Chapter 2

Gauss1an Perturbatlons

In this chapter, we describe brief w cosmological perturbations
in order to illustrate tha VB z2nisotropies n rint the cosmological perturba-

tions generated during inflatic pocl ‘ ' universe. The main points
g \ s Gaussian perturbations,
then properties of Gg pres d through the linear evolu-

tions until the last-scatferin ¢ ret¥ihe ( B  anisotropy keep the primordial

of this chapter are tha

According to the infl X epoch in the early time,

before the nucleosynmesm epo
fast. During inflation, the.expansion was gxponential with nearly constant Hubble
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where tg'is a given beginning time and Hj is the approximately constant Hubble

xpa,nsim was accelerated and very

expansion rate during inflation. The exponential expansion in such epoch has
solved the flatness, the horizon and the monopole problems of the standard Big
Bang cosmology. In other words, the inflation is the process for creation of the
initial conditions that the Big Bang cosmology has had to assume to obtain the
present universe which is consistent with the observations. Note that the inflation

has not disturbed the successes of the Big Bang model that have the observational
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supports such as the discovery of the expansion of the universe and the cosmic
microwave background radiation and light element abundances [9]. It is only an
add-on.

A period of inflation can occur only when the pressure P is negative such
that |

P<—§ | (2.2)
p is the energy density. Neither mea ith P = 0 nor radiation with P = p/3
can create it (see append wm‘ ne rease possibility is that such a period
happened when the uniyerse was d on‘natm,vacuum energy density of the

inflaton field, the scalaﬂ_’ ‘ rith dr inflation. The energy density
and the pressure of i

(2.3)
and .

Py (2.4)
respectlvely, where V(@) i  poternt: ¢ and dots denote differentiation with
respect to cosmic time ¢. ! d, we require that ¢? < V(¢) suffi-
ciently to drive inflation M@ﬁ’é’) t ons in the large scale structure
and CMB anisotropies_and the observable 1 rse consistent with the observa-
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tions. In an extre —

)

_ %= —pg resulted from that
igible to the potential one, ¢ V(¢), we can see this by

the kinetic term is :f
using Eq. and Consequéntly, during this stage both the energy
density p andﬁ g ﬁi&s&}xm iiw %f} ﬂnﬁant in time, according
to the contmuﬁl' equation and th? Friedmann equatmn The results from recent
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close to q;hls extreme case.

The inflation results from the kinematics of inflaton on its potential, namely
slowly rolling down its potential that is nearly flat. Consider the equation of
motion of a scalar field in the Friedmann-Robertson-Walker universe (see appendix
A):

V2¢ ov

b+3H~ -+ 52 =0, (2.5)
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where V2 denotes the Laplacian with respect to the comoving coordinate X. Since
any pre-inflation inhomogeneity, if it exists, moved away quite immediately from
being observable not long after the inflation start, the inflaton field is really ho-
mogeneous at least in the region corresponding to the present observable universe.
We can therefore neglect the Laplacian term in the above equation. In fact, there
are the inhomogeneities due to quantum fluctuations but they are very very small

relative to the homogeneous part. ,.the equation of motion of the field be-

comes
(2.6)

To achieve a de-'f'—' whe .‘, Eq. (2.6) implies that the
potential V' (¢) have 050 that.t

over the driving ter

s friction term 3H ¢ dominates

As a result, the inflaton

¢ < 3H, are called 1), approximation.\Indeed, the inflation can occur
not only when the slow roxiinatio
not necessary for inflation den :___ ‘ate this extreme case to convince how the

slowly rolling down the near ten jalof the inflaton cause the inflation.

In fact, the in dationary stage arises when the Hing down the potential is
slow enough. It is evwness of the rolling down
is related to the flatnes osmolog@ have defined the slow-roll

parameters for specifyifigehow slow the inflaton rolls down its potential, or how

flat the poterﬂlu &%ﬁtﬂﬂﬁy 9 w ¢ ’] 1)
awqmﬂ‘m NEIRE

2
Mpy
MPl V 8 ¢ )
where Mp; = (87G)~'/2 is the reduced Planck mass [9]; G is the well-known

Newtonian’s Gravitational constant, are the slow-roll parameters where ¢ < 1

(2.7)

(2.8)

and |n| < 1 is equivalent to the slow-roll approximation. Notice that € is positive

by definition. Since the acceleration

g —H+H?=(1-¢H?, (2.9)
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the parameter € can be written as € = —H/H?. From this equation, we can see

that inflation can be attained only if € < 1.

Hence, inflation ends when e < 1 is violated. After the end of inflation,
the scalar field rolls fast toward the minimum of its potential and then oscillates
around it. Then the energy density of the universe being dominated in the form
of coherent oscillations of inflaton decays into particles and radiations due to the

interactions of inflaton field with o ter particles; the universe is eventually

thermalized. This stage is ¢ Before the reheating occur, any

opy of the universe has been

3 ; @eqnire to have the reheating

se’s history well explained by

other contribution to th
redshifted away by inflatio
stage after inflation in
the standard Big Bang

sfructure via gravitational instability
- on the contrary, it cannot if its
niverse has the expanding

L obServer, of a distant region

0 owingﬁhe Hubble’s law, v = Hr,
where v is the receding’ yelocity of the zegion away from the observer with the

v dfl WA W Y N R o 0=

cedes with the ¥€locity more than that of light so that it is not able to be observed;
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scale in which two points can have a causal communication. In fact, there are

is larger than that of &

several definitions of the horizon, but it is most convenient, in the consideration
about cosmological perturbations, to use the Hubble horizon since it has already

been in the equations of the dynamics of the universe.
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From the Friedmann equation neglecting the curvature term?,

H= %Ep, (2.10)

where G is the Newtonian gravitational constant and p is the energy density, we
can see that H~! o p~!/2. In order of time, the laws of evolution of H ~1 are

different in different epochs:

e Inflationary epoch: ly constant in time, H™! is ap-

. ue of order 1073% m, which is
the scale that the %Note that the WMAP data
provides that 5.8 ' < 6.6%.10-*° m during inflation [15].

g'avenumber k, with A = 2ma/k. We

can say that a mode of perturba: g within. the horizon, called subhorizon, if

During inflation, the“modes of va tions ‘ofthe scalar field with sub-
horizon scale are stretghed rapidly, he exponeraal expansion, becoming su-
perhorizon perturbations«This process, called the first horizon-crossing, turns the

quantum ﬁucﬂtusﬂtﬁ}%ﬁz}w%iw @ﬂbﬁ@ After the inflation-

ary epoch, durﬁh the radiation—doglinated and the matter-dominated epochs, H~*

o 1 1) (17D 1Y) T
the modes which have t “hori -mssi aﬁ, th less' strétching of their

wavelengths, would have the second horizon-crossing before the others which have
the first horizon-crossing prior, with more stretching of their wavelengths. Note
that some modes have not yet reentered the horizon until now; they remain nearly

frozen, in amplitude not in wavelength, since the first horizon-crossing.

!The inflation makes the universe extremely flat.
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This issue is important in the study of CMB anisotropy. Eq. 2.1 shows the
first and second horizon crossing of the perturbations A, B and C where the co-
moving wavenumber ks < kg < kc; the scale of A, B and C correspond to the
angular scale more than about 2°, about 2° and less than about 29 in the CMB sky,
respectively. We can see from the figure that during inflation A left the Hubble
horizon before B and C, respectively. As mentioned in chapter 1, the angular scale
corresponding to the horizon size atydegoupling is about 2°. The perturbation B
thus crossed the Hubble hori ot} ( f D o/ while A had not reentered the
horizon yet and C had already. reentered € hofizon at that time. Consequently,
this means that the perTEBAREEEC KD o@evolution resulting from the
dynamics in the photon—' b -;\ d.not yet. As a result, the CMB

\ A directly imprints the perturba-

anisotropies correspondiu yr_a
tion in the early univeérse discuss hows the relation between the horizon

and the evolution of th€ per ions-that appears as the CMB anisotropies.

AULINININYING
AWAINIUNMINGIAY



16

log(L)
A

AG29
;B (~2°

Hubble horizon scale (H” 1)
——  Perturbation wavelength

i1a matter
(I_I-l ¥ (H'l~ 63/2)

.-r 70 o
Figure 2.1: Horizon crossing O ’ns A, B and C with different wave-

e CMB sky > 2°, ~ 2% and < 2°,
respectively. The thifi dine represents the evolution ofsthe/ Hubble horizon H~(a),
e il Titte c N ‘ avelengths, 2ma/k, where

-1 during linflation, grows as a? in the

lengths corresponding to thean

a is the scale factor. ! is nearly cG

radiation era, and growssas a2 in the matter era. We use the scale factor as

o e YYD BB G ot 0, i

respectively, a b for the reheating e‘poch Qeq for the matter—radlatlon equality, and
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2.3 Gaussian Perturbations

In the present, the inflation has become the dominant paradigm to understand the
creation of the perturbations in the early universe which are the initial conditions
for structure formation and CMB anisotropy, even though the first model by Guth
in 1981 [16] was proposed in order to solve such problems as mentioned above.
Since the inflationary expansion had redshifted any pre-inflation inhomogeneities

away completely, they were not the inifial conditions for CMB anisotropies. We

' W ated from nothing, namely the
vacuum, during inflation eﬁ from inflation. The inflation

turns the vacuum flu AN} mincluding inflaton, into the

This is the generation of

frozen fluctuations,
the perturbations, whi description of cosmological

perturbation.

Taking into acco uuL A tuations,we can split the inflaton field
#(t,x) into two parts

: (2.11)

where ¢o(t) is the homogeneot nfinite wavelength, whose potential

energy drive inflation as. (10 represents the quantum

fluctuation part offthe it X i rdinate. By perturbing

Eq. (2.5) in first ordes we ) scribing the dynamics of fluctu-

ations written as

‘ AL /T, (2.12)
where V2 dev%uﬂamfﬁmgﬂﬂ}gcmﬁng coordinate x, and

m3 = 9?V/8¢* where my can befthought of.es the inflatonigmass. Since this
cquatio 1y neds (40 . egprib i YAl o b o fn cach Fouser
mode (p;?, with | 0 -

o(t,x) = /_(2_cjr_)l;7 i) ¢, * {2.18)

separately using the equation

. . B
Gr +3Hpy + {; + mi} or =0, (2.14)

2The vacuum fluctuation is the quantum fluctuation around its vacuum state. Its existence

is predicted by the quantum field theory.
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where we assume isotropy so that we can express the wave number k just as a
scalar k.

Since the inflaton is a quantum field, we have to quantize the field, which is
the so-called second quantization, in order to describe the behavior of the inflaton

field. The quantization is described in appendix C.

The standard inflation predicts

at the CMB anisotropy map is Gaussian.
This statement is the consequ: ‘

%

1. The vacuum fluct ,x)jla,vq"{ﬂvalues following Gaussian dis-

tribution law. 7 9, \ﬁ
In quantum fiel " tum mechanics and special

inty principle provides the

relativity are

commutation re ‘ ‘ Scalar fie: ¢ and the momentum density
m(x,t) as

x) « (2.15)
This implies that at rtietifar X the scalar field ¢ (x) does not have a well-
defined value, that is its walue will 56 ratdo following Gaussian probability.
This probabilistic na‘tw'diw con gence of quantum mechanics. Indeed,
the probabili v of r value of galar field to be Gaussian
can be manif uantum field theory. We

can, however, ex T W, e result from that every
Fourier mode k of’ the field have random phase, hence they are independent

of each ﬂh% Blo’ra % H«?ﬁ @W}E}r’é}xﬂé}bmm that o(x) has

Gaussian‘8tatistical properti‘gs [9].

2 AR TR TR DI B o e

frozen fluctuations on superhorizon scale is linear.

Since the vacuum fluctuations are very small, the linear equation (2.12) well
describe the dynamics of the vacuum fluctuations of inflaton field. Hence,
the independence between modes of fluctuations is preserved in the process
during inflation. The phase of different modes of frozen fluctuations have
no correlation. From the central limit theorem, the frozen fluctuation field

remains Gaussian.
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3. The evolution of the perturbations during the time between when the fluc-
tuations are frozen and the last-scattering time can be well described by the

first order general-relativistic cosmological perturbation theory.

The perturbations are of order 10~° which is small. Consequently, we can use
the first order equation, obtaining from the theory of cosmological pertur-
bation, in order to describe the evolution of perturbations [15]. The linear

> of perturbations evolves independently.

This keep the chara eri f 19ode independence. With the same reason

as above, the CMBra: ' ' ussian random field.
' —
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