cross-react with the
following cytokines: rat GCSF, GM-CSF, IFNy, IL-1q, IL-1B, IL-2, IL-3, IL-4, IL-5, IL-7, IL-9, IL-10, IL-18, Eotaxin,
MIP-1a, RANTES and TNFa; or human, mouse and pig IL-6.

Telephone: 800-8-PIERCE (800-874-3723) or 815-968-0747 - Fax: 81 5-968-7316 or 800-842-5007
www.piercenet.com ¢ Customer Service: cs@piercenet.com ° Technical Assistance: ta@piercenet.com
7



ENDOGEN
Calibration:
The standard in this ELISA is calibrated to a Pierce Endogen rat IL-6 reference standard.
Rat IL-6 Levels after LPS
Stimulation
1400

Expected Values:
For supernatant from stimulated rat splenocytes: _ 1200
Rat spleens are harvested and splenocytes are isolated. Isolated splenocytes E 1000
(2 x 10° cells/ml) are cultured with LPS (10 pg/ml). Supernatants are ®
collected at various timepoints and assayed for rat IL-6. v

a8 "
For normal serum and plasma: = 400
Twenty pooled serum and EDTA, heparin, and sodium citrate plasma é
samples collected from apparently healthy Wistar rats are evaluated in this 200
assay. IL-6 levels in 77 of the 80 samples tested are below the detection limit o
of the assay. E§§EEEEEEE

Spike and Recovery:

Recovery of rat IL-6 is evaluated using the Pierce Endogen Rat IL-6 ELISA Kit. Pooled serum and plasma samples from
Wistar rats and sample diluent controls are spiked with recombinant rat IL-6. Endogenous IL-6 levels are determined by
evaluating unspiked samples along with spiked aliquots of the same samples in the ELISA. Expected values are calculated by
adding endogenous IL-6 levels to those of spiked diluent controls. Percent (%) recovery is found by dividing observed by
expected values. Results for representative individual samples and populations are shown below:

Representative Sample Sample Population
Expected | Observed | Recovery Expected | Observed | Recovery

Sample | Level | (pg/mb) | (pg/mi) %) | (gmd) | (gmd) | () n
Serum 1 1,770 1,554 88 1,678 1,479 88 6

2 470 464 929 411 403 98 6
EDTA 1 1,801 1,542 86 1,801 1,552 86 6
Plasma 2 239 232 97 277 267 96 6
Citrate 1 1,858 1,666 90 1,761 1,584 90 6
Plasma 2 215 204 95 238 230 97 6
Heparin 1 1,147 1,041 91 1,136 1,014 89 6
Plasma 2 230 237 103 253 247 98 6

Telephone: 800-8-PIERCE (800-874-3723) or 81 5.968-0747 « Fax: 815-968-7316 or 800-842-5007
www.piercenet.com ¢ Customer Service: cs@piercenet.com * Technical Assistance: ta@piercenet.com
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Linearity of Dilution:

Pooled serum and plasma samples from Wistar rats are spiked with recombinant rat IL-6, serially diluted in Sample Diluent,
and evaluated in the Pierce Endogen Rat IL-6 ELISA. Linearity of Dilution for plasma is assessed for each anticoagulant.
Representative data from EDTA plasma samples are shown below. Results for heparin and citrate plasma are similar to those
shown for EDTA plasma. Observed values are compared to the expected values to calculate % recovery and demonstrate the
Linearity of Dilution of the assay.

Sample Dilution Expected Observed Recovery
(pg/ml) (pg/ml) (%)
Serum 1 Neat 660.8 660.8 -
1:2 3304 336.4 101.8
1:4 165.2 178.7 108.2
1:8 82.6 86.6 104.9
1:16 41.3 43.9 106.3
EDTA Neat 1,306.5 1,306.5 -
Plasma 1:2 653.2 656.9 100.6
1:4 326.6 361.6 110.7
1:8 163.3 170.1 104.1
1:16 81.7 73.6 90.1
Cell Culture Neat 7723 7723 -
Medium 1:2 386.2 377.1 97.7
1:4 193.1 200.9 104.1
1:8 96.5 100.3 103.9
Reference

1. Immunoassay: A Practical Guide, Chan and Peristein, Eds., 1987, Academic Press: New York, p71.

©Pierce Biotechnology, Inc., 8/2002. Printed in the USA.

Telephone: 800-8-PIERCE (800-874-3723) or 815-968-0747 « Fax: 815-968-7316 or 800-842-5007
www.piercenet.com ¢ Customer Service: cs@piercenet.com ¢ Technical Assistance: ta@piercenet.com
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Telephone: 800-8-PIERCE (800-874-3723) or 815-968-0747 + Fax: 815-968-7316 or 800-842-5007
www.piercenet.com ¢ Customer Service: cs@piercenet.com ¢ Technical Assistance: ta@piercenet.com
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Apigenin
OH O
98
HO X ~o =
X~ OH

Appearance: yellow powder
Molecular Weight:  270.2
Molecular Formula:  CysH100s
Synonyms: 4.5, 7-Trihydroxyflavone
Solubility: soluble in DMSO at 27 mg/ml or in 1 M KOH at 50

mg/ml

Apigenin is a plant flavone that has been found to inhibit cell proliferation by
arresting the cell cycle at the G2/M phase. This effect was found to be dose-dependent
and reversible when apigenin was removed from the culture medium. Inhibitory
effects on tumor promotion may also be due to inhibition of kinase activity and the
resulting suppression of oncogene expression. At a fairy low concentration (12.5 pM),
apigenin induced the reversion of transformed phenotypes of v-H-ras transformed
NIH 3T3 cells. Studies indicate that this is due to an inhibition of mitogen activated
protein kinase (MAPK). It was found that 25 uM apigenin greatly inhibited with 30
minutes of incubation with the transformed cells, and this inhibition persisted for
more than 4 hours. Downstream oncogenes may also be involved in the reversion
since this same treatment was found to significantly reduce the expression of c-jun
and c-fos. In contrasts, no effect on the level of the ras protein or its mRNA was
observed.

Similarly, apigenin was shown to inhibit protein kinase C (PKC) by competing
with ATP (ICso = 10+0.5 pM). Other kinases affected by apigenin include the tyrosine
kinases fibroblast growth factor (FGF) receptor (ICso = 20 uM) and pp60v-src (ICso >
200 uM).

Apigenin has also been reported to inhibit topoisomerase I catalyzed DNA

relegation and enhance gap junctional intercellular communication.
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Genistein

OH
Molecular Formula:  CysH10Os
Molecular Weight:  270.2
Synonyms: 5,7-Dihydroxy-3 -(4-hydroxyphenyl)-4H-1-benzopyran-

4-one; 4’,5,7-Trihydroxyisoflavone
Solubility: soluble at 100 mM (27 mg/ml) in DMSO, practically
insoluble in water and soluble in dilute alkalies

producing a yellow color

Genistein is reported to be a specific inhibitor of tyrosine-specific protein
kinases, i.e., the EGF receptor kinase, pp60 v-src kinases from Rous sarcoma virus
and pp110 kinase from Gardner-Amstein feline sarcoma virus. Genistein did not
inhibit the activity of serine and threonine-specific kinases such as cAMP-dependent

protein kinase, protein kinase C, and phosphorylase kinase.
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Protein Tyrosine Kinases

One of the fundamental mechanisms by which cells in multicellular organisms
communicate is the binding of polypeptide ligands to cell surface receptors that
possess tyrosine kinase catalytic activity. Receptor tyrosine kinase (RTKs) are
transmembrane glycoproteins that are activated by the binding of their cognate
ligands, and they transduce the extracellular signal to the cytoplasm by
phosphorylating tyrosine residues on the receptor themselves (autophosphorylation)
and on downstream signaling proteins. RTKs activate numerous pathways within
cells, leading to cell proliferation, differentiation, migration, or metabolic changes
(Schlessinger and Ullrich, 1992). The RTK family includes the receptors for insulin
and for many growth factors, such as epidermal growth factor (EGF), fibroblast
growth factor (FGF), platelet-derived growth factor (PDGF), vascular endothelial
growth factor (VEGF), and nerve growth factor (NGF). In addition to the RTKs, there
exists a large family of nonreceptor tyrosine kinase (NRTKSs), which includes Src, the
Janus kinases (JAKs), and Abl, among others. The NRTKs are integral components of
the signaling cascades triggered by RTKs and by other cell surface receptors such as
G protein-coupled receptors and receptors of the immune system. The specific
reaction catalyzed by PTKs is the transfer of the y phosphate of ATP to the hydroxyl

group of a tyrosine in a protein substrate.

Protein Tyrosine Kinases in Cellular Signaling

Several examples are cites to illustrate the importance of PTKs in embryonic
development, metabolism, and immune system function. The development of the
vascular system relies on the concerted action of several subfamilies of RTKs and
their cognate ligands (Yancopoulos, Klagsbrun, and Folkman, 1998). The vascular
system is formed in a two-step process. In the first step, referred to as vasculogenesis,
endothelial cells differentiate to form a crude network of interconnected vessels. In
the second step, termed angiogenesis, the vessels are remodeled and extended, and
nonendothelial support cells are recruited to the maturing vasculature. Vasculogenesis
requires the growth factor VEGF and one of the RTKs through which it acts, KDR.
Angiogenesis requires another VEGF receptor, Fltl, as well as the angiogenic factor
angiopoietin 1, which is a ligand for the RTK Tie2.
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The effects of the hormone insulin are mediated by the insulin receptor, an
RTK family member. Insulin binding to its receptor results in receptor activation and
the recruitment of a family of downstream signaling molecules, the IRS proteins, to
the activated receptor (White, 1998). The IRS proteins are adaptor proteins, i.e. they
have no identifiable catalytic function, which are phosphorylated on multiple tyrosine
residues by the insulin receptor. Activation of phosphoinositide 3-kinase (PI-3K)
through binding to phosphorylated IRS is a critical step in translocation of glucose
transporters to the cell membrane to facilitate glucose uptake (Cheatham et al., 1994;
Okada et al., 1994).

The largest subfamily of NTRKs, with nine members, is the Src family
members participate in a variety of signaling processes, including mitogenesis, T- and
B-cell activation, and cytoskeleton restructuring. Multiple in vivo substrates have
been decribed for Src and include, among others, the PDGF and EGF receptors; the
NRTK focal adhesion kinase (FAK);, p130Cas, an adapter protein involved in
integrin- and growth factor-mediated signaling; and cortactin, an actin-binding protein
important for the proper formation of cell matrix contact sites (Biscardi, Tice, and
Parsons, 1999). Src has also been implicated in several human carcinomas, including

breast, lung, and colon cancer (Biscardi, Tice, and Parsons, 1999).

Protein Tyrosine Kinase Architecture

RTKs consist of an extracellular portion that binds polypeptide ligands, a
transmembrane helix, and a cytoplasmic portion that possesses tyrosine kinase
catalytic activity. The vast majority of RTKSs exist as a single polypeptide chain and
are monomeric in the absence of ligand. Exceptions include Met and its family
members, which comprise a short o chains disulfide-linked to two membrane-
spanning 3 chains. The a chains are also disulfide-linked to one another, forming an
2B, heterotetramer. Most polypeptide ligands for RTKs are soluble. Exceptions
include the ephrins, the ligands for the Eph receptor family, which either span the cell
membrane or are tethered to the membrane via a GPI (glycosyl-phosphatidylinositol)
linkage (Flanagan and Vanderhaeghen, 1998; Holland et al., 1998).

The extracellular pdnion of RTKs typically contains a diverse of discrete
globular domains such as immunoglobulin (Ig)-like domains, fibronectin type IlI-like

domains, cysteine-rich domains, and EGF-like domains. In contrast, the domain
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organization in the cytoplasmic portion of RTKs is simpler, consisting of a
juxtamembrane region (just after the transmembrane helix), followed by the tyrosine
kinase catalytic domain and a carboxyl-terminal region. Some receptors, most notably
members of the PDGF receptor family contain a large insertion of ~ 100 residues in
the tyrosine kinase domain. The juxtamembrane and carboxyl-terminal regions vary
in length among RTKs. Along with the tyrosine kinase insert, these regions contain
tyrosine residues that are autophosphorylated upon ligand binding.

NRTKs lack receptor-like features such as extracellular ligand-binding domain
and a transmembrane-spaning region, and most NRTKs are localized in the cytoplasm
(Neet and Hunter, 1996). Some NRTKs are anchored to the cell membrane through
aminoterminal modification, such as myristoylation or palmitoylation. In addition to a
tyrosine kinase domain, NRTKs possess domains that mediate protein-protein,
protein-lipid, and protein-DNA interactions. The most commonly found protein-
protein interaction domains in NRTKs are the Src homology (SH2) and 3 (SH3)
domains (Kuriyan and Cowbum, 1997). The SH2 domain is a compact domain of
~100 residues that binds phosphotyrosine residues in a sequence-specific manner. The
smaller SH3 domain (~60 residues) binds proline-containing sequences capable of
forming a polyproline type I helix.

Some NRTKs lack SH2 and SH3 domains but possess subfamily-specific
domains used for protein-protein interactions. For example, members of the Jak
family contain specific domains that target them to the cytoplasmic portion cytokine
receptors. The NRTK Fak possesses two domains that mediate protein-protein
interactions: an integrin-binding domain and a focal adhesion-binding domain. The
NRTK Abl contains a nuclear localization signal and is found in both the nucleus and
the cytoplasm. In addition to SH2 and SH3 domains, Abl possesses and F actin-
binding domain and a DNA-binding domain.

Another modular domain, present in the Btk/Tec subfamily of NRTKs and in
many other signaling proteins, is the plecktrin homology (PH) domain. PH domains
bind to phosphatidylinositol (PtdIns) lipids that have been phosphorylated at
particular positions on the head group (Lemmon and Ferguson, 1998). Concentrations
of specific PtdIns lipids in the cell membrane, such as PtdIns-3,4-P3, increase as a

consequence of PI-3K activation. Proteins can be recruited to activated signaling
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complexes at the membrane through PH domain interactions with phosphorylated
PtdIns lipids.

Regulation of Receptor Tyrosine Kinases
Tyrosine Autophosphorylation

Activation of RTKs typically requires two processes: enhancement of intrinsic
catalytic activity and creation of binding sites to recruit downstream signaling
proteins. For the majority of RTKs, both of these processes are accomplished by
autophosphorylation on tyrosine residues, a consequence of ligand-mediated
oligomerization. In general, autophosphorylation of tyrosines in the activation loop
within the kinase domain results in stimulation of kinase activity, and
autophosphorylation of tyrosine in the juxtamembranes, kinase insert, and carboxy-
terminal regions generates docking sites for modular domains that recognize
phosphotyrosine in specific sequence contexts. The two well-established
phosphotyrosine-binding modules present within signaling proteins are the SH2
domain and the phosphotyrosine-binding (PTB) domain (Kuriyan and Cowbum,
1997).

All RTKs thus far identified contain between one and three tyrosines in the
kinase activation loop, which comprises subdomains VII and VIII of the protein
kinase catalytic core. Phosphorylation of these tyrosines has been shown to be critical
for stimulation of catalytic activity and biological function for a number of RTKs,
including the insulin receptor, FGF receptor, VEGF receptor, PDGF receptor, Met
(hepatocyte growth factor receptor), and TrkA. The major exception to catalytic
enhancement via activation loop autophosphorylation is the EGF receptor.

In principle, receptor autophosphorylation could occur in cis (within a
receptor) or in frans (between receptors). In the first case, ligand-induced
dimerization would cause a conformational change in the receptor that would
facilitate cis-autophosphorylation. In the second case, no conformational change need
occur upon dimerization; a simple proximity effect would provide sufficient
opportunity for frans-autophosphorylation to occur. Based on structural studies of the
insulin receptor kinase domain, steric considerations indicate that activation loop
tyrosines in PTKs can only be phosphorylated in trans. Other autophosphorylation
sites (e.g. in the juxtamembrane region or carboxy-terminal tail) could potentially be
autophosphorylated in cis.
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Dimerization

Tyrosine phosphorylation is the essential modification that occurs during RTK
activation. Ligand-induced oligomerization of RTKs is the mechanism by which
tyrosine autophosphorylation is triggered (Ullrich and Schlessinger, 1990; Heldin,
1995). Ligand binding to the extracellular portion of RTKs mediates the noncovalent
oligomerization of monomeric receptors or induces a structural rearrangement in
heterotetrameric receptors (e.g. the insulin receptor), facilitating tyrosine
autophosphorylation in the cytoplasmic domains.

Whether receptor dimerization is sufficient for signal transmission or whether
higher-order oligomerization is required has not been fully resolved; it likely depends
on the particular ligand-RTK system. For receptors that bind dimeric ligands, such as
the PDGF receptor, a receptor dimer is likely to be a competent signaling unit.
However, not all dimeric configulations of a receptor are capable of signaling. The
introduction of cross-linking cysteine residues into the transmembrane helix of
ErbB2, an EGF receptor family member, indicates that EtbB2 activation is dependent
on the relative orientation of the two receptors in the dimer (Burke and Stem, 1998).
For Eph receptors, biochemical studies show that although a dimeric ephrin is
sufficient for receptor autophosphorylation, a tetramer ephrin is necessary to elicit the
full range of biological responses in cells (Stein ef al., 1998). In most cases, RTK
dimerization is probably sufficient for transducing the biological signal.

Ligand binding stabilizes a dimeric configulation of the extraceelular domains
of RTKs, but the spatial relationship between the tyrosine kinase-containing
cytoplasmic domains within the dimer is not well understood. The cytoplasmic
domains may associate only transiently, acting as enzyme and substrate for the other,
or they may interact stably to form symmetric (or asymmetric) dimer before and/or
after autophosphorylation. For those RTKs whose kinase activity is stimulated via
activation loop phosphorylation, the transient association model appears to be
consistent with the available biochemical data. In this model, all sites could
conceivably by autophosphorylated within the dimer (i.e. higher-order receptor
interactions would not be required).

If the two cytoplasmic domains in the ligand-mediated dimer from a stable
complex before autophosphorylation, steric constraints would preclude trans-
autophosphorylation of a subset of sites (those nearest the kinase domains), in which

case higher-order receptor association would be necessary to complete
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autophosphorylation. For the EGF receptor, which does not undergo activation loop
autophosphorylation, biochemical evidence suggests that a cytoplasmic domain dimer
required for catalytic enhancement (Mohammadi ef al., 1993; Sherrill, 1997a);
autophosphorylated but monomeric EGF receptors are not activated. Interestingly, all
of the identified autophosphorylation sites in the EGF receptor are in the long
carboxy-terminal tail of the receptor. It is conceivable (from steric considerations) that
all of these sites could be autophosphorylated by the cytoplasmic domain dimer,
although evidence exists for autophosphorylation occuring between pairs of EGF
receptor dimers (Sherill, 1997b). A further level of positive regulation may come
from Src phosphorylation of Tyr-845 in the activation loop (Sato ez al., 1995; Biscardi
et al.,1999).

Regulation of Nonreceptor Tyrosine Kinases

The most common theme in NRTK regulation, as in RTK regulation, is
tyrosine phosphorylation. With few exceptions, phosphorylation of tyrosines in the
activation loop of NRTKs leads to an increase in enzymatic activity. Activation loop
phosphorylation occurs via trans-autophosphorylation or phosphorylation by a
different NRTK. Phosphorylation of tyrosines outside of the activation loop can
negatively regulate kinase activity. PTPs restore NRTKs to their basal state of activity
or, in some cases, positively regulate NRTK activity (Tonks and Neel, 1996).

Src Tyrosine Kinase

Src and its family members contain a myristoylated amino terminus, a stretch
of positively-charged residues that interact with phospholipid head groups, a short
region with low sequence homology, an SH3 domain, an SH2 domain, a tyrosine
kinase domain, and a short caboxy-terminal tail. Src possesses two important
regulatory tyrosine phosphorylation sites. Phosphorylation of Tyr-527 in the carboxy-
terminal tail of Src by the NRTK Csk represses kinase activity (Nada et al., 1991).
The importance of this phosphorylation site is underscored by v-Src, an oncogenic
variant of Src that is a product of the Rous sarcoma virus. Owing to a carboxy-
terminal truncation, v-Src lacks the negative regulartory site Tyr-527 and is
constitutively active, leading to uncontrolled growth of infected cells (Cooper, 1986).
Moreover, substitution of this tyrosine with phenylalanine in c-Src results in

activation (Kmiecik and Shalloway, 1987). A second regulatory phosphorylation site
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in Src is Tyr-416, an autophosphorylation site in the activation loop. Maximal
stimulation of kinase activity occurs when Tyr-416 is phosphorylated , and a Tyr-416
—> Phe mutation can suppress the transforming ability of the activating Tyr-527 —
Phe mutation (Kmiecik and Shalloway, 1987).

Both the SH2 and SH3 domains have been implicated in the negative
regulation of Src activity (Superti-Furga and Courtneidge, 1995); mutations in the
SH2 and SH3 domains that disrupt binding of phosphotyrosine and proline-rich
sequences, respectively, activate Src. The mechanisms by which the SH2 and SH3
domains repress Src kinase activity have been elucidated through X-ray

crystallographic studies.
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Epidermal Growth Factor Receptor (EGFR)

Already in the mid-1970s, experiments were performed that allowed the
identification of an EGF-binding, plasma membrane located protein, the EGF receptor.

Subsequent biochemical studies revealed an enormous variety of receptor properties.

EGFR Architecture

The EGF receptor is a transmembrane glycoprotein of approximately 170,000
D. A part of the receptor is highly homologous to the chicken v-erb B protein. The
external domain of the EGF receptor contains the amino terminus of the molecule,
622 amino acid residues and 12 sites where N-linked glycosylation might occur.
Furthermore, the external domain contains 2 cysteine-rich domains. The EGF binding
domain of the receptor has been identified to reside between the cystein-rich domains.
The EGF receptor contains one hydrophobic domain of 23 amino acid residues which
spans the membrane.

The internal domain of the receptor is composed of 542 amino acid residues. It
contains a region of approximately 300 amino acid residues that is homologous to the
catalytic domain of the protein kinase encoded by the src gene family of oncogenes.
Thus the EGF receptor belongs to the class of tyrosine kinase receptors. The C-
terminal domain is believed to have a number of regulartory functions. The first
element in this domain is the CAIN, necessary for receptor internalization and
increased cytosolic Ca **. This regulartory domain contains also a number of tyrosine
residues that can be phosphorylated by the receptor itself. The autophosphorylation
tyrosines have been implicated in binding receptor substrates by their SH2 domains

(Songyang et al., 1993).

EGFR Activation

The prevalent model of EGFR activation, shared by most RTKs, proposes that
the binding of ligand to the extracellular domain induces dimerization. The
juxtapostion of intracellular kinase domains promotes the phosphorylation of multiple
C-terminal tyrosine residues in frams, including Tyr-1068, 1086, 1148 and 1173.
Receptor phosphorylation does not increase its kinase activity but, in a fashion
comparable with dissociated G-protein subunits, its function is to generate docking
sites for downstream signaling molecules. The receptors for platelet-derived growth
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factor (PDGF), colony-stimulating factor 1 (CSF-1) and nerve growth factor are
RTKs in which individual autophosphorylation sites are strictly required for
association with specific signaling molecules. In contrast, no individual EGFR
autophosphorylation site appears to be essential for the recognition and association of
at least four signaling proteins (Soler ef al., 1994). Unregulated RTK activity and
mutation of autophosphorylation sites can lead to aberrant signal transduction, as for
example occurs in cellular transformation by various v-erbB oncogenes (Kato et al.,
1987).

There are two general mechanisms by which signaling molecules are regulated
by interacting with RTKSs: firstly, enzymes may undergo a change in activity when
they interact with the receptor. This usually arises through a conformational change in
the enzyme or by phosphorylation on specific tyrosine residues by the receptor.
Secondly, cytosolic enzymes can be physically juxtaposed with their membrane —
bound substrates, upstream activator, or downstream effectors as a result of
translocating to the plasma membrane. It is the specific set of intracellular molecules
that binds to an activated receptor that will mediate which signal transduction
pathways will be stimulated. Cross-talk between these pathways may augment or
desensitise their respective signals, presumably in order to finely tune cellular
responses.

To date, at least 30 proteins have been found to interact either directly or
indirectly with the EGFR. Whether all of these molecules bind a receptor dimer at
once is not clear, but steric consideration suggest this is unlikely. One solution lies in
the recent identification of the docking proteins Gab1 (Holgado-Madruga e al., 1996)
and p62 (Richard et al., 1995). Docking proteins bring several proteins together as a
consequence of their multiplicity of homology domain binding sites. Gab1 can bind
the EGFR, GRB2, PLCy, PI3K and PTP-1D, but not Nck (Holgado-Madruga ef al.,
1996), while p62 can bind PLCy and GRB2 (Richard et al, 1995). Although Gabl
appears to be a substrate for the EGFR tyrosine kinase, it is not yet clear whether
Gab1 remains bound to the receptor via any of their common binding partners, or
whether Gabl complexes are detached from receptor complexes. Adapter proteins
perform a similar function to docking proteins but they use multiple homology

domains to link activated receptors to downstream enzymatic effectors.
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Interaction of the EGF Receptor With the Cytoskeleton

It is tempting to suggest that the actin microfilament system acts as a matrix
for growth factor induces signal transduction. This would imply that the components
involved in these signal transduction cascades are in one way of another associated
with the microfilament system. Evidence accumulated that growth factor receptors,
amongst them the EGF receptor, were associated with the cytoskeleton. Thus it was
shown by biochemical and ultrastructural methods that 20-25% of the EGF receptor
population of A431 cells was insoluble to Triton X-100 (Roy et al., 1989) and thus by
definition associated with the cytoskeleton. In contrast, a mutated EGF receptor in
which the cytoplasmic domain of the receptor was deleted, did not bind to the
cytoskeleton (van Belzen et al., 1990). Further characterization of the cytoskeleton-
bound EGF receptors in A431 cells revealed that these receptors belonged to the high
affinity class (Wiegant et al., 1986). Considering that the high affinity responses are
primarily responsible for EGF-induced signal transduction (Defize et al., 1989; Bellot
et al., 1990), these observations suggest that EGF receptor-cytoskeleton interaction is
important for the cellular response towards EGF.

Subsequently the association between the EGF receptor and the cytoskeleton
was further analyzed in detail. Selective extraction of A431 cells into the three major
cytoskeletal fractions, i.e. the microtubules, the microfilaments and the intermediate
filaments, and EGF binding studies on these fractions revealed that the EGF receptors
were associated with the actin microfilament system (van Bergen en Henegouwen ef
al., 1992). These results were confirmed by immunofluorescence studies, which
demonstrated a clear co-localization between the EGF receptor and the actin
microfilaments, but not between the EGF receptor on the one hand and the
microtubules, the intermediate filaments or stress fiber actin on the other hand (van
Bergen en Henegouwen et al., 1992). Because a wide variety of actin binding proteins
are known to present substrates of the EGF receptor, it can not be concluded whether
the receptor binds directly or indirectly to actin. Therefore, both the EGF receptor and
actin were purified to homogeniety and subsequent co-sedimentation assays
demonstrated unequivocally that the receptor itself is an actin binding protein, with no
other proteins involved (den Hartigh ef al., 1992). Of particular interest was the

finding that the amino acid sequence of the EGF receptor domain involving amino
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acid residues 986-999 appeared to have homology with the actin binding domain of
profilin of Acanthamoeba (Vandekerckhove et al., 1989).

In order to establish the possibility that this domain of the receptor indeed
represents the actin binding domain, a synthetic peptide was prepared which was
identical to the EGF receptor domain 984-996. The peptide was radiolabeled and
binding studies indeed demonstrated the ability of the peptide to bind specifically to
F-actin in vitro. In addition, the peptide was able to compete with purified EGF
receptor for binding to F-actin, demonstrating that this receptor domain represents the
only actin binding domain of the receptor. In contrast, a peptide identical to receptor
sequence 1001-1013 did not bind to actin, nor did it compete with the receptor for
binding to actin (den Hartigh et al., 1992).

In addition to the EGF receptor, various components involved in EGF-induced
signal transduction also appeared to be associated with the cytoskeleton. Thus it was
shown that cytoskeleton isolated from A431 cells contained high activities of PI
kinase, PIP kinase, PLC and DG kinase (Payrastre et al,, 1991). Like the EGF
receptor, these proteins were found to be associated with the actin microfilament
system. Interestingly, the cytoskeleton associated kinase activities were significantly
increased upon treatment of intact cells with EGF (Payrastre ef al., 1991). The EGF
induced activation and translocation of PLCy 1 to the cytoskeleton in rat hepatocytes
was demonstrated (Yang et al., 1994).

These findings indeed suggest that the actin microfilament system might
function as a matrix to align the signal transduction components. In this respect it is of
interest to mention that the EGF-induced actin polymerization is related to membrane
ruffling, and that the early signal transduction events occur predominantly in these
newly formed membrane ruffles. Thus an extensive study on the localization of F-
actin, EGF receptor, PLCy 1 and tyrosine phosphorylated proteins in A431 cells
treated with EGF for 2 and 5 minutes respectively demonstrated that immediately
after the formation of the membrane ruffles following addition of EGF to the cells, a
strong co-localization was observed between F-actin on the one hand and EGF
receptors, PLCy 1 and tyrosine phosphorylated proteins on the other. This co-
localization was most apparent 2 minutes after addition of EGF. In particular the
appearance of tyrosine phosphorylated proteins after addition of EGF was confirmed

to the membrane ruffles, and only after longer incubation periods in the presence of
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EGF these tyrosine phosphorylated proteins appeared throughout the cells. These
findings indicated that the membrane ruffles constitute the signal transduction
organelles of the cells following addition of EGF, and actin play an essential role in
the establishment of these membrane ruffles. Actin is phosphorylated on serine
residues upon treatment of the cells with EGF (van Delft ef al., 1995). This

phosphorylation may play a role in the generation of optimal conditions for signal

transduction.
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Phosphatidylinositol-3 Kinase (PI3K)

Membrane phospholipids including phosphatidylinositol are key substances
mediating the control of cell division. It was supposed for many years that
phosphatidylinositol (PtdIns) and its phosphorylated derivatives (PtdIns(3)P,
PtdIns(3,4)P,, and PtdIns(3,4,5)P3) took part in the transduction of mitogen signals
only through their hydrolysis by phospholipase C to well known cell division
mediators such as diacylglycerol and inositol phosphates. During the recent years
these suggestions have been significantly changed, first of all due to the discovery and
broad investigation of phosphatidylinositol-3 kinase (PI3K), the enzyme
phosphorylating PtdIns in the 3-OH position of the inositol ring.

Initially PI3K was the subject of interest because of its known ability to form
complexes with some viral oncoproteins such as v-src and v-ros and also because of
involvement of intracellular PI3K in the viral transformation process. Later, in 1997,
the possibility of malignant transformation of cells as the result of transfection with
DNA containing a fragment of a viral or cellular PBK gene was shown. Parallel
investigations of biochemical properties of PI3K led to rather unexpected results. The
two-subunit (regulatory p85 and catalytic p110) molecule of PI3K appears to possess
both lipid kinase and protein kinase activity. Activation of the dimeric p85/p110 PI3K
molecule occurs through phosphorylation of a tyrosine residue by either receptor
(platelet, insulin-like, or epidermal growth factor receptors) or non-receptor (p60-src)
tyrosine kinases. Experiments with the use of some specific inhibitors of PBK and/or
cell transfection with different PI3K gene variants reveal PI3K being a mediator in the
control of at least two very important cell functions, namely, cell division (as a
necessary component of the signaling pathway initiated by growth factors) and
apoptosis (the progress of which is inhibited by PI3K).

Recently, clear progress in the investigation of the mechanism of PI3K action
has revealed the main mediators of its action. For instance, the event cascade leading
to the delay of apoptosis is initiated by complex formation between PtdIns-phosphate
products of the PI3K-catalyzed reaction and protein kinase B (PKB, also named Akt
or Akt/PKB). The latter enzyme plays an important role in the regulation of the
activity of many genes controlling, directly or indirectly, the apoptotic process. PIBK-
mediated transduction of mitogen signal is realized in another way. In spite of the
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traditional view of PtdIns and its derivatives as the main components of mitogen
signal, the role of PI3K in the regulation of cell division appears not to be restricted to
synthesis of these compounds. Not so long ago it was shown that PI3K may directly
control the activities of individual components of the RAS/RAF/ERK-mitogenic
pathway by complex formation with some signal proteins; the enzyme acts in this

case as a serine—-threonine protein kinase.

Among the other important PIBK functions involved directly or indirectly in
mitogen signal transduction, the involvement of PI3K in receptor down-regulation
(endocytosis and degradation of activated growth factor receptors), in control of
lysosomal enzyme synthesis, and in reorganization of actin cytoskeleton during the
course of malignant transformation process and/or mitogen stimulation of cells should

also be emphasized.

In general, P3K is now considered as one of the most important regulatory
proteins, being involved in a number of diverse signaling pathways and controlling
the main functions of the cell. PI3K activation in malignant cells after exposure to
radiation or other stress and also the above-mentioned anti-apoptotic effect of PBK
indicate the important role of this enzyme in the control of both malignant cell
resistance to damaging agents and the sensitivity of malignant tumors to chemo- or

radiotherapy.
PI3K: General Properties (Krasilnikov, 2000)

Phosphatidylinositol-3 kinase is a heterodimer of two subunits, catalytic and
regulatory, with molecular weights of 110 kD (p110) and 85 kD (p85), respectively
Cloning experiments with the use of PI3K cDNA have revealed at least five isoforms
of each subunit. The regulatory p85 subunit consists of several domains including the
SH3 domain, two proline rich fragments, and two SH2 domains separated by the iSH2
(inter SH2) sequence. The iSH2 domain provides the interaction between the p85 and
p110 subunits, and the two SH2 domains are responsible for binding of the p85/p110
heterodimer with receptor tyrosine kinases. It is supposed that due to the ability of the
regulatory p85 subunit to interact with both the catalytic p110 subunit and receptor
tyrosine kinases directed membrane targeting of p110 occurs, initiating complex

formation between the enzyme and its phospholipid substrate.
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The catalytic p110 subunit of PI3K is homologous to protein kinases and
possesses both serine—threonine protein kinase and phosphoinositide kinase activities.
Phosphorylation of PtdIns and phosphoinositides PtdIns(4)P and PtdIns(4,5)P; occurs
in the Ds-position of the inositol ring leading to formation of PtdIns(3)P,
PtdIns(3,4)P,, and PtdIns(3,4,5)Ps, respectively. Three classes of the PI3K protein
superfamily are now known. All of these possess the protein kinase activity, the
difference is preferentially in the substrate specificity of the phosphoinositide kinase
site. Thus, the first class includes p85/p110 heterodimers reacting with all
phosphoinositides, PtdIns, PtdIns(4)P, and PtdIns(4,5)P;. These are now often
referred to as phosphoinositide-3 kinases; the term reflects their substrate specificity
more correctly than the traditional name, phosphatidylinositol-3 kinases. The second
class involves enzymes phosphorylating preferably PtdIns and PtdIns(4)P. Finally, the
third class includes PI3K that possesses additionally a specific protein transfer
function and has a structural and functional resemblance with the yeast analog of
PI3K, vps34p (vacuolar protein sorting). Unlike the enzymes from the first and the

second classes, this one uses only PtdIns as a substrate.

Two main processes lead to PI3K activation: p85/p110 heterodimer assembly
and interaction of the heterodimer with activator proteins. As mentioned above, the
binding of the catalytic and regulatory subunits occurs via the iSH2 domain of the
latter. The p85/p110 heterodimer assembly does not result itself in marked enzyme
activation. Moreover, some investigators reported the activity of the catalytic subunit
being decreased when the p85/p110 complex is formed in vitro. An additional
interaction with specific activator proteins is required for the subsequent activation of
the heterodimer. The main activator proteins have tyrosine-phosphorylated amino acid
sequences including both some receptor (receptors of platelet, epidermal, or insulin-
like growth factors), and non-receptor (p60-src) tyrosine kinases. The binding of
phosphotyrosine sites of activator proteins with SH2 domains of the PBK regulatory
subunit causes a conformational change of the heterodimer leading to enzyme

activation.

There are, however, other mechanisms of PI3K activation. An extra activation
of the heterodimer may occur while direct interaction between the PI3K catalytic

subunit and one of several cellular proteins takes place. A good example is the
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complex formation between p21-ras and p110 resulting in activation of PI3K. The
diversity of ways for PI3K activation to occur and also the multi-substrate specificity
and double-enzymatic activity (lipid kinase and protein kinase) of the enzyme likely

determine its key role in the control of cell growth and survival.
PI3K Signaling Pathway (Krasilnikov, 2000)

Investigations of recent years have shown the involvement of PI3K in the
control of cell division being realized through at least two possible mechanisms: the
first includes phosphoinositide production (PI3K lipid kinase activity), the second
includes direct interaction of PI3K with some cellular signal proteins, when the

protein kinase activity of PI3K may play a critical role.

Traditional opinions conceming the role of phosphoinositides in cell growth
control were based on their role as substrates of phospholipase C, the enzyme which
is activated by receptor tyrosine kinases during cell division. When accumulated in
the cells due to phospholipase C action, the hydrolysis products of phosphoinositides
(diacylglycerol and inositol phosphates) activate protein kinase C, thus stimulating
one of the most important signaling pathways of the cell. However, as was shown
later, the phosphoinositides may have an independent significance in mitogen signal
transduction, because of their ability for direct interaction with some signal proteins.
The role of phosphoinositides in activation of protein kinase B (PKB), which is
involved preferentially in the control of cell apoptosis, will be considered below. As
for the protein mediators of cell division, protein kinase C (PKC) should be
distinguished first of all. The PKC activation appears to occur not only via binding
with diacylglycerol formed by hydrolysis of phospholipids, but also via the interaction
with PI3K lipid products. Great progress in the study of the control mechanisms of
PI3K was achieved following the discovery of a new family of serine—threonine
protein kinases, phosphoinositide-dependent kinases (PDK). These are activated by
the lipid products of PI3K, 30H-phosphoinositides (hence the name of the family),
and responsible for the phosphorylation and activation of a number of signaling
protein kinases, including both PKB and PKC. Thus, two steps of PI3K-dependent
activation of protein kinase C may be distinguished: PKC interaction with
diacylglycerol, the phosphoinositide hydrolysis product, and phosphorylation of PKC
by PDK family enzymes. Also, the data obtained from the studies on binding of
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phosphoinositides with SH2-containing proteins should be taken into account. These
indicate one of the PI3K products, PtdIns(3,4,5)P3, interacts with SH2-domains of
proteins competing with phosphotyrosine peptides. The same effect may exist for an
additional pathway of activation of SH2-containing signaling proteins which is

independent from receptor tyrosine kinases.

The subject of particular interest is the involving of PI3K in receptor «down-
stream» processes, including endocytosis and degradation of activated growth factor
receptors. As known, binding of ligand with growth factor receptor and activation of
its phosphotyrosine kinase domain is followed by internalization of the receptor into
intracellular vesicles and its consequent degradation in lysosomes. The whole process
and, in particular, the activated receptor transfer into lysosomes appear to be under
PIBK control. For instance, the studies on the down-stream handling of platelet
growth factor receptor have revealed that some mutations in the phosphotyrosine site
of the receptor molecule responsible for PIBK binding may cause an almost total
blockage of the receptor transfer into lysosomes. The same effect is caused by
wortmannin, a specific PI3K inhibitor. However, PBK possesses an ability to direct
control of lysosomal enzyme activity by stimulation of the transfer of de novo

synthesized hydrolases into lysosomes.

The ability of PI3K to direct binding with some cellular proteins and also the
fact that the enzyme possesses not only lipid kinase, but also protein kinase activity
opened new opportunities for studying its role in intracellular signaling pathways. The
p85/p110 heterodimer in vivo forms complexes with a broad spectrum of cellular
molecules including tyrosine kinases, Grb2, p21-ras, rac, Cdc42, tubulin, etc. The
subject of principal significance for understanding the role of PBK in the control of
RAS/RAF/ERK signaling pathway is complex formation between the catalytic
subunit of PI3K and p21-ras. PI3K binds only with the GTP-form of ras resulting in
PI3K activation observed both in vitro and in vivo. The same PI3K activation effect
occurs when the heterodimer p85/p110 binds some other G-proteins, for instance, rac
or Cdc42. And, on the other hand, complex formation between PI3K and p21-ras is
accompanied by an increased amount of activated (GTP-bound) form of ras.
Moreover, the presence of PI3K appears to be necessary both for stimulation of the
RAS/RAF/ERK pathway and for induced transformation of cells, and, in addition, in
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some cases PI3K activity inhibition may cause total blockage of transformation. It
should be mentioned that the mutual control between PI3K and p2l-ras is rather
complex and does not corresponded to a linear model of mitogen signal transfer. PBK
is supposed to activate p2l-ras (possibly via membrane targeting of SOS-proteins)
and is activated simultaneously via its binding with the GTP-form of ras or other G-

proteins.

However, the significance of PIBK for the RAS/RAF/ERK signaling pathway
is not limited by its influence on p2l-ras. Recently, the important role of serine—
threonine protein kinase activity of P3K in the control of cellular MAP-kinases was
demonstrated. Experiments using different classes of PIBK whose lipid and protein
kinase activity components differ revealed that only the protein kinase activity of
PI3K causes the activation of cellular MAP-kinases. The level of the synthesis of
phosphoinositides (lipid products of PI3K) did not influence markedly the MAP-
kinase activities. Thus, the general scheme of PI3K-dependent control of cellular
mitogen-transduction signaling pathways consists of several stages, the main being:
PI3K activation via the binding of p85/p110 heterodimer with tyrosine-
phosphorylated proteins and/or small G-proteins (p21-ras, rac, Cdc42), the synthesis
of 3-OH phosphoinositides which are the sources of both diacylglycerol and inositol
phosphates and activators of some protein kinases (PKB, PKC, PDK) they can
directly interact with; serine—threonine phosphorylation of secondary PI3K
messengers and the activation of MAP-kinases. Also, the scheme of PBK
involvement in cellular metabolism should be supplemented with PI3K-dependent

control of stress-activated signaling pathways.
PI3K in the Control of Apoptosis (Krasilnikov, 2000)

Among other cellular protein targets of PI3K, a particular role belongs to these
which are involved in the cell response to stress. Moreover, although in the control of
cell division PIBK plays a rather secondary role, its role in the control of cell survival
and resistance to stress is a key one. This conclusion was made on the basis of the

discovery and investigation of a PI3K/PKB-dependent signaling pathway.

The mitogenic activity of growth factors and cytokines does not always
correlate with their ability to prevent cell death. The platelet and insulin-like growth
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factors are good examples of compounds possessing anti-apoptotic activity. However,
the fibroblast growth factor or the epidermal growth factor possessing high mitogenic
activity have a negligible influence on cell survival. A partial explanation of these
facts was obtained from comparative studies on signaling pathways activated by
growth factors in target cells. A stimulation of the traditional RAS/RAF/ERK-
pathway usually does not result in significant anti-apoptotic effect. The ability to
prevent apoptosis was detected in serine—threonine protein kinase B (PKB), which is
activated by some growth factors. Studies on PKB activation pathways have shown

that PI3K is a mediator of an activator signal for PKB.

PI3K is now considered as one of the main intracellular factors responsible for
the transmission of anti-apoptotic signal and controlling the survival of cells. For
instance, overexpression of PI3K in cells is accompanied by a strongly marked anti-
apoptotic effect and causes a significant increase in cell survival under the influence
of radiation. On the contrary, PI3K specific inhibitors cause increased apoptosis and
decreased cell survival. The data obtained from many experiments indicate the PKB
activation by complex formation between this enzyme and lipid products of PBK is a
key event in the realization of the anti-apoptotic effect of PI3K. There are two main
stages of PKB activation: the binding of PH (pleckstrin homology)-domain of PKB
with PtdIns(3)P and/or PtdIns(3,4)P,, the main products of lipid kinase reaction
catalyzed by PI3K, and the phosphorylation in Thr-308 position by PDK-1 kinase
(phosphoinositide-dependent kinase-1). PI3K-dependent activation of PKB occurs
independently from the influence of PIBK on the RAS/RAF/ERK pathway: in the first
case, the binding of PKB with lipid products of P3K is sufficient, but in the second
one, as mentioned above, the involvement of the protein kinase component of PI3K in

the effect of PI3K on MAP kinases is strongly necessary.

What is the further route of the signal from PKB and what is the nature of
signaling pathways leading from PKB and controlling the survival of cells? Several
mechanisms independently activated via PKB which can lead to the block of
apoptosis are known at present. First, it should be mentioned that no basic proteins
belonging to the Bcl family of the most widely distributed negative apoptosis
regulétors are known among the direct targets of PKB. The only exception known is
Bad, which being phosphorylated by PKB is prevented from its binding to Bcl-2.
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Proteases of the caspase family are known to be PKB mediators, which are activated
during apoptosis. PKB inhibits their activities; this property may serve as a basis of its
anti-apoptotic effect. Another possible effector of PKB is p70 S6 kinase, which
possesses a distinct anti-apoptotic property and, being phosphorylated directly by
PKB kinase, displays increased activity. Finally, data obtained from recent
investigations have revealed an important role of GSK-3 (glycogen synthetase kinase-
3) in the induction of programmed cell death. The direct phosphorylation of GSK-3
by PKB kinase leading to a drastic decrease in GSK-3 activity is one of its regulatory

mechanisms.

Undoubtedly, the scheme of signal transduction pathways initiated by PI3BK
and PKB presented here is rather incomplete. Knowledge on the nature of secondary
messengers involved in signal promotion from PI3K and PKB is expanding from day
to day; new data on the role of these substances in the control of cell response to
stress are appearing. For instance, new data were obtained on the involvement of
integrin-associated protein kinases (ILK, integrin-linked kinase) in realization of the
anti-apoptotic effect of PIBK. The problem on the role of stress-activated kinases
(JNK family) in the control of apoptosis and signal transduction from PI3K and PKB

is under comprehensive study.
PI3K and Cell Aging (Krasilnikov, 2000)

The ability of PI3K to control key functions of the cell such as proliferation or
apoptosis became the stimulus for studying the role of PI3K in the control of cell
aging, another key function of the cell. The cell aging phenomenon is known to
develop after the cell achieves the Hayflick limit, i.e., after the cell has passed through
a definite number of divisions to the resting stage. The passage of cells to resting
stage ahead of time and initiation of cell aging is appreciated by some researchers as
one of the programs of defense resembling programmed cell death (apoptosis) and is
activated under the influence of damaging agents. The fact that some substances such
as ceramide involved in mitogen signal transduction and possessing apoptotic activity
may (unlike traditional mitogens) effectively influence on the rate of cell aging is

indirect evidence for that assumption.
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Now several experimental proofs have been obtained that indicate that PI3K is
involved in the control of aging. First of all, experiments with Caenorhabditis elegans
reveal a homology between Age/,one of the genes of aging, and the gene encoding the
PI3K catalytic subunit in mammals and demonstrate the involvement of Age! in the
control of development of C. elegans. Convincing evidence for the involvement of
PI3K in the control of cell aging have been obtained from the experiments on normal
fibroblasts in vitro. Comparative analysis of the effects of PI3K inhibitor LY2940002
and MEK-1 (kinase phosphorylating ERK1/ERK2) inhibitor PD58029 on fibroblasts
has shown that both substances inhibit cell proliferation. However, only in the first
case (when the PI3K inhibitor acts) cell growth retardation was accompanied by a
complex of specific phenotypic alterations which are normally typical for aging
fibroblasts: galactosidase activation, overexpression of collagenase gene, and
decreased expression of EPC-1 gene (early population doubling level cDNA 1) which
is a specific marker of proliferating fibroblasts. This suggests that under PBK-
dependent control of cell aging the components of the anti-apoptotic signaling
pathway controlled by PI3K and independent of the RAS/RAF/ERK cascade have the
most important significance. Apparently, it is the activation of the anti-apoptotic
pathway and especially PKB that mainly determines the involvement of PI3K in the

control of cell aging.
PI3K in Malignant Transformation of Cells (Krasilnikov, 2000)

As mentioned above, initial interest in PI3K was due mostly to the
involvement of PI3K in malignant transformation of cells. Some viral oncoproteins
such as src, abl, T-antigen form complexes with P3K, and the presence of PBK in a
cell is required for realization of their transforming potential. Experiments with
mutant forms of those proteins have shown that the loss of their ability to form
complexes with PI3K results in a dramatic decrease in the transforming activity of the
oncoproteins. As a result of complex formation between oncoproteins and PBK, the
enzyme becomes activated and the level of PtdIns(3,4)P2/PtdIns(3,4,5)P3 increases;
also, the transforming efficiency decreases in accordance with the decrease in

intracellular concentration of phosphoinositides.

The question on the independent oncogenic activity of PI3K remained without

answer for a long time, but in 1997 the viral analog of a gene encoding the PBK
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catalytic subunit p110 was found in the genome of ASV 16 (avian sarcoma virus 16).
Studies on the transforming potential of the gene encoding the catalytic subunit p110
named p3k have shown that both viral and cellular variants of this gene cause
morphologic transformation in chicken embryo fibroblasts in vitro. What components
of the PI3K-induced signaling pathway take a direct part in malignant transformation
of cells? Now, with no doubt, these are the lipid products of PI3K and protein kinases
they activate, such as the above-mentioned protein kinase B (PKB) encoded by the
Akt protooncogene. The transformation of cells by the p3k gene is shown to be
accompanied by a drastic increase in both the PKB activity and the rate of
phosphorylation of endogenous substrates. An important role in the process of PI3K-
dependent transformation belongs to the stimulation of the RAS/RAF/ERK-kinase
cascade and the increase in AP-1 transcription factor activity. The complex changes in
cellular signaling pathways, namely, the appearance of constantly generated PI3K-
dependent mitogen signal and the activation of some protooncogenes (src, ras, rac,
etc.), and also PKB-dependent pathway stimulation, which leads to partial blockage of
apoptosis and increased survival of cells, are possibly the basis for the transforming
effect of PBK.

Studies on the role of PI3K in the formation of the actin cytoskeleton deserve
separate attention. It is well known that both the induction of cell proliferation and the
malignant transformation of cells are accompanied by reorganization of the actin
cytoskeleton. Data from recent studies indicate that one of the key elements in the
control of this process is PI3K. It has been shown that PBK activation appears to be
an essential condition for reorganization of actin filaments in a cell. Oncoprotein rac,
which belongs to the small G-protein group and is involved in signal transduction via
the stress-activated kinases of JNK family, is considered as a possible effector of
PI3K. The other possible pathway for PI3K to control actin assembly is based on the
lipid kinase activity of PIBK. The main role in this pathway belongs to one of the
PBK substrates, PtdIns(4,5)P;, which interacts with actin binding proteins, thus
stimulating the actin polymerization process. Intracellular activation of PtdIns(4,5)P2
metabolizing enzymes (phospholipase C and PI3K), in particular, under the influence
of mitogenic/oncogenic factors, leads to a decreased amount of PtdIns(4,5)P; bound

with actin and, as a result, to actin depolymerization.
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The discovered oncogenic activity of PI3K is evidence for an important role of
the enzyme in carcinogenesis and tumor growth. In fact, some data indicate changes
in phosphoinositide level during malignant tumor progression. Our study on PBBK
expression in breast cancer tumors has revealed in 79% of cases a significant
activation of PI3K compared to adjacent normal tissue. It was recently shown that the
effect of some tumor growth suppressor genes are activated via PI3K inhibition. One
of these is a product of suppressor gene product PTEN/MMCAL, a phosphatase which
dephosphorylates PtdIns(3,4,5)P3. Specific inhibitors of PIBK (wortmannin, LY
294002) cause a significant retardation of cell growth in culture and prevent the cells
from being malignantly transformed in vitro. However, the problem conceming the
anti-tumor activity of PBK antagonists or inhibitors and, on the whole, their usage in

cancer therapy is far from completely resolved. Further investigations are required.

In general, the progress achieved in recent years in studying PBK allows us to
place this enzyme among the main signaling proteins of the cell. The diversity of
ways for PBK activation and also its unique biochemical properties (multisubstrate
specificity and both lipid and protein kinase activity) determine its critical role in the
control of key functions in the cell: growth and survival, aging, malignant
transformation. The main PI3K effectors are mitogen-transducing signaling proteins
(protein kinase C, phosphoinositide-dependent kinases, small G-proteins, MAP-
kinases) which are activated either via interaction with lipid products of PB3K or
through PI3K-dependent phosphorylation of proteins. The anti-apoptotic effect of
PI3K is realized through the activation of proteins from another regulatory pathway,
the protein kinase B (PKB) and PKB-dependent enzymes (GSK-3, ILK).

Nevertheless, the mechanism of some PIBK effects, such as PI3K-dependent
control of malignant transformation, remain unclear. PIBK possesses a direct
oncogenic activity and also potentiates the effects of other oncogenes activating and
increasing the transforming activity of many of the known oncoproteins (ras, rac, Akt,
src). A number of cell damaging factors cause a drastic increase in PI3K activity. That
activation of PIBK leads to delay of apoptosis in cells with damaged DNA structure
and also causes an extra activation of cellular oncoproteins and stimulates
uncontrolled cell growth and, hence, may have perhaps great significance in

carcinogenesis.
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The problem of malignant transformation is closely related to another P3K
function, the control of cell aging. A decrease in PI3K activity causes an increase in
aging rate in normal cells, but the mechanism of PI3K-dependent control of cell aging
and the role of individual effectors of PI3K are still unknown. It may be that, as in the
case of PI3K-induced malignant transformation, the activation of mitogen-dependent
proteins and (as appears to be the most important) the anti-apoptotic signal constantly
generated by PI3K play an important role in the control of aging. However, studies in
this field are just beginning, and it is unclear whether the PIBK activity changes
during cell aging and the overexpression of PBBK leads to significant delay in the
aging process. Undoubtedly, in the near future studies will answer these and other

questions on the mechanism of the effect of PBK in normal and malignant cells.

It should be noted in conclusion that PI3K, when being identified as one of the
key signaling proteins, lets us tie together many events which occur in cells under the
action of mitogenic or oncogenic factors and also stress, and, at first glance, seem to
be independent. Every year new data appear conceming the description of novel PBK
effectors or revealing a correlation between known cell proteins and PI3K-dependent
signaling pathways. We are on the way to understanding the basic principles of
coordinated control of biochemical signaling pathways and their significance for

fundamental cell properties: growth, aging, transformation.
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Ras Signaling Pathway and MAP Kinase (Karp, 1999)

A key component of many RTK reaction cascades in the protein Ras. The Ras
gene was originally discovered as a viral oncogene, that is, a gene carried by certain
tumor viruses that enables the virus to transform cells to a malignant state. Subsequent
research showed that, like other oncogenes, ras was also present as part of the normal
genome of animals, including humans. During the early 1980s, several human tumor
cells were found to contain a mutant version of ras. Subsequent studies have found
that an altered version of the ras gene is found in about 30 percent of all human
tumors. Given its importance in the development of human cancers, the product of the
ras gene, a protein called Ras, became a focus of research.

Ras is small G protein residing at the inner surface of the plasma membrane,
and is a member of several signaling pathway. Unlike heterotrimeric G proteins, Ras
consists of a single small (21kDa) subunit. Like other G proteins, Ras cycles between
an inactive GDP-bound form and an active GTP-bound form. In its active form, Ras
stimulates effectors that lie downstream in the signaling pathway. Ras has a very
weak GTPase activity and, left by itself, would remain in the active, GTP-bound state
for 30 minutes or so. In the cell, Ras activity is regulated by a number of GTPase-
activating proteins (GAPs) that stimulate the Ras GTPase about 10°-fold and return
the protein to the inactive state. Ras-GAPs have a unique way of stimulating the
enzyme activity of their Ras target: they provide an amino acid residue (an arginine)
that becomes a critical part of the active sites of the Ras GTPase. Mutation in the ras
gene that lead to tumor formation prevent the protein from hydrolyzing the bound
GTP back to the GDP form, even in the presence of the GAP. As a result, the mutant
version of Ras remains in the “on” position, sending a continual message downstream
along the signaling pathway, keeping the cell in the proliferative mode. Disease
involving abnormal cell proliferation also result from alterations in Ras-GAPs.
Mutations in one of the Ras-GAP genes (NVF/) cause neurofibromatosis 1, a disease in
which patients develop large numbers of benign tumors (neurofibromas) along the
sheaths that line the nerve trunks.

In its best-studied role, Ras is a key component of a signaling pathway that
leads all the way from the outer surface of the plasma membrane to the DNA of the
nucleus. The pathway is activated when a growth factors, such as EGF or PDGF,
binds to the extracellular domain of its receptor. The step in the Ras signaling
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pathway that follow binding of a growth factor to an RTK are depicted in next figure.
Briefly, the phosphotyrosines that are generated in the cytoplasmic domain of the
RTK by autophosphorylation act as binding sites for a specific SH2 protein called
Grb2. Grb2 is not a protein with catalytic activity, but one that functions solely as an
adaptor molecule that links other proteins into a complex. The structure of Grb2 can
be seen to consist of three distinct domains, each of which binds to an other protein.
One domain of the Grb2 molecule binds to the phosphorylated RTK at the inner
surface of the membrane, while another domain binds to a protein called Sos.

Sos is a guanine nucleotide exchange factor for Ras, that is, a Ras-GEF. GEFs
activate G proteins by stimulating the exchange of GDP with GTP. In the
unstimulated cell, Ras remains bound to GDP. When a ligand binds to the RTK and
recruits the Grb2-Sos to the inner surface of the membrane, the Sos protein binds to
Ras, causing it to lose its GDP, which is replaced by GTP, thus activating Ras. The
primary, and possibly sole, function of Ras-GTP is to recruit another protein, called
Raf, to the plasma membrane. Once it is localized at the plasma membrane, Raf
becomes activated as a protein kinase that initiates an orderly chain of
phosphorylation reactions called the “MAP kinase cascade”. The MAP kinase
cascade is similar to the cascade of reactions triggered by cAMP during glucose
mobilization, but even more complex. Once activated, the last protein kinase in the
cascade (MAPK) translocates to the nucleus where it phosphorylates and activates
specific transcription factors, such as Elk-1. Elk-1 binds to the promoter regions of a
number of genes, including c-fos and c-jun. The products of these genes, Fos and Jun,
interact to form a heterodimeric transcription factor called AP-1 that activates genes
involved in cell proliferation.

The same basic pathway from an RTK through Ras to the activation
transcription factors is found in all eukaryotes investigated, from yeast through flies
and nematodes to mammals. Evolution has adapted the pathway to meet many
different ends. In yeast, for example, the MAP kinase cascade is required for
maintenance of cell shape and to respond to mating pheromones; in fruit flies, the
pathway is utilized during the differentiation of the photoreceptors in the compound
eye; and in flowering plant, the pathway transmits signals that initiate a defense
against pathogens. Mammals have a number of different isoforms for each of the
proteins that make up the MAP kinase cascade. Pathways consisting of different

isoforms can transmit different types.
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