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Appendix A

Because gravigy i : ges - fore ological scale, the universe
can be well describe 2Ing .--. Geld e , a master equation of general

relativity, that relates * n tensor "»k o the energy-momentum tensor
Ty 88 '

(A1)
where G is the Newtowgéﬁﬁ l'constant, and we have used the conven-
tion that the speed of - 1 Tn cosmology, the universe is assumed to

\"‘ cribed by the Friedmann-

Robertson—Wa.lker RW) metric

Ausgndienae] . o

where t is the cosmic time, r are the spherical polar coerdinates in comoving
o W@@\%ﬂﬁﬂaﬂ%%@ K lsithe dupine constant of the
spatlgl space such that K = 1 for a closed umverse‘,‘ K = 0 for a flat universe, and
K = —1 for an open universe. Note that, in the present, the homogeneity and
isotropy of the observable universe have been established as the consequence of the
existence of the inflationary period, any inhomogeneity had been redshifted away
by the exponential expansion. When the universe is homogeneous and isotropic,
the energy-momentum tensor T}, can be represented by that for a perfect fluid,

in which an observer comoving with the fluid would see the universe around it as
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isotropic. It is
T, = diag(p,—P,—P,—P) . (A3)

Using Eq. (A.2) and Eq. (A.3), the Einstein field equation, that is in general

~acomplicated tensor equation, is simplified and so provides the main equations of

cosmology: the Friedmann equation:

; (A4)

and the acceleration equati
(A.5)
where H = a/a is thedF ¢/ gxpansion rate and dots denote the cosmic time
derivative. The Fri€édmann/eguéii n describes oy the expansion rate of the uni-

verse is related to rature constant K, while the

acceleration equation desg

to the acceleration, de
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Appendix B

(Gaussian Statistics

Wy

cadl be m be Gaussian if the value of the

The CMB anis
anisotropies (AT/

Gaussian distribution. 4 of anisotropy values collecting

from all points shg o/th¢ shape of Gaussian istribution. However, this is
not sufficient to des tical f a Gaussian map that is called
in statistical mathem . While a random variable is
determined by a p andom field is determined by a joint
probability distribution bability of all points getting values
at the same time. If wg¢ ﬂg:a.,Ga, ‘~‘_‘~_ an gandom field S(x), where § = S(x ),
t1=1,...,N,isa random__gafﬁ@ja a. e point X following Gaussian distribution
law, its joint pr(gmblhty dlstnbum iaf€ Gaussian distribution:

-@S -G s) (B.1)
where C is the correlétion matrix whose.the element C = (S S ) is the two-point

i B 1 &) I 2 I 55 drtthe et

average. THi6 manifests us th%t the two—pomt correlation flmctlon specifies all

orderqcﬁepmrmﬂ ?Sﬁjiu H ?‘ﬁﬂn eve v:: l::lileil-lff;:;

correlation is the sum of all possible combmatlons of correlation between different

pair of points; for example, the four-point correlation is

(51525354) = (S152)(S3S4) + (S153)(S254) + (S154)(S2S3) - (B.2)

For the CMB anisotropy map, which is assumed to be a homogeneous and

isotropic random field, the angular two-point correlation function C(a) is the
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function only of the angular separation of two points «; it is independent of the
specific pair of points (homogeneous) and the direction of the line connecting the
two points (isotropic) [17]. From the so-called Wiener-Khintchine theorem, the
power spectrum is the Fourier transform of the two-point correlation function. So,
either the angular two-point correlation function or the angular power spectrum
completely describe the statistical properties of the CMB sky if it is Gaussian. On
the contrary, if it is non-Gaussian, obtaining the angular power spectrum has not

1l
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Appendix C

The Quantization of the Inflaton

7 ——
In quantum field ‘lta‘,,;" \

plementing the se€ond ‘.' r.<~

t the quantum effect by im-
n.; Here, we the canonical quantization
technique. Howevgt! itdis mér .. .,‘ ent in quantization to modify Eq. (2.14)

conformal to the Kleifi-Gor ) linkoy sklan space, which the method
of quantization have beeu wel *_  US =\\- onformal time 7, where d7 =
dt/a(t), instead of tHe o@smig/ti d redefining the field from ¢ to ¢ = ayp.

In the quantization, we ﬂenf at for the Klein-Gordon field; we write

the field as a Hermitian opetator as fe
_ YA

=

S W], (@

A= e et ae e ) of

where a) and ak are the a.nmhllatlon and creation operators which satisfy the

" THINENT WEIN

[ax, ax] ?07 [ax, a’kL_ 89 (k — k, (C.2)

onhobie DoV bldidol ks N Ehe conersuns

Where OI=¢g =0p/or:
[¢(r,x), II(r, %] = 0O (x —x). (C8)
It follows that the eigen function u () obey the equation of motion

"+ [+ M*(1)]u =0, (C.4)
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where the primes denote the differentiation with respect to the conformal time 7,
and
M?*(t) = m?a® —a"/a, (C.5)

with the normalization condition

up Uy — ug Uy =1, (C.6)

that satisfy Eq. (C.3). ’ ,
The solution of Eq. odel of inflation that give different
forms, as a function /a@nd tlona,ry models that give a de

tin on can be obtained. However,
during inflation H+i€ noi ', ' herefore more general, but not
really general, to conSider ‘  Sitter stage when H changes

ntioned it in order to introduce

Sitter stage, H is comista

slightly with time as

AN

the slow-roll parametgr ¢ that hs

Have lue, in the last section. From
Eq. (2.9) that can b€ ug ribe QE\‘:\\- e Sitter expansion, we have
] 1}:-1 v A 1 -
adafda \!
o M‘E a’ (0'7)
Integrate both sides of the-equat :m::_- o o8mic time t, we obtain
Va (= ) (C.8)

where we have usem d'r = dt/a in the rlght handﬂde of the equation, then we

" AuE) wmmmm cs
N“%i‘:is:*mm ﬁ%ﬂﬁ%‘iiﬁﬂﬁﬁ e
e

= a’(2—¢€)H?
= MR
72(1 — €)?

12

%(2 + 3e). (C.10)
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Using Egs. (C.9) and (C.10), we can write (C.5) as

m} 1
H? 72(1 — €)?

= L[ -], ©1)

M*(r)

1R

1

— o2

where

v
. 3H? d¢?
is another slow-roll parame the quasi de Sitter stage, derived
from the condition that t section: ¢ < 3H #. Notice that
the existence of 7, i indicates thatsthere is a small deviation of the
"n::\ O-gpecifies that H # 0. We will

viation from scale-invariant power

potential from bei
see later that both

spectrum. We can ap rs dér of the slow-roll parameters

(C.12)

Substituting Eq. (C.1£ the equation that is conformal

to the Bessel differential’e

(C.13)

v—-
el ﬁ‘ﬁ‘ﬁ“ﬁ ﬁ "n%’ WYNI

U (1) =v=7 clék ) HO (- k’r)+cz(k) HA(~ k'r)] (C.15)

wheﬂzlﬂ A AR KA ot o

second kind, respectively, and c;(k) and cy(k) are integration constants.

where

(C.14)

In the ultraviolet limit k >> aH (—k7 = (k/aH) > 1), the solution uy, should
be the plane-wave solution e~* /1/2k which matches that of the Klein-Gordon

field in Minkowskian space, and we have the asymptotic form of the Hankel’s

HVY(z > 1) = ﬂj—ze"( _%"_%), (C.16)

function



and
(2) 2 —i(z—Fv-1) :
H(z>1)~4/—e V7)), (C.17)
T

where £ = —k, hence we can set the integration constants ¢; (k) = (ﬁ/2)ei("+%)%
and cy(k) = 0. We are interested in the perturbations with the modes well outside
the horizon because the CMB anisotropies corresponding to them are not much
affected from the photon-baryon fluid dynamics (see Fig. 2.1), so that their im-

(C.18)

(C.19)

Y]
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