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4.1 The

It has been well known that tp& vavelet fransform (DWT) defined on the

plane is a versatile tool i 1@ nglandthe CMB analysis can be viewed as
a task in this field. For th;g;@n,} he 2-1 WT was applied to the CMB data in
the early works o,E_l_nvesi;ig&tions for no igflature using wavelet analysis.
Beside that, the. garly B data 1 “Bagch of the sky in which the

Euclidean limit w@jt S. | Vleases of the all-sky data: the
CMB data from NAQA s COsmic Back ound Explorer (COBE) satellite (the data

are avalla E)Qa rowave Probe (WMAP)
(avallable simce gi he almgmltmliatelhte of the European
m vaflable in 2007. @deed, the data from

piyﬁﬁﬁ ﬁ ’;)m)&lhfe][ @a%(j!ube pixelization.

Hence, the first non-Gaussianity investigation using wavelets performed on the
COBE data applied a DWT defined on the plane [21]. However, there is currently
the pixelization scheme onto the sphere, called HEALPix [22], and the COBE data

has been re-analyzed by using the spherical wavelets, namely the spherical Haar

wavelets [23] and the spherical Mexican hat wavelets [24].

As suggested in Martinez-Gonzalez et al. [25], the HEALPix pixelization pro-
vides less biases than the Quad-Cube pixelization so that it is better to perform
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the wavelet analysis on the all-sky data pixelized onto the sphere. The HEALPix
pixelization which possesses the equal area iso-latitude pixels introduce the biases
since the distances between one pixel and its neighbours vary with latitude; pix-
els near the equator tend to be more uniformly distributed than those near the
poles. The biases from this cause can be reduced by using the continuous wavelet
transform because it averages over many pixels. Hence, we are interested in the

spherical continuous wavelet tra rm like the spherical Mexican hat wavelet

The stereograpk cti @e is an appropriate way to con-
struct a spherical contin vavelet, from the plane wavelet with the

properties required vavelet transform on the sphere!, it

is based on the greWip sheory appr od by Antoine and Vanderghenst

=2tan % sin @, (4.1)

where (6, ¢) are the pol @ »s on the sphere, and then the polar coordinates
—— 6
_!hi '»_' 2 2tan -2',¢)

e

in the tangent plane to the

i e 'n".jf fd¢si 0yR) =0 , 7”
a ﬁjﬁagjﬁ along t :g;ﬁ;j‘jg i;Yg.llv;Bn;] téi rEJationS toomti A

1The following properties are required to obtain a genuine CWT on the sphere [26):

e the signals and wavelets must live on the sphere;
e the transform must involve (local) dilations of some kind; and

e possibly the CWT on S? should reduce locally to the usual CWT on the (tangent) plane
(Euclidean limit).
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__________ . e
Figure 4.1: The s /projection fromthe plane to unit sphere of the
Mexican hat wavele = ' '
(c) the local dilatien eTg which can be obtained by the stereographic
projection of thg'di ions on th ngent plane, and

(d) the wavelet on

( ‘ elet on the plane for small angles
(Euclidean limit). ,:-;-vy..—” %

Note that the st m‘ roperties of the two dimen-

sional CWT as indicate nd {d) is the property that usually

IT
belongs to any obj ct deﬁned on the sphencal ge etry.

fl [T m:zzmn e::::::z:z:;;?:;r:;zx'
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For a function on the sphere f(6, ), the linear transform with respect to
the spherical continuous wavelets Us(0; R) derived from the inverse stereo-

graphic projection is
&(x, R) = / d0'dg sin@ Flx + A)Ts(@; R), (4.3)

where x = 2tan%(cos¢,sin¢), A = 2tan %’(cosd;’,sind)'), f(x) = f(6,9),

and w(x, R) = w(f, ¢; R). Note that the spherical continuous wavelet trans-
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formation transforms from a sphere defined by the polar coordinates (6, ¢)
to the multi-scale spherical space defined by the coordinates (6, ¢, R).

e Synthesis

We can reconstruct the function f(6, ¢) from the wavelet coefficients w(6, d: R)

by using the formula:

£6,6) = Fx) = =] ino'd—;;-w(x+A,R)ws(o';R), (4.4)

4.2 The S J \\\" at wavelets
The Mexican hat (MEXH W . cle ,'; ch is.a planar isotropic continuous
wavelet, is defined by B U \ |

5 (%)2] e~/ (4.5)

oportional to the 2D Laplacian of the

U(z;R) 2

Gaussian function. It has been: d 0 detect the point sources in CMB.

The spheri can hat wavelet (SMETWCaY be obtained from the stere-
L7 = x
ographic projectiomao 5 wavelet. From Eq. (4.2), we

have the SMHW -EII" ned by

%wﬂh%(_m E%ﬂ;ﬂ %)2] VT (46)
Ch N ﬂ\‘iﬂ"fﬁwﬂiﬁ%ﬁ i mté’% )

Notice that N (R) is the normalization constant that makes

/ d0d¢ sin 0 T%(6; R) = 1 (4.8)

so that the transformation is unitary, and [1 o (%)2]2 = (cos %) ~* which is intro-
duced in Eq. (4.2). Fig. 4.2 shows the SMHW that is deformed from the Mexican
hat wavelet. The analysis and synthesis with respect to this kind of wavelet follow
Egs. (4.3) and (4.4), respectively.
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w(8;R)

—200 ! 200

from the Mexican ha ash li e scale of the wavelet is chosen to
be R =1 rad [25]. ‘ :

4.3 The

In this thesis, we re ‘ detections on the WMAP first year
data using the spherical wavelet's e rsis according to Vielva et al. 2004 [27] (V04,
from now on) and and Wang 2004 [28] (MW04, from now on). The
results from WMAP & Fill skv maps of data in 5 frequency bands: K-Band
(22.8 GHz, 1 recelver)ﬁ, cht 33.0.4 1 receiver), Q-Band (40.7 GHz, 2

receivers), V-Bai G eivers) and WeBand (93.5 GHz, 4 receivers).?
Since only the dats Ban t\" re dominated by CMB over
the Galactic emismnn the WMAPteam for non@aussmmty tests [29] suggested

to use a noise-weighfedy,sum of maps ity these three frequency bands (8 receivers)

in order tﬂ % E#n%twﬁlzwj %ﬁs’}ﬂ‘%ﬁr it is better to use the

foreground “leaned maps from these 8 receivers, where the method of foreground

ﬁ{ ﬁﬂ to obtain better
s1§ﬁmﬁaﬁmmﬁlﬁﬁﬁ ﬂaﬂﬁ low this choice of
the combined map.

According to V04, the temperature T(x) on this Q-V-W coadded map where

the maps of each frequency have already been foreground cleaned can be given

2See http://map.gsfc.nasa.gov or http://lambda.gsfc.nasa.gov
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by® [30]
A 10 A~
T(x) = T5(%) w;(x), (4.9)
=3
where the indices j = 3,4 refer to the Q-Band receivers, j = 5,6 to the ones of

the V-Band and j = 7,8, 9, 10 to the receivers of the W-Band (the indices j = 1,2
refer to the K and Ka receivers, respectively), and w;(x) is defined by

Bylx) (4.10)
where op; is the noi p& obm and Nj(x) is the number of

observations of the reCelveL g asp : is created in the Hierarchi-
cal, Equal Area and 1S ¢ ix) [22] with the resolution
Ngige = 512 (abou total number of pixels of

12 x N, = 3,145,726 the map is degraded. to the map with resolution
Niige = 256, 12 X t & yery.small scales are dominated by
noise [27]. In additiof, sificeithe ; ae T; G, eIIssi: strong at the Galactic plane
and there are still the €ongami inabiont i ) y n radio point sources, the mask

hese regions is applied. Within

t 40720702 N he Kp0 mask is applied, 76.8 % of
the sky survives. J;:kla.lly, the monop{ e utside the mask are removed.
Then this is the map for the SMHW analysis (se g [4.3).

44 Gﬁﬁﬂwﬂﬂ%ﬁ‘wmm

A lar Q ﬁlpir of simulations df Gaussian GMB maps is reguired for specifying
al

thesfhistn bigchc ol dhddesk| B 1000 et produced n o4

and l(i)O simulations were produced in MWO04. An estimator, such as skewness

Kp0 (available in LAMBI DA/ site). wh
——
the mask, the data are set o zero

and kurtosis on each wavelet scale, is measured in every simulation. If we think
of each simulation as an element of the ensemble of Gaussian maps, the estimator
measured in different simulations can have different values around a particular

value. The histogram obtained by collecting the values of the estimator from

3The foreground cleaned maps in each frequency band are available in the Legacy Archive for
Microwave Background Data Analysis (LAMBDA) web page: http: / /lambda.gsfc.nasa.gov
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-b.44

Figure 4.3: The (foregfo Jeane Q V coadde L map applied by the Kp0
mask with the resolutig 1 Te \- onopole and dipole have

been removed. This figu

large numbers of simulatio: obability of getting the value of

the estimator for the Gaussié ¥

The Gaussian CMB real
the WMAP 1st yeamde ] om Gaussian multipole coef-
ficients a;,, of the v‘————ﬁ': pied for each receiver.
Then they are conon ailable in LAMBDA site),

e power spectrum C; that best fits

El

where the sizes of the'beams depend on the frequency bé

compatible w ter that transform them from
harmonic to ma d e ahzatlons Now we

have the mapsqor all receivers corgespondlng to foreground clea.ned maps for all

T L RIAP LISy P 1T b2 S
ing Eq. (4 Y, od =256, the Kp0

mask is applied, and the monopole and dipoles are removed for each simulation.

ds, to get the resolution
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4.5 Statistical Analysis in Wavelet Space

To perform statistical analysis in wavelet coefficient space, the WMAP data and
the Gaussian simulations are convolved with the SMHW at different scales, fol-
lowing the analysis formula in Eq. (4.3). In their works, vhe following scales of
wavelets in arcmin unit are chosen: R; = 13.7 (0.23°), Ry = 25 (0.42°), Rz = 50

(0.83°), Ry = 75 (1.25°), Rs = & f 7°), Rs = 150 (2.5°), Ry = 200 (3.33°),

Rg = 250 (4.17°), Ry = 30 67") Ry, = 500 (8.33%), Ryy = 600
(10°), Ry3 = 750 (12. 5" 900 J15 = 1050 (17.5°). It is important

to emphasize that th g .v the angular scale in the sky. It
is only the scale of ] : iltch is defined on the Euclidean
plane and then inversefteséographice onto the sphere. However, it is
related to the angul e“ség osen scales, the angular scale
in the sky is around 2 e. 'I‘Ht is the wavelet scales R; to

Since the maps v me f 0, the wavelet coefficients local-
ized near and within th : ffected from the zero value of the
mask. This results from th@comfolut th the wavelets whose support overlaps

the mask. To sob‘?_‘gtms problem, tl I?after SMHW convolution, to

mask should depeﬂ on phe re@m covered by the support of

a convolving wavelet ‘grows with R. In other words, the number of the strongly
contamina let scale R. According
to V04, th& @ﬂ gﬁ ﬂmfﬂ &lbﬁﬂv ﬁned to cover all pixels
closer than 2.5R to any pixel offthe mask inGalactic plane,qwithin || < 25°.* Re-
o I B Gl | b D EEA o n G
planeqand the radio point sources. The mask is not extended around point sources
outside this region, because they contaminate only a small minority of wavelet
coefficients on small scales and their effects get averaged out onlargér scales. The
extension around point sources also causes too few surviving wavelet coefficients

for statistical analysis, i.e. V04 concluded that this definition of extended mask

M(R) is good enough for non-Gaussianity detections. The figures of the set of the

4} is the Galactic latitude.



38

extended masks M(R) can be found in V04.

Because of the space-scale localization of wavelet coefficients, the non-Gaussianity
investigations can be performed in several ways in the wavelet space so that the re-
gion in space-scale plane where the non-Gaussianity lives can be specified. In this
section, we discuss the methods of the investigation of non-Gaussian signatures in
wavelet space applied by V04 and M\i/04 and the results.

4.5.1 Skewness K tOSl velet Coefficients

The wavelet techmque cnables s to conside B maps in each interval of
scales as represente hy e aFavélet doefficients & given wavelet scale. From
the assumption tha ' and isotropic, we can perform
the Gaussianity tes isteibution in each wavelet scale
R. Hence, we can chagacterize deviations Gaussmn statistics by using

the skewness S(R) (the ghigd mo st on gcale R) and kurtosis K(R) (the forth

(411)

(4.12)

where Ng is the numBersof coefficients @t scale R and o(R) is the dispersion of

e SR IY£1913 WEINNS
ammnitﬁw%‘ﬁ’maﬂ =

The results on all sky data

The skewness and kurtosis on each scale R were determined on the all sky data
in V04 as shown in Fig. 4.4. From the figure, the values of the kurtosis spectra
K(R) at Rg = 4.17° and Ry = 5° are outside the acceptance interval at the 1%
significance level, while all others, including the skewness spectra on all scales

and the kurtosis spectra on other scales, are within the acceptance interval at the
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Figure 4.4: The skewn oCtE
(right panel) of all sky 'V‘( ”
the scale R outside th
simulations, the red (ing
ficance levels, and the yellow line

tance intervals for the 32%, \
g re is taken from V04 [27].

represent the mean

&t on of non-Gaussian signature which
R = 4° — 5°. In V04, they claim

is value larger than or equal to

1% significance level. This 8 likek
[
appears as the kurtosis around™t

that only 40 of the 10000 sint

the kurtosis value détected P data at Rg, anc the same for Ry. This

R

corresponds to a rig .K:i or of the two scales.

The results ﬁ ﬁﬁﬁaﬁ i] ﬁerﬁ-’hemﬁnheres ‘j

Along with theSpace-scale locahzatlon we can consider t(e one-point distribution

o $LAT KA TRV nioN (1181 RN

cated in a region. The skewness and kurtosis spectra determined in the northern

and southern hemispheres are shown in Fig. 4.5. This figure shows us that the
kurtosis, as a non-Gaussian signal, is located in the southern hemisphere. The val-
ues of the kurtosis at the Ry = 3.33° and Rg = 4.17° in the southern hemisphere

are outside the acceptance interval at the 1% significance level. In addition, the
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number of simulations that present values of the kurtosis equal or larger than the
one detected corresponds to a right tail probability of ~ 0.1% (only 11 of the 10000
simulations) at the R; = 3.33° and = 0.2% at the Rg = 4.17°. Therefore, we can
conclude from the results of V04 that the kurtosis found around the wavelet scale
R = 4°, which corresponds to the size in the sky of around 10°, in the all sky data

is in fact located in the southern hemisphere. In particular, the specification of

the region that the non—Gaussiz“1 ,1 es illustrate an advantage of the wavelet
technique. \\ ///
e

: 2

\

T —

4.5.2 The E

The extremum analy$is is"anof metho | that hasibeen used to characterize the
Gaussian statistics ol v ; The con '\é‘b{@tions in wavelet space enables
the extremum analysigfto be/pe f "; - cal a%let scale. In addition to V04,
MW04 use the extren s of t avelet coefficients to characterize
the non-Gaussian signature in tic hemisphere. The results is
shown in Fig. 4.6. In § eéﬁqy‘x_' 1,!' ma, maxima and the rms disper-
sion of the wavelet coefﬁcij@%__% ; ale are shown. The middle and bottom
panels show the 3umber ‘of wavelet coefficient are larger than (mean+10),
(mean+20) and| (miean+37) and smatier-than-(me giilo), (mean-20) and (mean-

30), respectively. 4
scales Rg = 4.17° and Rg = 5°

[
are signifi ‘E‘Eﬁ% Wﬁ lﬁc flicients that are smaller
than(me;@ﬁ (ETS .3,?i41 , and Ry = 5° are very
significant outside the 99.73% #cceptance interval. This is,a strong detection of

thedeioh ] Gohgapld et Trop ieR |G festations, ther

are o'iﬂy 3 of 1000 Gaussian realizations whose value of this estimator in any 4

geé that th d in the southern hemisphere.
e

We can see from the figure that the minima on the

scales is larger than the 99% acceptance interval. Therefore the number of cold
pixels is too large on the scales 3 —4°. MW04 pointed out that there is more than
one cold spot on the scales Rg and R; and mainly one cold spot on larger scales
near (b = —57°, | = 209°) (this was pointed before by V04) contributing to this

number of wavelet coefficients on the scales Rg and Ry B

5p and [ are the Galactic latitude and longitude, respectively.
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4.5.3 Scale-Scale Correlations

As discussed in chapter 2, we can have a Gaussian perturbation field if there is
no coupling between the Fourier modes, i.e. the scales of perturbations. Hence,
the scale-scale correlation can be an indicator of the presence of non-Gaussianity
in CMB, as introduced in Pando et al. [21]. MWO04 determined this estimator
in their works by defining the s ) e correlation, the correlation between the

scales R; and R;, as

2(R”x) (4.14)

the two scales. By calculas ‘the sbale-scal relations of the WMAP data
and the Gaussian € . in Fig. 4.7. The scale-scale
correlations calculated {ro " sk asked data is consistent with being

Gaussian as shown in no strong signal that the scale-

scale correlations are o 31;1&%&‘ nce terval. However, the scale-scale
correlations in the southern{@jgﬁﬁﬁm Shere indicate a non-Gaussian detection
as shown in the l;}gttom pa.tféf’ Wﬁ” : orrelations amongst wavelet
coefficients betwierithe-soaics—tte—to—Lo-tac-tange of scales within which the

V.

excess kurtosis an T e

B 10 Ry, the zange

vayelet coefficients appear. In the

orrelations that are outside the

palrs of wavelet scales have

:Z:iz‘lc:nce ﬁ ﬁaﬁﬁ 'ﬁ @Sﬁ %dnce level (bounded by the 3¢ confidence
AMDIAIMINEY

So far, we have described the detections of non-Gaussianity using wavelet-based

bottom panel, ma 0

method and found that the results are likely positive. If there exists really the
non-Gaussianity, what would its origin be? It will be interesting if its origin is in
part contributed by the processes in the early universe. As discussed in chapter
2, the degree of the primordial non-Gaussianity allowed by the data may help

discriminate between the models of inflation. This is an important aim of the
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detection of non-Gaussianity. Although there are many ways to deviate from
Gaussian, a phenomenological way of parametrizing the level of non-Gaussianity
in the cosmological perturbations is to introduce the dimensionless “nonlinearity”

parameter fyz through Bardeen’s gravitational potential® [15]

B(x) = B1(x) + Frol®2(x) — (@2 ()] (4.15)

where ®(x) are Gaussian 111'1\ z tions with zero mean, i.e. ®(x) is Gaus-

sian when fy is zero. quadrati tributes a deviation from Gaussian

statistics and fyr characterizes thejam

ture perturbations.~#he"0ne-point probability dis ribution function of the CMB

he quadratic term to the curva-

temperature anisot
by Komatsu et al.
with fyr of order 10

The figure shows that the maps even

L, :
ng non-Gaussianity.
-
by fnr has been predicted in

olo et al. [15]. Hence, the mea-
the non-Gaussianity from the

The degree of
several models of infla

surement of fyr give

inflationary models with thedata. -

—

discriminator between thg:ﬁb@s,@
N )

Iy fvr measured from the data will be a
e eaily universe. However, the measurement

imordial non-Gaussianity in

this form is genefally small, and the non-Gaussianity sources: the
foreground contaxﬂgiatios, nstru

anisotropy, contamipating this non—Gwsian signature.

Whaﬂvuﬂo’g tmoﬂmnﬁ, ,ws'%iﬂ ﬂtﬁ upper and lower bounds

of fyr are specified. Several statistical test&have been ap%l‘i,ed to constrain fyr.

Fotpi ce : 18pe ethod especiall
Ql%’] ﬂﬁﬁ@b@ ﬂtﬁ%ﬁiﬁm [31] set ffNLI Z

to détect this form of non-Gaussianity,
1500 at 68% confidence level. Since the quadratic term which is the small part

oises, rgjny secondary sources of CMB

in the curvature perturbations causes asymmetry of the distribution, Cayon et
al. 2003 [32] suggested that the skewness is most sensitive to this form of non-
Gaussianity, rather than any higher order cumulants. Hence they combined all

scales of the skewness of SMHW coefficients into the Fisher discriminant function

6 Actually, it is the Bardeen’s gauge-invariant variable which is widely known in the cosmo-
logical perturbation theory. It gives the analogy of the Newtonian gravitational potential.
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to constrain fyz and the limit of fyz was placed to be |fvz] < 1100 at 68%
confidence level which is tighter than the one obtained from the bispectrum. On
the WMAP 1st-year data, Komatsu et al. 2003 placed the limit of —58 < fnz <
134 at 95% confidence level. The wavelet method was also applied to the WMAP

1st-year data to constrain fy by MWO04.

To constrain fyr, a large number of non-Gaussian simulations, which include

noise and beam convolution.of 1st-year data in the same way as

described earlier in Gaussain produced. Since producing these
maps is a computationally-inte ive@rocm suggested to use only 300 non-
ife ALPIX resolution Nyige = 256

different scales.” Furthermore,

Gaussian simulation:
to calculate the m:
they use Gaussian si
for the different sca

e matrix of the skewness values

4.6.1 The X2 t

In the X2 test, the data we'iwant ‘test i assumed to follow an expected model

with some parameters. 'I‘-Hg:«p’g‘?rpo; of theutest is to determine the parameters
that best fit the,

parameters. Comparing
best fit should be 2

skewness values of tHesdata at 15 scales with those of simulations by using the

AU VNI NGNS
QW’T@%&%@WH%E’]MH o

Where S(R;) is the skewness of the WMAP data on the ith scale R;, Ssim is the

mean value of the skewness at the ith scale from Monte Carlo simulations for

s&t enables finding the values of
ata-with one of the model, the
alue. To @nstra‘m fni, we compare the

the minimu

a given value of fyr, and Xg, r; represents the covariance matrix between the

"The production of non-Gaussian simulations with fyr are described in detail in the
Appexdix of Komatsu et al. [29] and the faster method of the production of the maps are
described in Liguori et al. [33].
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skewness at different scales from simulations defined by

Sror, = ((Sr— (Sr:))(Sr; — (k)
= (S(R;)S(R;)) — (S(R:))(S(R))); (4.17)

(-) denotes ensemble average which can be replaced by the average over all simula-

tions. Notice that if there is no correlation between the skewness at different scales,

{l’ ffequently, x2 in Eq. (4.16) becomes the

ZA

@ maps to ensure that the x®

& 300 non-Gaussian simulations with fyr
and ti e x? was calculated for each

2 value of a map for each Bt

the covariance matrix is diago

x? in the standard form. : NS
MWO04 perfor@

statistics accurately re
values of 50, 100 an
map following Eq.
calculated with ea ,
each map. More preci ] )¢ against fyz are obtained for each of
values of fnr = 90, 00 ‘ ves of the mean x? calculated
from 300 curves for e .
Fig. 4.9. The figure shows that th ‘Ehe x
that was set in simulations:. ’;Iiﬁs{’ 16
value of fnr, as%ti}e minimum.

have the minimum at the fyr, values

at each curve provides the accurate

A
e data is shown in Fig. 4.10. fnr

A curve of Xdi ainst fnr
is thus constrained*to be 50 & 80 at 68% confidenee level, and less than 220 and

o 9"’%61‘% AT WEing
43 ey Do Bucon &

Suppgse that the results of a measurement is multicomponent described by x =
(z1,...,Tn), we want to examine which models the measured values follow between
Hy, usually called the null hypothesis, and an alternative hypothesis H;. For our
case, Hy represents the skewness spectra drawn from a Gaussian model and H; the
skewness spectra drawn from a non-Gaussian model parametrized by fyr. The
joint probabilities of Hy and H; to obtain the particular values of the measurement

are given by f(x|Ho) and f(x|Hi), respectively. According to Neyman-Pearson
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lemma, the optimal test statistics in the sense of maximum power for a given

significance level is given by the likelihood ratio [25]
f(x|Ho)
t(x) = 4.18)
*) = Fl ) :

Unfortunately, in order to construct this statistics, we need to know those multi-

dimensional probability d1stnbut1 nctions which are in general not available.

tistics using the Fisher discriminant
e measured variables that max-

'ty distribution functions of the

A simpler way is to
function [34] [35]. I

imizes the separation

test statistics ¢, g(t

(10 — 1)/ (% + %) vl ‘ = e the mean and the variance of
(t| Hy), respectively [ t function is given by

(4.19)

with W = Vy + Vj, ( d m; the mean values (expec-
tation values) of f(x|Hg); (Ve &, — mx)i(z — mi); f(x|Hy) and (mi); =

A )

[ dx z; f (x| Hy) where k = U@y i,j=1,...,n (component of x).
Using the. Ekher dlscnmmant 0 CO ' ) the skewness values on the

15 scales: S(Rijdi= f x, the subscript 0 is for
the Gaussian case and the sul ) that we consider. The Fisher

discriminant functlog is calculated for the Gaussian realization, non-Gaussian re-

alization ﬂﬂ alues contained in mg,
=01 ﬂ covariance matx@iﬁ’ — alhjf ewness at each wavelet

scale, f us a Eﬁ S els are obtaified from a large num-

AEARTH I ITINE A

We can therefore estimate the probability that the data are drawn from one
or the other hypothesis: Gaussian and non-Gaussian cases. Fig. 4.11 shows the
histograms of 1000 Gaussian realizations (solid), of 300 non-Gaussian realizations
(dashed), and of the data (vartical line). This form of diagram enables us to
place the limits of fyr, at a desirable significance level. The distribution of the
Fisher discriminant function ¢ (dashed) of the non-Gaussian realizations shifts

to the right (more positive) as fyr increases (when fyr, is positive), while the
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distribution of ¢ of the Gaussian simulations stays around zero and the value of
¢ of the data is quite unchanged. The figure shows the histograms at fyz, = 120
and 250; these values are close to the 1o and 20 limit, 74% and 95% of the non-
Gaussian simulations have larger values of the Fisher discriminant than the data.
This means that fyz is constrained to be less than 126 and-250 at lo and 20

significance level, respectively.

AULINENINYINg
PR TUAMINYAE
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Skawness, Northem hemisphere Skewness, Southern hemisphere

5 ' 3 o 10
R = \ .

Kurtosis, Northern hamisp

Figure 4.5: The skewn@s Apectra S(R) (to ) and kurtosis spectra K(R) (bot-
tom) determl d in the southern
hemisphere (right Hﬁ?ﬁmﬁﬁﬁﬂztms From 10000
Gaussi ons the red (mn& reen (middle), and magenta (outer) show
e TR STV 320 VIR . o e
yellow Ithe represent the mean value of all simulations. This figure is taken from
Vo4 [27].
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Figure 4.6: The extremum sta, ' coefficients in the southern Galac-

tic hemisphere: the minima of the dispersion o, and o itself
(top panel), and themumber of wavelet cocilicionts that-are/larger than (mean+0),
(mean+20) and (miean

20) and (mean-30) ttom panel) measured on the WMAP coadded data, to-
gether with the mean (s6lid), 1o (covering68.27% acceptance interval) (solid), 20

(covering 95. ﬂ/‘H ga{g wm%lw (}ﬁggg 73% acceptance

interval)(dotted) confidence contours obtained ian simulations.
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scale—scale correlations

index#

top panel JRia R2,R3 Rp,Rs

15 16
R3 ,R14 R5 7R7

index#

top panel

index#
top panel

index#

bottom panel Rg,R7 R;,Rs Ri,Ry RrRio

index# 9 P & 1. &2’ 13 14 15

bottom panel ﬂ7, Rio,R11
L s

) .
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Figur@. 7%&&\1@;&&%& Qvn Ba;ﬁ]:iasgtween scales

indicate?i in the table for the all sky data (top panel) and the data of the south-

ern Galactic hemisphere (bottom panel) (both presented as stars). Notice that

the scales considered for the southern hemisphere concentrate on the scales Re to
Ry, which are the scales that present non-Gaussian signals in two previous sec-
tions. The mean and 1o (solid), 20 (dashed) and 3¢ (dotted) confidence contours

obtained from Gaussian simulations are also shown [28].
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smearing are not included) for fy; = 100,500, 1000 and 3000 (solid line). The

dashed line enclose the rms scatter of Gaussian realization (i.e., fyz = 0). Notice
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that the larger fur is, the more negatively skewed p.d.f. becomes. If fy; < 0,
p.d.f. becomes positively skewed [29].
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Figure 4.9: ﬁ u ﬂjf}ﬁﬁﬂdashed) 2 ’?SO mulations of non-Gaussian

simulations &ith fy values of lid), 150 (dot-dashed). The
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Figure 4.11: ."’ $%:om 1000 Gaussian sim-
ulations (solid), from. 1300 nor an simulations ((dashed), and of the data
(vertical line), for fnr = ﬂ) and 250. Th values are near the 1o and 20 limits
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