Chapter 3

% the detections in wavelet space. Us-

aussian signature in each interval

1
scales of the anisotropy

In this thesis, we rev1ew the works of the non-Gaussianity investigation using
the spheri ﬁ pter we introduce the
continuousﬂﬁﬂﬁfﬂg m orm, and its properties
that make it an optimal method for detecting the non-Gaussianity. Then we
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3.1 Space-Scale Analysis

The wavelet analysis is a space-scale (or time-frequency) analysis. While the
Fourier analysis represents only the frequency of a signal, a time-frequency anal-

ysis provides both time and frequency localization. The Fourier analysis, which
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has been well-known in physics, gives an interpretation of a function as a super-
position of all modes of sinusoidal waves and is very useful in physics. However,
it is inappropriate in some situations that have the characteristic of localization
in real space such as a transient, a spike and a point source, etc. In other words,
the information of the positicn is diffused through Fourier transformation. While
the Fourier spectrum can represent the amplitude of each Fourier mode, the in-
formation of localization in r diffused into the phases of all modes.
For example, the Dirac del W which is the extreme case of the
x0$as er transform whose amplitude of
phase factt

localization in real space arouiid

all modes are the sa: svery mode k is expressed as etkTo,
In addition, the Fouui
number of modes to
segment because the
jor region with zer

the function very

is a widely acceptegm
of the wavelet transfgrms the contlnuous wavelet transform (CWT) and discrete

wavelet tr @qu m éT ﬁj al transform analogous
to the Foung ransfor series expansion in the

ic e of the Feurier series. The’DWT is very useful
ok el Khk it Ik gtV g

been also used for detecting the non-Gaussianity in the CMB, including the early
works, but only in the 2-D plane corresponding to a small patch on the sky. In
this work, however, we consider the wavelet analysis of all-sky CMB anisotropy

using the spherical Mexican hat wavelets which is a CWT, hence we choose to

describe only the properties of the continuous wavelet transform.
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Figure 3.1: Two exam i wave ots: (] eft) The Mexican hat wavelet and
(right) The Morlet wz

o AN
3.2 The Cohtintious Wavelet Transform
) b [*Z - \ .
’ 'ﬂ:.i. 4 ‘ \
The term “wavelet” reflect i ‘ V \- is like a small wave: a wavelet
(z) is an oscillatory fugetion iimplied, n"
(e
= (3.1)
and has the energ w.ﬁﬁ see Fig. 3.1). This charac-

\ N,
teristic causes ti & loc and stale of a continuous wavelet
transform (CWT);"as can be seen later. From this property, we can have the

informatio ﬁifétj;cﬂbn coverilﬁtlﬁ}whole of position-scale plane by transla-
1

Qomaao § %@eﬂvﬂel . Note that any wavelet

acquired fr&m a translation artd dilation of the mother wavelet and the mother

a 1l At i ﬁ} Ejorder to have the
M RO T VYD AL

A wavelet built from a translation b and dilation a, where b € R,a € R,

tions and

of a mother wavelet 9(x) localized around z = 0 is

a

thap(x) = 715- P (:z: — b) : (3.2)

1Here, the unit norm of the wavelets is defined as [22, dz|tap(@)|* = [, dzlp(@)]? = 1,
which is called in mathematics L? norm.
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where - 7z on the right hand side is the normalization factor. A continuous wavelet
transform (CWT) of a function f(z) on the real line, z € R, with respect to the

continuous wavelets 9,,5(x) is

./

i

w(a,b)~=—1\/ﬁ‘Z ,dm/)( b\f( (3.3

—00

where the overbar denotes complex.c

0 f'ugation and 9(x) satisfies the admissibility

condition:

(3.4)
where

(3.5)
is the Fourier tra: r to have the invertibility of
the wavelet transfor dition, Cy < o0, is held, we
have the inverse wave ruction formula,

(3.6)

The admissibility conditi ‘ at ¢(w) = 0 at w = 0. This means that
= L

the wavelet ¢ ht zero e ,EJ_ ,.# I other words, this condition
implies the Wav‘ steristic.  Agaiii, GG svelet is like a “small wave”
whose amplitude dei -ays outsi e in. which its energy concentrate.

Additionally, the wavelet is local in scale space within a scale band which is implied

by the maﬁlﬁ ﬂﬁxm‘: mﬁ — 0 and ¢(w) = 0 as |w| — oo.
The locali Ej cele ﬁ%ﬂtﬁlply that the continuous
wavelet transform has this property too. OEIOUSly, the lo&)lzatlon in space can
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the finction f(x) in the region around the position zation in scale of
the CWT can be seen indirectly from Eq. (3.3). From the convolution theorem,
which states that

Frgw) = f(w)aw), (3.7)
where the star denotes the convolution operation: f g(y) = [dz f(y - z)g(z),
we have the absolute of the Fourier transform of the CWT

[ (a,w)| = [Vap(aw)|lf@)]- (38)
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This equation tells us that the Fourier transform of the CWT is non-zero only at
the scale that the Fourier transform of the wavelet is non-zero; hence, the CWT
cut up the scale information of a function on a finite band. For a mother wavelet
¥(x) localized at z = 0 and having the Fourier transform 1(w) localized around
the scaic w = wo, the CWT with respect to the wavelet $hq, (z) has the locaiization

property at the position = 0 and the scale w = wp/a.

Another property of volves the uncertainty principle. Assume

t represents the space interval in which
A‘vmvelet ¥(x) has the length L and

| the mean wo. The forms of the

that the support, which%

the wavelet is well @ othe
that of 9(w) has. o ce
wavelet and its d a/%4p(aw), respectively, imply

aL around z = b and its Fourier

transform, a/?4)( otnd w = w /a. Since the CWT with
respect t0 g p( c'ébf space with support’s size aL

around a position'd &

Q/a around wo/a,

(3.9)

which implies tlﬁ pre ungertainty box AzAp (see Fig. 3.2).

In addition, the QWT probe a small scale (large w) with a narrow window in
positio ) w) is probed with a wide
windovﬂnﬁ EI 3 ?1 Me 5 Ti mq j w, o ¢~} and the support

s Az x a_(see Flg‘ 2). This issreasonable because we should have the
Qiﬁi@ﬁin MM}Q‘ %%Ex’e’};@ Eli If we have a small

wi dow to probe the structure with large wavelength, the information that we

obtain do not cover one wavelength which is not enough to specify the “frequency”.

In contrast, if the window is large relative to the wavelength of structure, the
localization in position space is lost; the window covers large number of regions
with different wavelengths. This causes the wavelet analysis to give a reasonable

space-scale decomposition.
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w~1/a

_a<1: wa/a'— Q/a’

9

a > “\N}ﬁ Q/a
NS

Figure 3.2: Space-fréquer at different frequency derived by

varying the dilation ai'a

3.3 The CW

yut at the same position b [20].

nensions

3.3.1 The\Basic Propertie vy
Y o Y

The CWT can bemtende o two d

analogous to those im the one dimensiqnal case, i.e. the admissibility condition, the
| &P

analysis aﬂ r%ﬁlfgl%fﬁiﬂﬁm% ﬁsion changes the number

of operatiofi§ for the construction of wavelets from the mother wavelet. While the

S YR
operations: @t lﬁm tion,! thos 0 Efms are in general

constructed from the mother wavelet with four operations: two translations, the

sions witﬁhe basic properties completely

rotation around the wavelet itself and the global dilation. Certainly, one more
translation is expected for translating the wavelet to cover the two dimensional
space, but the rotation maybe a surprise at first sight. The rotation is considered
when the wavelet which is a localized function embedded on the plane has the

directional preference. In fact, this is common for any object in two dimensions.

In order to hold the reconstruction property, as in one dimension, the mother
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wavelet in two dimensions (x), where x is the position vector in two dimensions,
satisfies the admissibility condition:

0 < Cy = (27)? |¢(k)|2 < o0, (3.10)

|k|2

Where w(k) is the Fourier transform of 1/)(x) which 1mphes that, as in one dimen-

sion, the wavelet has zero mean:

0. (3.11)

Using the translation | §ian coordinate), rotation Z_¢ and
global dilation a, the

Fourier transform are

b)) (312)

2 (k)), (3.13)

respectively, where ! ‘R I 2, where 0 < 0 < 2, denotes the 2 x 2

rotation matrix and the hat ourier transform. Note that the

[~ ) . (3.14)
T2

| v
The factor a! o Qe nght hand side of Eq (3. 12) s for preserving the unit norm.

vs1nﬂquﬁb@nwawmmmx> st i

from 2-D Etidlidean space to the space of these four parameters, is:

AN ANDIM URSTETE oo
= & / Pk e (ao(K)) (), (3.16)

where the overbar, again, denotes complex conjugation. Note that Eq. (3.16) has
been acquired from Eq. (3.15) by using the Parseval identity. We can see that
the CWT on the plane is able to detect not only the information of the locations
on real space and the scales of f(x) as the CWT in one dimension, but also the

directional feature. This will be discussed in the next subsection.
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Finally, as mentioned above, when the wavelets satisfy the admissibility
condition, Eq. (3.10), we can reconstruct the function f(x) from its wavelet co-
efficients W (a, 6, b). Analogous to the 1-D CWT, the synthesis of a signal f(x)

from its wavelet coefficients is:

o
109 = 5 S / L [ EorveapW@b). @1

3.3.2 Choice of th ‘ ' Wavelets

An advantage of wavelet analysis i shoose or construct the wavelets
which match with the et analysis on the plane, one can
classify the analyzing ¢ each of which is suitable to

of a smeared pomt Usmg X ,' a‘{v'é erfoft ‘only the space-scale decomposition as

appropriate for che detection of the pointwise featd b dre on the image because the
_‘ dlffusmn on the space. A
he isotro@: 2-D Mexican hat wavelet or

typical example o otropic wavele

Marr wavelet:

ﬂumww@wmm a2z

which is 51mp1y the Laplacian of a Gaussian, function, i.e. (x) = V22,
Weq Weqca i’@ ﬂt@%ﬂoﬁlﬂa f?a Elfrﬂ nvariant wavelet.
It hadlmany applications in astrophysics mostly tor pomtw1se ure detection. In
particular, it is applied for the detection of the point sources in the CMB map due
to astrophysical objects, as a foreground, not of cosmological origin. As a result,

they can be removed in order to not disturb the cosmological considerations.
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The directional w: ts to detect oriented feature,
such as edges, linear etc. A wavelet 1 is directional
when the effective supp nsform ) is contained in an anisotropic

of the Fourier tran he v . se the signal f(x) is strongly

oriented like a long segment along the z-axis wh fluctuates slowly in the wide

region in m@i]ﬁﬁ%’ Ej x}r.ih%narrow region in the y-
direction. al jﬁ 1::-1 ls ourier transform f(k) is
a long segment along the k,-akis. More precisely, the wide (narrow) region of

ol B ER T BRI e 104 i

(w1d8) region of fluctuations of f(k) in the k,-directio direction). Hence,

we need a wavelet 9 with the support in k-space has the feature matched such

a signal, i.e. a long segment along ky-space, in order to detect the directional

feature.

For example, the 2-D Morlet wavelet is a directional wavelet:

() = expliko - x) exp(—5 | Ax[?), (3.19)
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(k) = VEexp(~3A47 (k= ko)) (3.20

The parameter kg is the wave vector, and A = diagle1/2,1], e > 1, is 2 2 x 2
anisotropy matrix. The wavelet ¥y is elongated in the z direction if € > 1, but in
the y direction if € < 1, and its phase is constant along the direction orthogonal
to ko. Hence, the wavelet 1) can detect the sharp transitions in the direction
perpendicular to ko. In Fourier space, the effective support of ¥ contained in
d elongated in the k, direction, that

of the function 1/)M is shown in

a convex cone is an ellipse center
becomes narrower as € increases.
Fig. 3.3.

ﬂUEl’J’VlEWIﬁWEI']ﬂi
’QW]Mﬂ‘iﬂJNVIﬂﬂEﬂﬂEI



	Chapter 3 The Continuous Wavelet Transform
	3.1 Space-Scale Analysis
	3.2 The Continuous Wavelet Transform
	3.3 The CWT in Two Dimensions


