CHAPTER II

Preliminaries

In this chapter, we give some basic knowledges in probability which will be used in our work. The proof is omitted but can be found in [4].

2.1 Probability space and Random variables

A probability space is a measure space (Ω, \mathcal{F}, P) for which $P(\Omega) = 1$. The measure P is called a **probability measure**. The set Ω will be referred to as a sample space and its elements are called **points** or **elementary events**. The elements of \mathcal{F} are called **events**. For any event A, the value P(A) is called the **probability of** A.

Let (Ω, \mathcal{F}, P) be a probability space. A function $X : \Omega \to \mathbb{R}$ is called a random variable if for every Borel set B in \mathbb{R} , $X^{-1}(B)$ belongs to \mathcal{F} . We shall use the notation $P(X \in B)$ in place of $P(\{\omega \in \Omega | X(\omega) \in B\})$. In the case where $B = (-\infty, a]$ or [a, b], $P(X \in B)$ is denoted by $P(X \le a)$ or $P(a \le X \le b)$, respectively. Let X be a random variable. A function $F : \mathbb{R} \to [0, 1]$ which is defined by

$$F(x) = P(X \le x)$$

is called the distribution function of X.

Let X be a random variable with the distribution function F. X is said to be a discrete random variable if the image of X is countable and X is called a

continuous random variable if F can be written in the form

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

for some nonnegative integrable function f on \mathbb{R} . In this case, we say that f is the **probability function** of X.

Now we will give some examples of random variables.

We say that X is a **normal** random variable with parameter μ and σ^2 , written as $X \sim N(\mu, \sigma^2)$, if its probability function is defined by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

Moreover, if $X \sim N(0,1)$ then X is said to be a **standard normal** random variable.

We say that X is a **uniform** random variable with parameter n if there exist $x_1, x_2, ..., x_n$ such that $P(X = x_i) = \frac{1}{n}$ for any i = 1, 2, ..., n and denoted by $X \sim U(n)$.

2.2 Independence

Let (Ω, \Im, P) be a probability space and \mathcal{F}_{α} are sub σ -algebra of \mathcal{F} for all $\alpha \in \Lambda$. We say that $\{\mathcal{F}_{\alpha} | \alpha \in \Lambda\}$ is **independent** if and only if for any subset $J = \{1, 2, ..., k\}$ of Λ , $P(\bigcap_{m=1}^k A_m) = \prod_{m=1}^k P(A_m)$

where $A_m \in \mathcal{F}_m$ for m = 1, ..., k.

Let $\mathcal{E}_{\alpha} \subseteq \mathcal{F}$ for all $\alpha \in \Lambda$. We say that $\{\mathcal{E}_{\alpha} | \alpha \in \Lambda\}$ is **independent** if and only if $\{\sigma(\mathcal{E}_{\alpha}) | \alpha \in \Lambda\}$ is independent where $\sigma(\mathcal{E}_{\alpha})$ is the smallest σ -algebra with

 $\mathcal{E}_{\alpha} \subseteq \sigma(\mathcal{E}_{\alpha})$.

We say that the set of random variables $\{X_{\alpha} | \alpha \in \Lambda\}$ is **independent** if $\{\sigma(X_{\alpha}) | \alpha \in \Lambda\}$ is independent, where $\sigma(X) = \{X^{-1}(B) | B \text{ is a Borel subset of } \mathbb{R}\}.$

Theorem 2.1 Random variables $X_1, X_2, ..., X_n$ are independent if for any Borel sets $B_1, B_2, ..., B_n$ we have

$$P(\bigcap_{i=1}^{n} \{X_i \in B_i\}) = \prod_{i=1}^{n} P(X_i \in B_i).$$

Proposition 2.2 If X_{ij} ; i = 1, 2, ..., n, $j = 1, 2, ..., m_i$ are independent and $f_i : \mathbb{R}^{m_i} \to \mathbb{R}$ are measurable, then $\{f_i(X_{i1}, X_{i2}, ..., X_{im_i}) \mid i = 1, 2, ..., n\}$ is independent.

2.3 Expectation, Variance and Conditional expectation

Let X be any random variable on a probability space (Ω, \mathcal{F}, P) . If $\int_{\Omega} |X| dP < \infty$, then we define its **expected value** to be

$$E(X) = \int_{\Omega} X dP.$$

Proposition 2.3

- 1. If X is a discrete random variable, then $E(X) = \sum_{x \in ImX} xP(X = x)$.
- 2. If X is a continuous random variable with probability function f, then

$$E(X) = \int_{\mathbb{R}} x f(x) dx.$$

Proposition 2.4 Let X and Y be random variables such that $E(|X|) < \infty$ and $E(|Y|) < \infty$ and $a, b \in R$. Then we have the followings:

- 1. E(aX + bY) = aE(X) + bE(Y).
- 2. If $X \leq Y$, then $E(X) \leq E(Y)$.
- 3. $|E(X)| \le E(|X|)$.
- 4. If X and Y are independent, then E(XY) = E(X)E(Y).

Let X be a random variable which $E(|X|^k) < \infty$. Then $E(|X|^k)$ is called the **k-th moment** of X about the origin and call $E[(X - E(X))^k]$ the **k-th moment** of X about the mean.

We call the second moment of X about the mean, the variance of X, denoted by Var(X). Then

$$Var(X) = E[X - E(X)]^{2}.$$

We note that

- 1. $Var(X) = E(X^2) E^2(X)$.
- 2. If $X \sim N(\mu, \sigma^2)$ then $E(X) = \mu$ and $Var(X) = \sigma^2$.

Proposition 2.5 If $X_1, ..., X_n$ are independent and $E|X_i| < \infty$ for i = 1, 2, ..., n, then

- 1. $E(X_1X_2...X_n) = E(X_1)E(X_2)...E(X_n),$
- 2. $Var(a_1X_1 + \cdots + a_nX_n) = a_1^2Var(X_1) + \cdots + a_n^2Var(X_n)$ for any real number $a_1, ..., a_n$.

The following inequalities are useful in our work.

1. Hölder's inequality:

$$E(|XY|) \le E^{\frac{1}{p}}(|X|^p)E^{\frac{1}{q}}(|X|^q)$$

where
$$0 < p,q < 1, \frac{1}{p} + \frac{1}{q} = 1$$
 and $E(|X|^p) < \infty, E(|Y|^q) < \infty$.

2. Cauchy-Schwarz's inequality:

$$E^2(|XY|) \le E(X^2)E(Y^2)$$

where $E(X^2) < \infty$ and $E(Y^2) < \infty$.

3. Chebyshev's inequality:

$$P(\{|X - E(X)| \ge \varepsilon\}) \le \frac{Var(X)}{\varepsilon^2}$$
 for all $\varepsilon > 0$

where $E(X^2) < \infty$.

Let X be a finite expected value random variable on a probability space (Ω, \mathcal{F}, P) and \mathcal{D} be a sub σ -algebra of \mathcal{D} . Define a probability measure $P_{\mathcal{D}}$: $\mathcal{D} \to [0, 1]$ by

$$P_{\mathcal{D}}(E) = P(E)$$

and sign-measure $Q_X : \mathcal{D} \to \mathbb{R}$ by

$$Q_X(E) = \int_E X dP.$$

Then, by Radon-Nikodym theorem we have $Q_X \ll P_D$ and there exists a unique measurable function $E^D(X)$ on (Ω, \mathcal{F}, P) such that

$$\int_{E} E^{\mathcal{D}}(X)dP_{\mathcal{D}} = \mathcal{Q}_{X}(E) = \int_{E} XdP \quad \text{for any } E \in \mathcal{D}.$$

We will say that $E^{\mathcal{D}}(X)$ is the **conditional expectation** of X with respect to \mathcal{D} .

Moreover, for any random variables X and Y on the same probability space (Ω, \mathcal{F}, P) such that $E(|X|) < \infty$, we will denote $E^{\sigma(Y)}(X)$ by $E^{Y}(X)$.

Theorem 2.9 Let X be a random variable on probability space (Ω, \mathcal{F}, P) such that $E(|X|) < \infty$, then the followings hold for any sub σ -algebra \mathcal{D} of \mathcal{F} .

- 1. If X is random variable on $(\Omega, \mathcal{D}, P_{\mathcal{D}})$, then $E^{\mathcal{D}}(X) = X$ a.s. $[P_{\mathcal{D}}]$.
- $2. \quad E^{\mathcal{F}}(X) = X \ a.s.[P].$
- 3. If $\sigma(X)$ and \mathcal{D} are independent, then $E^{\mathcal{D}}(X) = E(X)$ a.s. $[P_{\mathcal{D}}]$.

Theorem 2.10 Let X and Y be random variables on the same probability space (Ω, \mathcal{F}, P) such that E(|X|) and E(|Y|) are finite. Then for any sub σ -algebra \mathcal{D} of \mathcal{F} the followings hold.

- 1. If $X \leq Y$, then $E^{\mathcal{D}}(X) \leq E^{\mathcal{D}}(Y)$ a.s. $[P_{\mathcal{D}}]$.
- 2. $E^{\mathcal{D}}(aX + bY) = aE^{\mathcal{D}}(X) + bE^{\mathcal{D}}(X)$ a.s. $[P_{\mathcal{D}}]$ for any $a, b \in \mathbb{R}$.

Theorem 2.11 Let X and Y be random variables on the same probability space (Ω, \mathcal{F}, P) such that E(|XY|) and E(|Y|) are finite and $\mathcal{D}_1, \mathcal{D}_2$ be any sub σ -algebra of \mathcal{F} . If X is a random variable with respect to \mathcal{D}_1 , then

1.
$$E^{\mathcal{D}_1}(XY) = XE^{\mathcal{D}_1}(Y) \ a.s. \ [P_{\mathcal{D}_1}].$$

2.
$$E^{\mathcal{D}_2}(XY) = E^{\mathcal{D}_2}(XE^{\mathcal{D}_1}(Y))$$
 a.s. $[P_{\mathcal{D}_2}]$.

Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{D} be a sub σ -algebra of \mathcal{F} . For any event A on \mathcal{F} , we defined the **conditional probability of** A **given** \mathcal{D} by

$$P(A|\mathcal{D}) = E^{\mathcal{D}}(I_A).$$