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The Compressed Sensing (CS) reconstruction methods robust to Gaussian
and/or impulsive noise are proposed in this dissertation. In the first part, the
reconstruction in the Gaussian noise environment is proposed. The compressed
measurement signal is subsampled for L times to create the ensemble of L compressed
measurement signals. Orthogonal Matching Pursuit with Partially Known Support
(OMP-PKS) is applied to each signal in the ensemble to reconstruct L noisy outputs.
The L noisy outputs are then averaged for Gaussian denoising. The proposed method
was evaluated on 40 test images and found to improve both PSNR and visual quality
of the reconstructed results.

In the second part of this dissertation, the reconstruction in the impulsive
noise environment is investigated. In conventional methods, the impulsive noise
tolerance is acquired by using the Lorentzian norm of robust statistics. The
optimization of the robust statistic function is iterative and usually requires complex
parameter adjustments. In this part, the impulsive noise rejection for the compressed
measurement signal with the design for image reconstruction is proposed. It is used as
the preprocessing for any compressed sensing reconstruction given that the sparsified
version of the signal is obtained by utilizing octave-tree discrete wavelet transform
with db8 as the mother wavelet. The presence of impulsive noise is detected from the
energy distribution of the reconstructed sparse signal. After the noise removal, the
noise corrupted coefficients are estimated. Moreover, the proposed method requires
neither complex optimization nor complex parameter adjustments.

In addition, the two proposed methods can be combined to create the
reconstruction robust to both Gaussian and impulsive noise.
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CHAPTER
INTRODUCTION

1.1 Introduction

Compressed sensing (CS) is a sampling paradigm that provides compressible
signals at a rate significantly below the Nyquist rate. It reveals that a compressible or
sparse signal can be recovered by a small amount of measurements [1]-[3]. The
connection between sampling and reconstruction methods of CS and those of other
sparse signal processing is presented in [4]. The description of commonly used
reconstruction algorithms is also given. Consider a measurement process in CS that is

modeled as
y = Ox, (1.1)

where y and @ are an Mx1 compressed measurement signal and an MxN random
measurement matrix, respectively; x is an Nx1 compressible signal. In CS, it is
considered that M < N. A signal is compressible if it is sparse in some domain; thus, x

can be written as follows.
x = ¥s, (1.2)

where s and W are a k-sparse signal and an NN orthogonal basis matrix,
respectively. & is the number of non-zero elements or a sparsity level. Without loss of
generality, ¥ is defined as an identity matrix in this dissertation and x is equivalent to

S.

In practice, y can be corrupted by noise during transmission in a noisy

channel. The measurement process in the noisy channel is modeled as
y=®s+e, (1.3)

where e is the additive noise.



CS reconstruction methods aim to find the sparsest s that creates y. The
reconstruction of s in the noisy channel can be written as the following optimization

problems.
arg min||s||0s.t. ||y—d)s||2 <eg, (1.4)

where ¢ and ||u|| ,are the error bound and the Lp norm of u, respectively. The error

bound is set based on the noise characteristics, such as bounded noise, Gaussian noise,
finite variance noise, etc [5]-[15]. Lo norm in equation (1.4) is relaxed to L; norm in
the reconstruction by Basis Pursuit Denoising (BPDN); whereas, it is replaced by

heuristic rules in the reconstruction by greedy algorithms.

The optimization problems in BPDN [7] is given

argmin”s”ls.t. ||y—(I)s||2 <g, (1.5)

which is equivalent to

arg min%”y—(l)s”z +r||s " (1.6)

where 7 is a regularization parameter.

When @ satisfies the Restricted Isometry Property (RIP) condition [7], the BP
approach is an effective reconstruction approach and does not require the exactness of
the sparse signal. However, it requires high computation. In the greedy approach
[8][16], the heuristic rule is used in place of L; optimization. One of the popular
heuristic rules is that the non-zero components of s correspond to the coefficients of
the random measurement vectors having the high correlation to y. The examples of
greedy algorithm are OMP [16], Regularized OMP (ROMP) [8], etc. The greedy

approach has the benefit of fast reconstruction.

The reconstruction of the noisy compressed measurement signals requires the

relaxation of the y —®s constraint. Most algorithms provide the acceptable bound for



the error between y and ®s [5]-[13]. The error bound is created based on the noise
characteristic such as bounded noise, Gaussian noise, finite variance noise, etc. The
authors in [5] show that it is possible to use BP and OMP to reconstruct the noisy
signals, if the conditions of the sufficient sparsity and the structure of the
overcompleted system are met. The sufficient conditions of the error bound in BPDN
for successful reconstruction in the presence of Gaussian noise is discussed in [9]. In

[10], the Danzig selector is used as the reconstruction technique. L norm is used in

place of L, norm.

OMP is robust to the small Gaussian noise in y due to its L, optimization
during parameter estimation. Regularized OMP (ROMP) [8][13] and Compressed
Sensing Matching Pursuit (CoSaMP) [11][13] have the stability guarantee as the L-
minimization method and provide the speed as greedy algorithm. In [12], the authors
used the mutual coherence of the matrix to analyze the performance of BPDN, OMP,
and Iterative Hard Thresholding (IHT) when y was corrupted by Gaussian noise. The
equivalent of cost function in BPDN was solved through IHT in [14]. IHT gives faster

computation than BPDN but requires very sparse signal.

When the noise is impulsive noise, e in equation (1.3) is considered to be very
large. It is well known that the optimization of L, norm is not robust to outliers in y;
thus, the optimization leads to the incorrect result of s. In [17], the reconstruction
from the signal corrupted by the impulsive noise is performed by solving one of the

following two optimization problems.

.1

argrggglg||y—(bs—e§||z+||e§||1+r||s O (1.7)
o1

argmin——[y = ®s—e[, +e,], + [, (1.8)

where e; and a are a sparse vector with large non-zero coefficients (impulsive noise)

and a pre-defined threshold, respectively;

u||TV is a total variation norm of u. First,

this method estimates s and then estimates e;. The estimation is performed



iteratively. However, the unique solution is guaranteed only when the cost function is
convex. The effect of impulsive noise can be suppressed by applying robust statistics
[18]-[24]. The Generalized Cauchy Distribution (GCD) based Maximum Likelihood
(ML) has been proposed as the optimization algorithm that is robust to impulsive
noise [18]. The Lorentzian norm, which is the special case of GCD, is utilized in a
number of robust CS reconstructions [20]-[24]. The Lorentzian norm is used in place
of L, norm in equation (1.5) for the Lorentzian based Basis Pursuit (LBP) [20].
Similar to Basis Pursuit (BP), the LBP is slow to solve. Furthermore, it requires
complex parameter adjustments for the effective optimization of the Lorentzian norm.
The reconstruction in [21]-[22] applies the iterative algorithm and the weighted

myriad operator to solve the following problem.

arg msinHH - RTSHLL +7s

- (1.9)

where ||u|| H and R are the Lorentzian norm of u, a Cauchy random projection

LL>
signal and a Cauchy random projection matrix, respectively. The reconstruction in
[23] applies the weighted median operator and the iterative thresholding to solve the

following Lo-regularized Least Absolute Deviation (Lo-LAD) regression problem.

arg msin ||y - (I)s||1 +7 ||s

0o (1.10)
The Lorentzian based Iterative Hard Thresholding (LIHT) approach is proposed as the
fast reconstruction method in [24]. Iterative Hard Thresholding (IHT) is used in place
of BP to increase the speed of LBP. However, it faces the same problem as IHT [14].
Consequently, LIHT is suitable for very sparse signals.

1.2 Objectives

1) To propose the robust compressed sensing (CS) reconstruction method for images

corrupted by Gaussian noise.



2) To propose the robust CS reconstruction method for images corrupted by

impulsive noise.

3) To propose the robust CS reconstruction method for images corrupted by both

Gaussian and impulsive noise.

1.3 Problem Statements

The methods robust to Gaussian noise are based on the solution of L,
minimization. No method makes use of the fact that the signal can be reconstructed
from parts of y instead of the entire signal. From one given signal, multiple signals
can be reconstructed. Each signal can be considered as a signal corrupted by the same
noise at different instance. By merging these signals, more accurate signal can be

reconstructed.

The robust statistic provides the tolerance against impulsive noise; however,
its optimization problem is non-convex. When a compressed measurement signal is
corrupted by the impulsive noise, the reconstructed signal has different energy
distribution in wavelet domain. When the octave-tree discrete wavelet transform is
used to transform signals to sparse domain, the reconstruction from a noise corrupted
signal leads to high energy leaking outside the third level subband. Hence, the
detection of high energy outside the third level subband can be used in place of robust

statistic to detect and remove the impulsive noise.

1.4 Contributions

1) Propose the ideas of subsampling and sampling with replacement in the

reconstruction robust to Gaussian noise.



2) Propose the ratio between the energy leaking outside the third-level subband and
the total signal energy to detect the presence of impulsive noise in the

compressed measurement signal.

1.5 Scopes
1) The proposed CS is for gray-scale image only.
2) The sparse domain is wavelet domain.

3) The compressed measurement signal is corrupted by Gaussian and/or impulsive

noises.

4) The magnitude of impulsive noise must be at least five times higher than the peak

of signal.

5) The process is performed off-line.

1.6 Research Procedures

1) Study previous research papers relevant to the research works of the dissertation.
1.1) Papers on the fundamental of CS.
1.2) Papers on applying CS to image.
1.3) Papers on CS reconstruction of noisy signal.

2) Develop CS reconstruction algorithm in noiseless case.

3) Test the proposed algorithm in Step 2 on 1-D signals.

4) Test the proposed algorithm in Step 2 on standard tested images such as Lena,

Peppers, Mandrill, etc.



5) Develop CS reconstruction algorithm in the presence of zero-mean white

Gaussian noise.
6) Test the proposed algorithm in Step 5 on standard tested images
7) Develop CS reconstruction algorithm in the presence of impulsive noise.
8) Test the proposed algorithm in Step 7.
9) Collect and analyze computational results obtained from simulation programs.

10) Summarize the major findings as we found in Step 9 and conclude the
performance of the proposed CS reconstruction algorithm in all concerned

aspects.

11) Check whether the conclusions meet all the objectives of the research work of the

dissertation.

12) Write the dissertation.



CHAPTER 11
BACKGROUND

This chapter addresses the related research of the dissertation. It is divided into
two parts. The compressed sensing theory is described in Section 2.1. The examples
of reconstruction method are then given in Section 2.2 where five popular

reconstruction methods are described.

2.1 Compressed Sensing

CS is based on the assumption of the sparse property of signals and
incoherency between the basis of the sparse domain and the basis of measurement
vectors [1]-[3]. CS has three major steps: (1) the construction of k-sparse
representation, (2) the measurement and (3) the reconstruction. The first step is the
construction of the k-sparse representation, where k is the number of non-zero
component of the sparse signal. Most natural signals can be made sparse by applying
orthogonal transforms such as wavelet transform, Fast Fourier Transform (FFT), or

Discrete Cosine Transform (DCT). This step is represented as previous equation (1.2).

Next step, the random measurement matrix is applied to measure the signal by

the following equation.
y = Ox=D¥s (2.1)

Since ¥ is an identity matrix in this dissertation, s is equivalent to x. The sufficient

condition for the high probability of successful reconstruction is as follows.
M > Cu*(®,¥)klog N, (2.2)

for some positive constant C. M and N are the number of measurement and the
dimension of sparse signal, respectively. u(®,%¥)is the coherence between ® and

¥, and defined by



wW@,¥)= \/ﬁmax‘<(p,,l,1/]> )
i

(2.3)

where ¢, and y, are the i-th and the j-th column in @ and ¥, respectively. <A,B>

stands for the dot product between 4 and B. If the elements in ® and Ware

correlated, the coherence is large. Otherwise, it is small. From linear algebra, it is

known that ,u((I),‘I’)e[l,x/N ] [2]. In the measurement process, the error (due to

hardware noise, transmission error, etc.) may occur. The error is added into the

compressed measurement vector as described in equation (1.3).

The final step is the reconstruction. There are two major reconstruction
approaches: L;-minimization [5] and greedy algorithm [11]. Convex optimization is
applied in the reconstruction by Lj;-minimization approach. The successful
reconstruction depends on the degree that ® complies with the Restricted Isometry

Property (RIP). RIP is defined as follows.

=5l <losf <(1+5) s 4

where 0, is the k-restricted isometry constant of @. RIP is used to ensure that all

subsets of & columns taken from ® are nearly orthogonal. It should be noted that ®

has more columns than rows; thus, ® cannot be exactly orthogonal [2].

2.2 Reconstruction Methods

A number of reconstruction methods have been proposed for CS
reconstruction. They can be divided into two main categories: (1) L; optimization and
(2) the heuristic method. Five reconstruction methods are presented in this section.
They are Basis Pursuit DeNoising (BPDN), Orthogonal Matching Pursuit (OMP), OMP
with Partially Known Support (OMP-PKS), Lorentzian based Iterative Hard
Thresholding (LIHT) and Distributed Compressed Sensing Simultaneous OMP (DCS-
SOMP). BPDN is one of the popular reconstruction methods based on L; optimization.

It is designed for the bounded noisy signal. OMP is one of the popular reconstruction
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methods based on heuristic rules. OMP-PKS is the variant of OMP. The advantage of
OMP-PKS is the ability to reconstruct the signal with lower measurement rate than the
original OMP. LIHT is the reconstruction method that is designed for general noisy
signal. LIHT has the advantage over the other four methods in that it can be used in the
unbounded noise environment. The example of the unbounded noise is the impulsive

noise. DCS-SOMP is the example of the reconstruction method using signal ensemble.

2.2.1 Basis Pursuit Denoising (BPDN)

Basis Pursuit (BP) [5] is one of the popular L;-minimization methods. The

main idea of this algorithm is to relax the Lo-norm in (2.5) to L;-norm.

arg min||s||0 s.t. y=®Ds (2.5)

It reconstructs the signal by solving the following problem.

arg rnin||s||l s.t. y=®Ds (2.6)

BPDN [6] is the relaxed version of BP and is the reconstruction method for the

noisy y. It reconstructs the signal by solving the following optimization problem.

arg min||s||l s.t. ||y —(I)s||2 <eg, 2.7)

where ¢ 1is the error bound.

BPDN is often solved by linear programming. It guarantees a good
reconstruction if @ satisfies RIP condition. However, it has the high computational

cost as BP.

2.2.2 Orthogonal Matching Pursuit (OMP)

OMP is a well known reconstruction algorithm [16]. It was developed from
Matching Pursuit (MP) [33] u sing different method to estimate the magnitude of the

non-zero elements in s. Instead of projecting the residual signal onto the selected
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basis, it estimates the magnitude of the non-zero elements by solving the least squared
error between the projection of the reconstructed s and y. OMP has the advantage of

simple and fast implementations. The algorithm is as follows.
Input:

e The M x N measurement matrix, ® =[¢, ¢, ... @]

e The M-dimension compressed measurement signal, y

e The sparsity level of the sparse signal, &

Output:

e The reconstructed signal, §

e The set containing & indexes of non-zero elements in §, A, ={4,4,,...,4,}

Procedure:
a) Initialize the residual (r¢), the index set (A,) and the iteration counter (¢) as

follows.
r,=y,A,=3,t=1

b) Find the index A, of the measurement basis that has the highest correlation to the

residual in the previous iteration, r, ;.

A, =arg max Krt_l , (p_/.>

J=leees

If the maximum occurs in multiple bases, select one deterministically.
¢) Augment the index set and the matrix of chosen bases: A, =A,_ U{4} and

D, = [(I)t_1 (p/J , where @, is an empty matrix.

t
d) Solve the following least squared problem to obtain the new reconstructed signal,
Z;.

z, =arg mz1n||y - (I)tz” 5
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e) Calculate the new approximation, a,, that best describes y. Then, calculate the

residual of the ¢-th iteration, r..

f) Increment ¢ by one.

g) If ¢t >k, terminate; otherwise, go to step b).

The reconstructed signal, §, has non-zero elements at the indexes listed in A, .
The value of the /1j -th elements in § equals to the j-th element of z, ( j=1 2,...,k).

The termination criterion can be changed from 7>k to that r,_, is less than the

predefined threshold.

2.2.3 OMP with Partially Known Support (OMP-PKS)

The noise tolerance can be increased by including a priori information. One of
the popular knowledge is the model of a sparse signal [25], such as the wavelet-tree
structure. Model based reconstruction methods have three benefits: (1) the reduction
of the number of measurements, (2) the increase in robustness and (3) the faster

reconstruction.

OMP-PKS [30] is adapted from the classical OMP [16]. The partially known
support gives a priori information to determine which subbands in the sparse signal
structure are more important than the others and should be selected as non-zero
elements. It has the characteristic of OMP that the requirement of RIP is not as severe
as BP’s [5]. It has a fast implementation but may fail to reconstruct the signal (lacks
stability). It requires very low measurement rate. It is different from Tree-based OMP
(TOMP) [26] in that the subsequent basis selection of OMP-PKS does not consider
the previously selected bases, while TOMP sequentially compares and selects the next

good wavelet sub-tree and the group of related atoms in the wavelet tree.
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s
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Figure 2.1: Wavelet decomposition by filter bank analysis. HP and LP are high pass

filter and low pass filter, respectively.

(a) (b)
Figure 2.2: The example of octave-tree discrete wavelet transform; (a) the original
image and (b) the wavelet transformed image. Subbands inside the blue, orange and

green windows are the first, the second and the third level subbands, respectively.

The wavelet transform of an image is realized using filter banks as shown in
Figure 2.1. The image is decomposed into four subbands: HH, HL, LH and LL. The
HH, HL, LH and LL subbands contain diagonal details, vertical details, horizontal
details and approximation coefficients, respectively. In this paper, octave-tree discrete
wavelet transform (DWT) is used to obtain the sparse representation of images. The

second and the third level subbands are constructed by applying the filter bank
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analysis to the LL subband in the first and the second level, respectively. The example
of octave-tree discrete wavelet transform is shown in Figure 2.2. The original image
and the wavelet transformed image are shown in Figures 2.2(a) and 2.2(b),
respectively. Since the LL subband in the third level (LL; subband) contains most
information in the image, the signal in the LL; subband must be included for
successful reconstruction. All elements in the LL; subband are selected as non-zero
elements without testing for the correlation. The algorithm for OMP-PKS when the

data are represented in wavelet domain is as follows.

Input:
e The M x N measurement matrix, ® =[¢, ¢, ... @]
e The M-dimension compressed measurement signal, y
e The sparsity level of the sparse signal, £

e The set containing the indexes of the bases in LL; subbands,

I'= {71’7/2’ "‘97|1‘\}

Output:
e The reconstructed signal, §

e The set containing & indexes of the non-zero element in §, A, ={4,4,,...,4,}

Procedure:
Phase 1: Selection without correlation test

a) Select every basis in the LL; subband.

t=|r
A, =T
<I),=[(oy1 @, - goy’}

b) Solve the least squared problem to obtain the new reconstructed signal, z, .

z, = arg mzln”y - (I),Z”2
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c) Calculate the new approximation, a,, and find the residual (error, r,). a, is the

projection of y on the space spanned by ®, .

Phase 2: Reconstruction by OMP
a) Increment ¢ by one, and terminate if # > & .

b) Apply steps b) - g) of OMP described in Section 2.2.2 to find the remaining

k —|F| non-zero elements of §.

The reconstructed sparse signal, §, has the indexes of non-zero elements listed

in A, . The value of the 4, -th element of § equals to the j-th element of z, .

2.2.4 Lorentzian based Iterative Hard Thresholding (LIHT)

LIHT [24] was proposed to reconstruct signals in the presence of Gaussian and
impulsive noise. It differs from IHT in the usage of Lorentzian norm instead of

Lonorm. It reconstructs the signal according to the following function.

arg min”y —(I)s” s.t. ||s||OS k (2.8)

LL,,«

where ||u|| i .18 Lorentzian norm (LL, norm with ¢ (tail parameter) = 2) of u and

1({u ?
||u||LL2’a zlog[1+5(;j ] (2.9)

where o is a scale parameter. The algorithm for LIHT is as follows.

defined as follows.

Input:
e The M x N measurement matrix, ® =[¢, ¢, .. @]

e The M-dimension compressed measurement signal, y

e The sparsity level of the sparse signal, &
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Output:

e The reconstructed signal, s

Procedure:

a)

Set s(0) to zero vector and 7 to 0.

b) At each iteration, s(++1) was computed by

s(+1) = Hy (s(2) + ug(0),

where Hy(a) is the non-linear operator where the k largest components in a are
kept but the remaining components are set to zero. u is the step size. In this

dissertation, g is defined as follows.
g(t)=@"W,(y - Ds(1))

W, is an M'xN diagonal matrix. The diagonal element in W, is defined as

a2

wil. -
) a0

geeeey

The step size is set as

Hgk(t)(l‘)u2
()= T
le/zq)k(t)gk(t) (t)Hz

In case that ||y —Ds(t+ 1)||LLM > ||y _(I)S(t)”uz,a , u(?)1s set to 0.5.41).

Terminate when the difference between ®s and y is less than or equal to the

predefined error.

LIHT is the fast and robust algorithm but it faces the same problem as IHT. It

requires that either s must be very sparse or y must be very large (high measurement

rate). It is faster than OMP but has less stability.
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2.2.5 Distributed Compressed Sensing Simultaneous Orthogonal Matching
Pursuit (DCS-SOMP)

Distributed Compressed Sensing (DCS) uses the concept of joint sparsity,
which is the sparsity of every signal in the ensemble [27][29]. It is used under the
environment that there are a number of y whose original signals (s) are related. The
reconstructed sparse signals of these y’s share some information (common
components) even though they are not the same. The unique information of each y is

defined as innovation. There are 3 models in DCS.

(1) sparse common component + innovations: both the common information
(component) and the unique information (innovation) in y are sparse.

(2) common sparse support: every y is constructed from the sparse signal
whose non-zero elements locate at the same position. The non-zero
amplitude may be different.

(3) non-sparse common component + sparse innovations: the common

component in y is non-sparse signal, but the innovation is sparse.

In this dissertation, the common sparse support model is used. As there is only
one y, there is no innovation in the ensemble of the sampled y. Simultaneous OMP
(SOMP) [27][32] is proposed as the reconstruction algorithm. SOMP is adapted from
OMP.

DCS-SOMP searches for the solution that contains maximum energy in the

signal ensemble. Given that the ensemble of y is {y;}; i = 1,2,...,L. The basis selection

criterion in DCS-SOMP is changed from A =arg max <rt_1,(pj> to

J=LN], jeA,

/1 3 L
,=arg max  » <'},t71»¢’i,./>

,max ,where 1;, 1s the residual of y; to the projection of y;
J=lLLN],je 1-1
on to the space spanned by @, ;. The rest of the procedure remains the same as OMP.
The indexes of non-zero components in the reconstructed s; (i = 1, 2, ..., L) are the
same, but the value of non-zero components may differ. It should be noted that when

L is equal to one, the DCS-SOMP is OMP.



CHAPTER III

PROPOSED METHODS

This chapter addresses the problems of reconstructing from a compressed
measurement signal (y) in three noise environments: (1) Gaussian noise (2) impulsive
noise and (3) Gaussian and impulsive noise. The block processing is applied to reduce
the computational cost. The block processing and the vectorization of the wavelet
coefficients are described in Section 3.1. The proposed reconstruction process in
Gaussian noise environment is explained in Section 3.2. The proposed impulsive
noise rejection method is described in Section 3.3. The reconstruction in both

Gaussian and impulsive noises environment is presented in Section 3.4.

3.1 Block processing and the vectorization of the wavelet coefficients

In this dissertation, the Discrete Wavelet Transform (DWT) is used to obtain
the sparsified version of an image. Figure 3.1 shows an example of block processing
and the vectorization of the wavelet coefficients. Figure 3.1(a) shows the structure of
a wavelet transformed image. The LL; subband is presented in red. Other subbands
(LH, HL, and HH) in the third, the second and the first levels are presented in green,
orange, and blue, respectively. The LL; subband is the most important subband,
because it contains most of the energy in the image. Figure 3.1(b) shows the re-
ordering of the wavelet coefficients. The coefficients are ordered such that the LL;
subband is located at the beginning of each row. The LL; subband is followed by the
other subbands in the third, the second, and the first levels.

The wavelet-domain image in Figure 3.1(b) is divided into blocks along its
rows as shown in Figure 3.1(c). In Figure 3.1(c), the image has 8 rows; consequently,
it is divided into 8 blocks. Each row in Figure 3.1(c) is considered as a sparse signal

in this dissertation.
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(a) (b) (c)
Figure 3.1: The illustration of block processing and vectorization in Section 3.1; (a)
wavelet transformed image, (b) wavelet subbands vectorization and reorganization,

and (c) wavelet blocks.

The signal can be made more sparse by the wavelet shrinkage thresholding
[34]. In the wavelet shrinkage thresholding, all coefficients in the LL3; subband are
preserved, while coefficients outside the LL; subband with magnitude less than the
wavelet shrinkage threshold are set to zero. Note that not all coefficients outside the
LL; subband are set to zero. Since only the small coefficients in high frequency
subband are set to zero, most distinct edges in the image are preserved. The
sparsifying transformation by the wavelet shrinkage thresholding has little distinct
visual degradation if the wavelet shrinkage threshold is selected properly. Figure 3.2

shows one example of an image before and after wavelet shrinkage thresholding.

(b)
Figure 3.2: The part of Lena before and after wavelet shrinkage thresholding; (a)

original Lena and (b) Lena which has 90% of its wavelet coefficients set to zero by

wavelet shrinkage thresholding (threshold = 23.4). The mother wavelet is db8.
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Type I

Typell

Type I

Typell

'!
Type I

Typell

(c) Airplane (F-16)

Type 1

Typell

o
el

(d) Mandrill

Figure 3.3: The reconstruction examples for different vectorization of the wavelet
blocks. Type I and Type II indicate the vectorization according to the structure in
Figure 3.1(c) and the vectorization by the lexicographic order of Figure 3.1(a),
respectively. (a) Lena, (b) Artificial image, (c) Airplane (F-16), and (d) Mandrill.
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In the experiments, it is found that the vectorization according to the structure
of Figure 3.1(c) is better than the one by the lexicographic order of Figure 3.1(a).
Figure 3.3 shows some reconstruction examples when these two vectorization
methods were used. The sparsity rate (k/N) and the measurement rate (M/N) were set
to 0.1 and 0.3, respectively. All images were reconstructed by OMP-PKS. The top
row of each image shows the reconstruction when the vectorization in each block was
done such that it had the structure as shown in Figure 3.1(c). The bottom row of each
image shows the reconstruction when the vectorization in each block was done by the
lexicographic order of the structure shown in Figure 3.1(a). There was no fail
reconstruction (dark spot) in the top row; whereas, there were some in the bottom

row.

3.2 Reconstruction in Gaussian noise environment

The reconstruction method is divided into three stages: the construction of the

ensemble of y, the reconstruction by OMP-PKS [30], and data merging.

3.2.1 Construction of the ensemble of y

Given that there are L different pM-dimension signals in the ensemble of y. p
is the ratio of the sampled signal’s size to the original size and 0 <p < 1. p and L are
predefined. The i-th signal in the ensemble is denoted by y,. The algorithm for

constructing y; is as follows.

Input:
e An M x N measurement matrix, ®
e The M-dimensional compressed measurement signal, y

e The dimension ofy, f=pM

Output:
e The i-th signal in the ensemble, y;

e The truncated measurement matrix fory;, @,
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Procedure:
a) Create the set of f random integers, R = {ri, ra,...,rs}, having the following

properties.
b) Forallj, [ €[l,f],r;e[l,M]and r;=r;onlyifj =1

c) Construct y; by setting the j-th component of y; to the r;-th component of y for all
JelL pl

d) Construct @, according to the following function.

Forallj € [1, f], set the jth row of @ to the rj-th row of ®.

Ml

H:.IMI-J

af phFeN

Figure 3.4: The ensemble of compressed measurement vector and measurement
matrix.

Figure 3.4 shows the result of applying the above procedure for L times to
create the ensemble of L sampled signals. The total dimension of the ensemble is
pM x 1 x L. The ensemble is accompanied by L truncated measurement matrices. The
size of the truncated matrix is pM x N. Since all y;’s are the parts of the same y, their
information is the same and they contain Gaussian noise of the same mean and the

same variance. As long as the reconstruction does not use all signals in the ensemble
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at once, it is safe to assume that reconstruction results from different y; contain

different noise.

3.2.2 Reconstruction by OMP-PKS
The reconstruction of the proposed algorithm has the following requirements:

(1) The reconstruction of the signal at low measurement rate (M/N),
(2) fast reconstruction,

(3) independent reconstruction result for each signal in the ensemble.

The first requirement comes from the fact that the reconstruction is performed
on the sampled signal which is smaller than y. The RIP in (2.4) is not always
guaranteed. The second requirement is necessary because the reconstruction must be
performed L times (L is the number of the signal in the ensemble). The third
requirement is the result of taking the information from only one signal. By
combining every sampled signal, original noisy y will be acquired. In the proposed
algorithm, the denoising by averaging is possible when each y; has the distinct
reconstruction result from one another. Since each y; carries different set of the y’s
components, its total noise is different. Consequently, the reconstruction on each y;
gives the result having different noise corrupted to each pixel. The noise in each pixel

can be reduced by averaging.

Even though the reconstruction is performed on the ensemble of y as DCS,
DCS-SOMP is not applicable, since it does not meet the third requirement. Any
greedy algorithms applied to each y; meet the second and the third requirements. The
measurement rate can be kept low (the first requirement) by including the model into
the reconstruction. OMP-PKS [30] is chosen in this algorithm, because its
requirement for measurement rate is low. The experiment in [30] shows that the

requirement of OMP-PKS was lower than CoSaMP-PKS.

OMP-PKS is applied to every y; in the ensemble and forms L different sparse

signals (wavelet coefficient). At the end of this stage, there are L noisy images.
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3.2.3 Data merging

L noisy cropped images at the end of the reconstruction process have noise
that is similar to Gaussian noise (Figure 3.5). At the same position, the noise in
different reconstructed images had distinctly different magnitude; consequently, it can
be reduced by taking the average at each pixel in spatial domain. Because the average
is not done in spatial domain, therefore the loss in spatial resolution is low. The
denoising in spatial domain can be done by using the conventional denoising
algorithms such as the Gaussian smoothing model [36], the Yaroslavsky
neighborhood filters and an elegant variant [37]-[38], the translation invariant wavelet

thresholding [39], and the discrete universal denoiser [40].

(a) Airplane (F-16)

(b) Mandrill

Figure 3.5: The reconstruction examples of y;.

3.3 Reconstruction in impulsive noise environment

The proposed noise rejection method is applied before the reconstruction and
divided into two stages. In the first stage, the algorithm to detect impulsive noise is

applied. Then OMP-PKS is also applied to estimate the information that is lost due to
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the impulsive noise. The algorithm to detect the impulsive noise and the estimation of

the missing information are described in Subsections 3.3.1 and 3.3.2, respectively.

3.3.1 The detection of the impulsive noise

Figures 3.6 and 3.7 show the examples of the reconstruction from y corrupted
by impulsive noise. In these two figures, Figures (a), (b) and (c) show the original
blue y corrupted by the red impulsive noise, the original s and the reconstructed §
from Figure (a), respectively. The figures clearly indicate that the energy distribution
was different. The energy of the signals in Figures 3.6(c) and 3.7(c) was spread out,
while most energy of the signals in Figures 3.6(b) and 3.7(b) was contained in the

third-level subbands.

Even though there is no definite structure of y, Figures 3.6 and 3.7 indicate
that the energy distribution of s can be exploited to detect the existence of impulsive
noise. The large impulsive noise leads to a bad approximation of § whose energy
leaks out of the third level subband. The ratio of the energy outside the third level
subband to the total energy is used to determine the existence of the impulsive noise
in y. The high ratio indicates that the energy is spread out; thus, the existence of the
impulsive noise. The impulsive noise has very large magnitude in comparison to y.
Consequently, if the impulsive noise exists, it has the largest magnitude. The removal
of the impulsive noise is simply the removal of the elements with the largest
magnitude. The size of the impulsive noise may vary, so the removal is performed

iteratively until either of the following two stopping criteria is satisfied.

(1)  The reconstructed § has most of its energy inside the third level subband.
(2) The reconstruction is unlikely to be successful because too many elements in y

have been removed.

According to the stopping criteria, there are two thresholds that need to be
defined. The threshold in the first criterion is used to indicate the amount of the
energy that is allowed to be leaked out of the third level subband. The amount of the

energy is measured as the ratio to the total energy. The threshold is defined as the
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(leakage) energy-ratio threshold, 7. The threshold in the second criterion is required
to ensure that there is sufficient information left for the reconstruction. This threshold
is called rejection-ratio threshold, 7, which is defined as the ratio between the
numbers of the removed elements to the size of y (M). Thus, the maximum number of

the elements that can be removed is 7M. The optimum values of n and T are

investigated in Chapter 4.

At each iteration, the noise corrupted elements are removed from y and the
size of the available measurement signal becomes smaller. Hence, it is required that
the reconstruction algorithm is still effective at low measurement rate. OMP-PKS is
adopted by including the algorithm for the detection and the removal of impulsive

noise as follows.

Input:
e An M x N measurement matrix, ®
e The M-dimensional compressed measurement signal, y
e The sparsity level of the sparse signal, &
e The number of wavelet coefficients in the third level subband, /3

e The (leakage) energy-ratio threshold, 7

e The rejection-ratio threshold, T

Output:

e The number of impulsive noise corrupted elements, n;

e The set containing the n; indexes of the impulsive noise corrupted elements,

Ss :{wl, @,, ...,wn&}
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Figure 3.6: The first reconstruction example when y was corrupted by impulsive
noise. (a) The 128-D y corrupted by 6 impulsive noise, (b) the original 256-D s (k =
25) and (c) the signal reconstructed from (a) by OMP-PKS. In (b) and (c), the area to
the left of the red dashed line belongs to the third level subband; the area to the right

belongs to the first and the second level subbands.
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Figure 3.7: The second reconstruction example when y was corrupted by impulsive
noise. (a) The 128-D y corrupted by 6 impulsive noise, (b) the original 256-D s (k =
25) and (c) the signal reconstructed from (a) by OMP-PKS. In (b) and (c), the area to
the left of the red dashed line belongs to the third level subband; the area to the right

belongs to the first and the second level subbands.
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Procedure:

a) Initialize t=0,n;=0,5,=C,y, =y, ®, =D.

b) Apply OMP-PKS to reconstruct § from y, and ®@,.

c) Calculate the (leakage) energy-ratio (ER).

ER ="
2.8/
j=l
where §,and /3 are the i-th element of § and the number of wavelet coefficients in
the third level subband.

d) Terminate if ER < 7.

€) Assign the elements in y, having the maximum magnitude as the impulsive noise.
a, (m=1, 2,...,n§l 31 is the number of the elements having the maximum
magnitude in y,.) are defined as the indexes of the recently assigned impulsive
noise elements. Note that ¢, are the indexes of y. In case that there are more than
one element having the maximum magnitude (n; >1), all of them are to be
removed in Step 1)

f) Increment n; by n 5 and add «,, to ¢;.

g) Terminate if n; >TM .

h) Sett=¢+1.

1) y, is assigned the value of y after the noise elements (the elements with the
indexes in ¢;) are removed from y. @, is assigned the value of ® after the rows
corresponding to the noise elements are removed from ®.

j)  Go to step b).

If the algorithm is terminated in step g), the removal of impulsive noise is

unsuccessful. Too many elements have been removed and it is unlikely that there is

sufficient information to reconstruct § and estimate the missing information in the

next stage.
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It should be noted that the proposed algorithm is applicable to images because
image data have some degree of redundancy. The rejection-ratio threshold, 7, can be
set quite large. For the signal data that has low degree of redundancy, the value of T’
has to be very small. In this case, the reconstruction is unlikely to succeed if every

information in y is not used.

3.3.2 Estimation of the missing information

The outputs (n; and ¢, ) from the detection stage and y are used as the inputs
of this stage. The noise corrupted elements, specified in ¢, are removed. After the

noise removal, the size of the compressed measurement signal y is smaller than the
size of the original y; consequently, the reconstruction methods requiring high
measurement rate may fail to reconstructs . It is necessary to estimate the values of
the removed elements to preserve the measurement rate. In the proposed method, the
values are estimated such that they comply with other noiseless elements. The

estimation algorithm is as follows.

Input:
e The M-dimension compressed measurement signal, y

e The number of impulsive noise corrupted elements, n;

e The set containing the n; indexes of the impulsive noise corrupted elements,

Ss :{wl, @,, ...,wn&}

Output :

The estimated noise-free y, ¥

Procedure:
a) Define y, asy with its @,-th (i =1,2,..., n;) elements removed. Define ®, as ®
with its @,-th (i=1,2,...,n;) rows removed.

b) Apply OMP-PKS to reconstruct § from y, and @, .
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c) Define § =®s_ and estimate the i-th elements in y as follows.
. {yi Jigc,
yi = ~ L >
Vi slEGs

where the subscript 7 indicates the i-th elements of the signal and i =1, 2, ..., M .

After this process, the impulsive noise corrupted elements in y are replaced by
values complying with noise-free elements. Conventional CS reconstruction methods

can be applied to reconstruct § from the impulsive noise free y .

3.4 Reconstruction in both Gaussian and impulsive noises

environment

It is possible that more than one kind of noise exist in the system. Figures 3.8
and 3.9 show the examples of the reconstruction signal from y corrupted by the
Gaussian and impulsive noise. Figures 3.8(a) and 3.9(a) show the blue y corrupted by
the red Gaussian noise and impulsive noise. Figures 3.8 (b), (¢), and (d) and 3.9(b),
(c), and (d) show the original s, the reconstructed § from the noisy y, and § from the
noisy y without impulsive noise corrupted elements, respectively. In Figures 3.8(b),
(c), and (d) and 3.9(b), (c), and (d), the area to the left of the red dash line belongs to
the third level subband; the area to the right belongs to the first and the second level
subbands. The figures clearly indicate that the energy distribution were different.
Most energy in Figures 3.8(b), (d) and 3.9(b), (d) located in the third-level subbands.
While the energy in Figures 3.8(c) and 3.9(c) were spread out from the effect of the

impulsive noise.

The characteristic of energy distribution of § from Gaussian noise corrupted y
is similar to the characteristic of energy distribution § from noise-free y. Thus, the
impulsive noise rejection method in Section 3.3 can be applied to estimate impulsive
noise free of y. However, the reconstructed signal is not exactly the same as the
original s, because of the Gaussian noise in § (Figures 3.8(d) and 3.9(d)). The effect

of Gaussian noise can be removed by using the method in Section 3.2.
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Figure 3.8: The first reconstruction example when y was corrupted by Gaussian and
impulsive noises. (a) The 128-D y corrupted by 6 impulsive noise and Gaussian noise
with 10 dB SNR. (b) The original 256-D s (k = 25). (c) The signal reconstructed from
the noisy y in (a). (d) The signal reconstructed from y without the impulsive noise

corrupted elements.
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Figure 3.9: The second reconstruction example when y was corrupted by Gaussian
and impulsive noises. (a) The 128-D y corrupted by 6 impulsive noise and Gaussian
noise with 10 dB SNR. (b) The original 256-D s (k = 25). (c) The signal reconstructed
from the noisy y in (a). (d) The signal reconstructed from y without the impulsive

noise corrupted elements.



CHAPTER IV
EXPERIMENT AND DISCUSSION

4.1 Experiment setup

The experiment was conducted on a PC with 2.83GHz Intel Core 2 Quad CPU
and 4 GB of RAM. All methods were implemented by 64-bit MATLAB R2011a. The
proposed methods were tested on 40 images. All test images were resized to 256x256.
Figure 4.1 shows the test images. Images in the first row and the second row are the
standard test images. The remaining images in the third row, the fourth row and the
first two images in the fifth row are the artificial images. The remaining images are
the natural images. (The artificial and natural images are available at

http://sourceforge.net/projects/testimages/files/.)

Octave-tree DWT was used to transform test images to sparse domain. The
mother wavelet was Daubechies 8 (db8). The wavelet shrinkage thresholding [33] was
applied to make the signal sparser. The measurement matrix was based on Hadamard
matrix. Each wavelet image was divided into the block of 1x256. The number of
blocks was 256. The average sparsity rate (k/N) of blocks in an image was 0.1. The
average measurement rates used in the experiment were 0.2, 0.3, 0.4, 0.5 and 0.6.
Peak signal-to-noise ratio (PSNR) and visual inspection were used for performance

evaluation. All PSNRs shown in the graph were average PSNRs.

4.2 Experiment on Gaussian noise environment

OMP-PKS+Resampling  (OMP-PKS+ReS) and  OMP-PKS+Random
Subsampling (OMP-PKS+RS) were compared with BPDN, LIHT, OMP-PKS, DCS-
SOMP+ReS, and DCS-SOMP+RS. Since the compression step in CS consists mostly
of linear operations, Gaussian noise corrupting the signal in the earlier states is

approximated as the Gaussian noise corrupting the compressed measurement vector.
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Figure 4.1: The test images
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The state where the noise corrupted the image was not specified; therefore, in this
study, the compressed measurement y was simply corrupted by Gaussian noise. The

level of Gaussian noise was varied according to its variance.

The experiment consisted of three parts: (1) the evaluation for the size of an
ensemble (L) and the size of a signal in the ensemble (p) for OMP-PKS+RS and DCS-
SOMP+RS in Section 4.2.1, (2) the evaluation for OMP-PKS+ReS and DCS-
SOMP+ReS in Section 4.2.2, and (3) the performance evaluation in Section 4.2.3.

4.2.1 Evaluation for L and p for DCS-SOMP+RS and OMP-PKS+RS

Both OMP-PKS+RS and DCS-SOMP+RS require the ensemble of y. y was
randomly subsampled with the algorithm described in Section 3.2.1 to create the
ensemble. L and p for the optimum performance were investigated. p was measured in

term of the ratio to the size of y. It should be noted that p is always less than 1.

Figures 4.2-4.5 show the PSNR of the reconstruction images at different L and
p when the noise variance (%) were 0.025, 0.05, 0.075, and 0.1, respectively. The
figures clearly show that the best performance of OMP-PKS+RS was better than the
one of DCS-SOMP+RS in all cases.

The line in the graph of Figures 4.2-4.5 was shown in different color to
represent different p. The effect of p was more pronounced in OMP-PKS+RS than in
DCS-SOMP+RS. The maximum PSNR in OMP-PKS+RS was achieved when
p=0.9,0.7,0.6, and 0.6 when o’ was 0.025, 0.05, 0.075, and 0.1, respectively. When
the noise was low, the reconstruction by OMP-PKS+RS at higher p provided the
higher PSNR; whereas, when the noise was high, the reconstruction at lower p was
better. At lower p, the information of the signal was lower leading to the higher
reconstruction error. However, when the signal was noisy, more information at higher
p led to the ensemble of more similar noisy signals and averaging had lower effect for
Gaussian denoising. On the other hand, at lower p, signals were more different
leading to the different reconstruction images, which could be considered as the

images corrupted by Gaussian noise of the same variance. Consequently averaging
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would lead to the noise reduction. The effect of the reconstruction error was more
pronounced at low noise environment, while the effect of Gaussian noise was more
pronounced at the high noise environment. The PSNRs of DCS-SOMP+RS were
almost the same because all signals were combined in the reconstruction which led to

the original signal.

The x-axis in Figures 4.2-4.5 represents L. When L was changed, the
performance of DCS-SOMP+RS was almost unchanged. On the other hand, the
performance of OMP-PKS+RS was better, when L was larger. When the noise was
higher, OMP-PKS+RS required larger L to achieve the optimum performance. In
order to achieve the best performance, OMP-PKS+RS required the larger L than
DCS-SOMP+RS in all cases. In most cases, DCS-SOMP+RS and OMP-PKS+RS had

already converged to their optimum performance at L = 6 and 16, respectively.

The optimum p and L at various M/N and various noise levels were
summarized in Tables 4.1 and 4.2, respectively. In DCS-SOMP+RS, the optimum p
varied from 0.6 to 0.9. Out of 20 cases shown in the table, the optimum p was 0.9 in
18 cases. Figures 4.2-4.5 indicated that p had little effect to the PSNR, so p for DCS-
SOMP+RS was set to 0.9 in Section 4.2.2. In OMP-PKS+RS, the optimum p varied
from 0.6 to 0.9, note that in most cases (11 out of 20 cases), the optimum p was 0.6.
Even though p in OMP-PKS+RS had more effect to the result’s PSNR than DCS-
SOMP+RS, it was found that the PSNR difference between the best case and p = 0.6
was less than 1.2 dB. Hence, p for OMP-PKS+RS was set to 0.6 in Section 4.2.3.

From Table 4.2, the optimum L for DCS-SOMP+RS was always equal to 6;
thus, L for DCS-SOMP+RS was set to 6 in Section 4.2.3. In OMP-PKS+RS, the
optimum L varied from 16 to 26. Out of 20 cases shown in the table, the optimum L

was 21 in 9 cases. The optimum L for OMP-PKS+RS was set to 21 in Section 4.2.3.
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Figure 4.2: The average PSNR of reconstruction images by DCS-SOMP+RS and
OMP-PKS+RS at M/N = 0.3 from y corrupted by Gaussian noise at 6> = 0.025.
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Figure 4.3: The average PSNR of reconstruction images by DCS-SOMP+RS and
OMP-PKS+RS at M/N = 0.3 from y corrupted by Gaussian noise at 6> = 0.05.
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Figure 4.4: The average PSNR of reconstruction images by DCS-SOMP+RS and
OMP-PKS+RS at M/N = 0.3 from y corrupted by Gaussian noise at 6> = 0.075.
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OMP-PKS+RS at M/N = 0.3 from y corrupted by Gaussian noise at 6* = 0.1.
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Table 4.1: The number of p which provided the highest PSNR

MIN

0.2 0.3 0.4 0.5 0.6

DCS- | OMP- | DCS- | OMP- | DCS- | OMP- | DCS- | OMP- | DCS- | OMP-
SOMP | PKS |[SOMP| PKS | SOMP| PKS | SOMP | PKS | SOMP | PKS
e +RS +RS +RS +RS +RS +RS +RS +RS +RS +RS

0.025 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0.05 0.9 0.8 0.9 0.7 0.9 0.8 0.9 0.6 0.9 0.7

0.075 0.6 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6

0.1 0.8 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6

Table 4.2: The number of L at which the converged PSNR was guaranteed and p

were set according to Table 4.1.

M/N

0.2 0.3 0.4 0.5 0.6

DCS- | OMP- | DCS- | OMP- | DCS- | OMP- | DCS- | OMP- | DCS- | OMP-
o’ SOMP | PKS | SOMP | PKS | SOMP | PKS | SOMP | PKS | SOMP | PKS
+RS +RS +RS +RS +RS +RS +RS +RS +RS +RS

0.025 6 16 6 16 6 21 6 21 6 21
0.05 6 16 6 21 6 26 6 21 6 26
0.075 6 26 6 16 6 21 6 31 6 26
0.1 6 21 6 16 6 21 6 21 6 26

4.2.2 Evaluation for L in DCS-SOMP+ReS and OMP-PKS+ReS

The size of the signal in the ensemble for OMP-PKS+ReS and DCS-
SOMP+ReS was equal to the original size of y. Thus, only L was investigated for
DCS-SOMP+ReS and OMP-PKS+ReS. y was resampled by the algorithm described

in Section 3.2.1 to create the ensemble and p was set to 1.

Figures 4.6-4.10 show the average PSNR of the reconstruction images at
different L and variances. The measurement rate (M/N) in Figures 4.6-4.10 was set to

0.2, 0.3, 0.4, 0.5, and 0.6, respectively. The solid line and the dashed line show the
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PSNR of the reconstruction by DCS-SOMP+ReS and OMP-PKS+ReS, respectively.
The figures clearly show that the best performance of OMP-PKS+ReS was better than
the one of DCS-SOMP+ReS in all cases.

The line in the graph of Figures 4.6-4.10 was shown in different color to
represent different level of Gaussian noise level (in term of variance (c”)). The
maximum PSNRs in both OMP-PKS+ReS and DCS-SOMP+ReS were achieved at 6
= 0.025 (the lowest noise level). Moreover, when the measurement rate was increased,

the PSNR improvement of OMP-PKS+ReS over DCS-SOMP+ReS decreased.

The x-axis in Figures 4.6-4.10 represents L. The performance of DCS-
SOMP+ReS was almost unchanged when L was changed. While the performance of
OMP-PKS+ReS was better, when L was larger. OMP-PKS+ReS required the same L
to achieve the optimum performance at different noise levels. In order to achieve the
best performance, OMP-PKS+ReS required the larger L than DCS-SOMP+ReS in all
cases. In most cases, DCS-SOMP+ReS and OMP-PKS+ReS had already converged to
their optimum performance at L = 6 and 21, respectively. Thus, in Section 4.2.3, L for

DCS-SOMP+ReS and OMP-PKS+ReS was set to 6 and 21, respectively.

4.2.3 Performance evaluation

The performance of OMP-PKS+RS and OMP-PKS+ReS were compared to
the ones of BPDN, LIHT, OMP-PKS, DCS-SOMP+RS and DCS-SOMP+ReS in this
section. BPDN, LIHT, and OMP-PKS used the single y to reconstruct the result,
while OMP-PKS+RS, OMP-PKS+ReS, DCS-SOMP+RS, and DCS-SOMP-+ReS used
the ensemble of y. The error bound of BPDN was set to 6°. The value of & in LIHT

was set to the optimum value of 0.25 [24].
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Figure 4.6: The average PSNR of reconstruction images by DCS-SOMP+ReS and
OMP-PKS+ReS at M/N = 0.2 from y corrupted by different levels (variances) of

Gaussian noise.
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Figure 4.7: The average PSNR of reconstruction images by DCS-SOMP+ReS and
OMP-PKS+ReS at M/N = 0.3 from y corrupted by different levels (variances) of

Gaussian noise
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Figure 4.8: The average PSNR of reconstruction images by DCS-SOMP+ReS and
OMP-PKS+ReS at M/N = 0.4 from y corrupted by different levels (variances) of

Gaussian noise

it
H [ - - o -
-
1 - - -— . . &
‘Iul" _-_-__r*__._____.'..,__.,_._-l.----ln- —_—
’ T s
-
a J!"E_-_,TE = _:____"__‘__,::_..l..,.,_m'.?_-‘iﬁT
E i = . _-.-____‘....--— ._-_..—--—---_1_=.i.
e L SR - - e ——————ay | = LR RS O im0, 25
W o TS s [ Viartasee 0 (15)
fghs == O HCS Re S Y wrmmce=0.07 5§
r ./ s OGPPSR S (Y ariamce=a | )
f | == DS S0P Res O\ e, 034
IﬁL —a= R 5 SUMP RS (Y mmanced), 0§
| | === DCRSOMP RS {Virtances, (755
1 R e _""'DC‘E—EEM'H.lﬂﬂ'I.IﬂHI.lI
| L1 L H] a1 I 1] LA 1l A 51
I

Figure 4.9: The average PSNR of reconstruction images by DCS-SOMP+ReS and
OMP-PKS+ReS at M/N = 0.5 from y corrupted by different levels (variances) of

Gaussian noise.
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Figure 4.10: The average PSNR of reconstruction images by DCS-SOMP+ReS and
OMP-PKS+ReS at M/N = 0.6 from y corrupted by different levels (variances) of

Gaussian noise.

4.2.3.1 Evaluation by PSNR

Figures 4.11-4.14 show the PSNR when o” was set to 0.025, 0.05, 0.075, and
0.1, respectively. BPDN, LIHT, and OMP-PKS are shown in blue, magenta, and
black solid line with circle maker, respectively. OMP-PKS+ReS and DCS-
SOMP+ReS are shown in red and green solid line with square marker, respectively.
OMP-PKS+RS and DCS-SOMP+RS are shown in red and green dash line with x
marker, respectively. When M/N was higher, the reconstruction was better in all cases.
However, the effect of the measurement rate to the performance of OMP-PKS+RS

was lower than the others techniques.

Figures 4.11-4.14 also indicate that the proposed OMP-PKS+ReS was the
most effective reconstruction at all M/N, except at M/N = 0.4, o’ = 0.025. The PSNR
acquired by the reconstruction from OMP-PKS+ReS and OMP-PKS+RS was

approximately the same. When the noise was increased, the reconstruction from the

signal ensemble (OMP-PKS+ReS, OMP-PKS+RS, and DCS-SOMP+ReS) was better
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than the performance of the reconstruction from one signal (BPDN, LIHT, and OMP-
PKS) in all cases but at M/N = 0.2.

It should be noted that even though LIHT was designed for the reconstruction
of noisy signal, its performance was the worst in almost all cases. This was due to its
requirement of very sparse data (or very high M/N). Its performance was still not
converged at M/N = 0.6; however, M/N could not be increased indefinitely. The major
benefit of CS is the capability to reconstruct the signal from small y, so the large M/N
will eliminate the CS benefit. For example, at the sparsity rate of 0.1, M/N=0.5
would lead to y with the size of 50% of the original image size. Such large
compressed image could be achieved by conventional image compression techniques.

Thus, it was rare that M/N could be increased to 0.5 or larger.

Since OMP-PKS+ReS, OMP-PKS+RS, and OMP-PKS used the same
reconstruction method, the PSNR difference between OMP-PKS+ReS, OMP-
PKS+RS and OMP-PKS indicated the PSNR improvement by using the ensemble of
y. The average PSNR improvement was more than 0.79 dB when o” > 0.025. The
PSNRs from OMP-PKS based ensemble method at M/N = 0.2 were higher than the
one from OMP-PKS for all o It indicated that by using the ensemble of signal,
OMP-PKS+ReS and OMP-PKS+RS required lower M/N to achieve the same
performance level of OMP-PKS.

4.2.3.2 Evaluation by visual inspection

The reconstruction results of seven test images were evaluated in this section.
Figures 4.15-4.20 show the reconstruction of Peppers, Woman, Ripple, Arc, Pillar,
and Fence, respectively. M/N and o® were 0.3 and 0.1, respectively. The original
images are shown in the first column of the top row. The reconstruction results based
on BPDN, LIHT, and OMP-PKS are shown in the second, the third, and the fourth
columns of the top row, respectively. DCS-SOMP+ReS, OMP-PKS+ReS, DCS-
SOMP+RS, and OMP-PKS+RS are shown in the first, the second, the third, and the
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Figure 4.11: The average PSNR of reconstruction images based on BPDN, LIHT,
OMP-PKS, OMP-PKS+ReS (L = 21), DCS-SOMP+ReS (L = 6), OMP-PKS+RS (p =
0.6, L =21), and DCS-SOMP+RS (p = 0.9, L = 6) when y is corrupted by Gaussian

noise with 6> = 0.025.
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Figure 4.12: The average PSNR of reconstruction images based on BPDN, LIHT,
OMP-PKS, OMP-PKS+ReS (L = 21), DCS-SOMP+ReS (L = 6), OMP-PKS+RS (p =
0.6, L =21), and DCS-SOMP+RS (p = 0.9, L = 6) when y is corrupted by Gaussian

noise with 6> = 0.05.
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Figure 4.13: The average PSNR of reconstruction images based on BPDN, LIHT,
OMP-PKS, OMP-PKS+ReS (L = 21), DCS-SOMP+ReS (L = 6), OMP-PKS+RS (p =
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Figure 4.14: The average PSNR of reconstruction images based on BPDN, LIHT,
OMP-PKS, OMP-PKS+ReS (L = 21), DCS-SOMP+ReS (L = 6), OMP-PKS+RS (p =
0.6, L =21), and DCS-SOMP+RS (p = 0.9, L = 6) when y is corrupted by Gaussian

noise with 6> = 0.1
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fourth columns of the bottom row, respectively. BPDN and LIHT failed to reconstruct
some blocks as shown as dark dots (such as on the face of woman in Figure 4.16, the
middle of the vertical pillar in Figure 4.19). DCS-SOMP+ReS method gave the
results that were too smoothed in some regions and noisy in some other regions. The
results by DCS-SOMP+ReS contained less noise but in some case (Figure 4.15-4.16,
4.19-4.20), most of its information was smoothed out. OMP-PKS, OMP-PKS+ReS
and OMP-PKS+RS successfully reconstructed all seven images. The reconstruction
by OMP-PKS+ReS and OMP-PKS+RS provided the result that was not
oversmoothed; most edges were visible and Gaussian noise was suppressed in most
area. In all images, the change in the intensity contrast was due to the normalization

of the inverse wavelet transform.

The PSNR performance and visual quality of the proposed OMP-PKS+ReS
and OMP-PKS+RS were very close. Moreover, the optimum L for both methods was
21. However, the size of a sampled signal in the ensemble of OMP-PKS+RS (p = 0.6)
was smaller than the one of OMP-PKS+ReS (p = 1). Thus, the processing time of
OMP-PKS+RS was lower. It can then be concluded that OMP-PKS+RS was more
optimal than OMP-PKS+ReS.

The reason behind the noise reduction of OMP-PKS+RS and OMP-PKS+ReS
was that the reconstruction based on OMP-PKS+ReS and OMP-PKS+RS produced
different result for difference signal in the ensemble; therefore, the noise in each pixel
could be reduced by averaging the intensity among signals in the ensemble. On the
other hand, DCS-SOMP+ReS and DCS-SOMP+RS tried to find one result for every
signal in the ensemble. Because the ensemble came from only one signal; hence, the

noise was the same and the noise went directly to the result.
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Figure 4.15: Comparisons of the reconstructed Peppers with M/N = 0.3 and o* = 0.1.
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Figure 4.16: Comparisons of the reconstructed Woman with M/N = 0.3 and o* = 0.1.
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Figure 4.17: Comparisons of the reconstructed Ripple with M/N = 0.3 and o* = 0.1.
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Figure 4.18: Comparisons of the reconstructed Arc with M/N = 0.3 and o = 0.1.
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Figure 4.19: Comparisons of the reconstructed Pillar with M/N=0.3 and 6> = 0.1.
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Figure 4.20: Comparisons of the reconstructed Fence with M/N = 0.3 and o = 0.1.
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4.3 Experiment on impulsive noise environment

In this section, the performance of OMP-PKS with the proposed rejection
method as the preprocessing (OMP-PKS+R) was investigated. The probability of
impulsive noise is denoted as ¢; ge {0, 0.05, 0.10, 0.15, 0.20}. The magnitude of
impulsive noise was set relative to the maximum magnitude in y (Vmax). The

experiment consists of two parts: (1) the evaluation of the two thresholds (7 and T)

and the minimum size of the detectable impulsive noise in Subsection 4.3.1 and (2)

the performance evaluation of the proposed method in Subsection 4.3.2

4.3.1 Evaluation of the two thresholds and the minimum size of the detectable

impulsive noise

In this section, 500 blocks were randomly selected from blocks in 40 test
images. The sparsity rate was fixed at 0.1. Figure 4.21 shows the relationship between
the energy ratio threshold (7 ) and the percent that the proposed method was unable to
correctly reject the impulsive noise corrupted elements. The result form different
magnitudes of impulsive noise are shown in different color. The value in the figure
was the value averaged over five values of ¢ and five values of measurement rates
(M/N) which were 0.2, 0.3, 0.4, 0.5, and 0.6. The result indicated that percent of
inaccurate rejection decreased when the magnitude of the impulsive noise was
increased. From further investigation, it was found that the proposed impulsive noise
rejection method was unable to keep the percent of inaccurate rejection to less than

0.5% if the magnitude of the impulsive noise was less than 2.5 yyax.

Figure 4.21 also indicated the relationship of 7 to the percent of inaccurate
rejection. The inaccurate rejection was the result of (1) the rejection of the noise-free
elements and (2) the failure to reject the noise corrupted elements. When 7 was too
small, the energy-ratio criterion was too strict and the proposed method did not accept
even the correct energy distribution of §; consequently, it started to remove the

elements uncorrupted by noise. In the opposite case, when 7 was too large, the

energy-ratio criterion became too lax and the proposed method accepted even the
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incorrect energy distribution of §; consequently, it failed to remove the noise
corrupted elements. The range of 7 giving less than 0.5% of inaccurate rejection was
larger, when the magnitude of the impulsive noise was larger. This was because the
effect of the impulsive noise to the energy distribution became more distinct and
easier to detect when the size of the noise was larger. When the magnitude of the

impulsive noise was at least 2.5ymax, the values of 7 giving less than 0.5% inaccurate
rejection were 0.07 to 0.22. Among these values, the values of 7 = 0.1 gave the most

accurate rejection.
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Figure 4.21: The percent of inaccurate rejection of OMP-PKS+R from y corrupted by

impulsive noise when 77 ((leakage) energy-ratio threshold) was varied.

The evaluation for the optimum rejection-ratio threshold, 7, was performed by
investigating for the maximum number of the elements in y that can be removed
without causing the high error between s and s. Figure 4.22 shows the MSE of the
signals reconstructed by OMP-PKS when TM elements in y were removed. Different
MJ/N are presented with different colors. The figure indicates that when M/N
increased, more elements could be removed without causing a drastic change in MSE.

At M/N = 0.2, MSE approximately increased at the exponential rate, when 7 was
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larger or equal to 0.45. At the higher measurement rates, the effect of 7" was not

distinct, even when more than half of y was removed.

Because the benefit of CS is the capability of compressing the signal to very
small size, M/N should be kept low. It is recommended that 7 be selected such that it
is applicable even at low measurement rate. In the following section, 7 was set to 0.4

to ensure the high probability of successful reconstruction. The value of 77 was set to

0.1 as it was the optimal value.
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Figure 4.22: The MSE of the reconstructed signal when 7" was varied. The sparsity

rate was set to 0.1

4.3.2 Performance Evaluation

In this section, the following four reconstruction methods were investigated.
e OMP-PKS
e OMP-PKS+R
e LIHT

e LIHT with the proposed rejection method as the preprocessing (LIHT+R)
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The Lorentzian parameter and the number of iteration for LIHT were 0.25 and

100, respectively. The values of 1 and 7 were 0.1 and 0.4, respectively. There were

256 y’s in an image and ym.x was chosen as the maximum magnitude among 256 y’s
in the image. The magnitude of impulsive noise varied according to the Gaussian pdf
with the mean of 7ym.x and the standard deviation of yn.x. The performance is
evaluated based on the PSNR of the reconstructed images, the computational time and

the visual quality of the reconstructed images.

The experiments in Figures 4.23-4.27 show the average results of the 40 test
images. Figures 4.23-4.27 show the PSNR (subfigure a) and the computational time
(subfigure b) at different g (noise probability). At ¢ = 0 (noiseless) in Figure 4.23(a),
the addition of the proposed method to OMP-PKS and LIHT did not reduce the PSNR
of the reconstructed images. It indicated that the proposed method preserved y when
there was no impulsive noise. When y was corrupted by impulsive noise (g > 0) in
Figures 4.24(a)-4.27(a), the reconstruction based on OMP-PKS (the blue line) gave
very low PSNR, because OMP-PKS is designed with the assumption of bounded
noise. The reconstruction based on OMP-PKS could not be improved by increasing
MJ/N. However, when the noisy y was preprocessed by the proposed method, the
reconstruction based on OMP-PKS (the dashed blue line) was very effective. At M/N
= 0.4 and higher, the reconstruction from the noisy y by OMP-PKS+R had the
comparable PSNR to the reconstruction from the noiseless y by OMP-PKS.

At p = 0.05 in Figure 4.24(a), the effect of adding the proposed method as the
preprocessing to LIHT was minimal; however, at higher ¢, the addition of the
proposed method (the dashed red line) resulted in higher PSNR than the
reconstruction by LIHT alone (the red line). When ¢ was 0.15 or higher as shown in
Figures 4.26(a)-4.27(a), LIHT was no longer an effective reconstruction method, but
LIHT+R was still effective. It indicated that the addition of the proposed method

increased the robustness against ¢ to LIHT.

It should be noted that even though LIHT was based on LIHT which was
designed to be robust against impulsive noise. LIHT+R provided less PSNR than
OMP - PKS +R, because LIHT required the higher M/N. Figures 4.23(a)-4.27(a)
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Figure 4.23: The performance comparisons in term of (a) PSNR and (b)

computational time at various M/N when g = 0.
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Figure 4.24: The performance comparisons in term of (a) PSNR and (b)

computational time at various M/N when noise g = 0.05.
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Figure 4.25: The performance comparisons in term of (a) PSNR and (b)

computational time at various M/N when g = 0.1.
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Figure 4.26: The performance comparisons in term of (a) PSNR and (b)

computational time at various M/N when g = 0.15.



60

R0

g

]

]

Comguntional e (s
z

Bs K] o4 L T
[Tin
(b)

Figure 4.27: The performance comparisons in term of (a) PSNR and (b)

computational time at various M/N when g = 0.2.
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indicated that LIHT+R provide the most effective PSNR when M/N was 0.6 and it
should become better at the higher M/N. However, the improvement by increasing

MIJN 1is not recommended because it leads to the large size of y and eliminates the

benefit of CS.

Figures 4.23(a)-4.27(a) also indicates the relationship between M/N and gq.
When ¢g was higher, M/N should be set higher. This was because the number of the
noise corrupted elements was larger at higher g. Consequently, the larger size of y
was required to cope with the removal of more elements. The figures show that in

OMP-PKS+R, M/N of 0.4 gave the good reconstruction for all ¢ in this experiment.

Figures 4.23(b)-4.27(b) show the computational time of OMP-PKS, OMP-
PKS+R, LIHT and LIHT+R. Since at least one reconstruction is required in the
proposed method, the computation time will be at least doubled. The computational

time for reconstructing 256 blocks in an image could be reduced as follows.

a) Apply the proposed rejection method to the first block. Define £ as the smallest
magnitude of the noise corrupted elements in the first block.
b) Move to the next block. Define the compressed measurement of the new block as

Yeurr-
c) Assign the elements in y.,, having the magnitude not less than [ as the
impulsive noise. Initialize variables in Step a) of Section 3.3.1 such that they

reflect the removal of the elements with the magnitude not less than S.
d) Apply the proposed rejection method to y.,.. If f is larger than the smallest
magnitude of the noise corrupted elements in y.,,, set £ to this value.

e) If the current block is the last block in the image, terminate. Otherwise, go to step

b).

The assumption of the above algorithm is that the magnitude of impulsive
noise in every block is approximately the same (or share the same distribution). The
graphs indicated that the computational time of the reconstruction with the proposed
rejection method was no more than 4 times the computational time of the

reconstruction without the proposed rejection method.
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From the experiments, it could be concluded that the proposed method should
be included in the reconstruction from the impulsive noise corrupted y. The addition
of the proposed method increased the computational time no more than 4 times the

original computational time. Finally, OMP-PKS+R was more optimal than LIHT+R.

Figures 4.28-4.33 show the examples of the reconstruction images when M/N
is 0.3. The original image is shown in the first column. The reconstruction results
based on LIHT, LIHT+R, OMP-PKS and OMP-PKS+R are shown in the second, the
third, the fourth and the fifth columns, respectively. When the impulsive noise was
added to y, the reconstruction based on OMP-PKS failed in every case. The
reconstruction based on LIHT failed in some cases at ¢ = 0.1, and failed in every case
at g > 0.15. The addition of the proposed algorithm to OMP-PKS and LIHT, namely
OMP-PKS+R and LIHT+R led to the successful reconstruction in every case.
Furthermore, the reconstruction based on OMP-PKS+R provided the reconstruction
results that were more similar to the original images than the ones based on LIHT+R.
These results complied with the conclusion that was drawn from the PSNR graphs in

Figures 4.23-4.27.

4.4 Experiment on Gaussian and impulsive noises environment

The experiments in Sections 4.2 and 4.3 showed that the reconstruction from
OMP-PKS+RS and OMP-PKS+R could reduce the effect of Gaussian and impulsive
noise. Thus, if y is corrupted by both Gaussian and impulsive noise, the combination
of OMP-PKS+RS and OMP-PKS+R should be applied. In this section, the proposed
method (OMP-PKS+R+RS) is compared with LIHT. The parameters for OMP-
PKS+R+RS were analyzed in the previous sections. p, L and T were set to 0.6, 21, and

0.4, respectively.

The experiment consists of two parts: (1) evaluation for 7 in Section 4.4.1 and

(2) performance evaluation in Section 4.4.2.
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LIHT+R OMP-PKS OMP-PKS+R

PSNR = 15.75dB, PSNR=15.75dB, PSNR=27.29dB, PSNR =27.26dB,

@ ¢=0 Time=4099s.  Time=84.62s. Time=2222s.  Time=54.64s.
(b) ¢=0.05 PSNR = 15.49 dB, PSNR =15.67dB, PSNR=11.83dB, PSNR =2581 dB,

Time = 38.10 s. Time = 95.48 s. Time = 19.82 s. Time = 65.06 s.

(c) ¢=0.1 PSNR =12.49 dB, PSNR =15.66dB, PSNR=11.90dB, PSNR =23.88 dB,
Time = 39.35 s. Time = 100.91 s. Time = 20.22 s. Time = 72.76 s.

(d) ¢=0.15 PSNR =1227dB, PSNR=15.69dB, PSNR=12.05dB, PSNR =23.07dB,
Time = 39.39 s. Time = 96.91 s. Time = 20.23 s. Time = 72.49 s.

PSNR =12.06 dB, PSNR =15.78dB, PSNR=11.82dB, PSNR =22.38 dB,
Time =43.12 s. Time = 104.03 s. Time = 19.62 s. Time = 71.19 s.

(&) =02

Figure 4.28: The part of the reconstructed Peppers at M/N = 0.3 with the noise
probability (¢) of (a) 0, (b) 0.05, (¢) 0.1, (d) 0.15 and (e) 0.2. The images from left to
right are the original image and reconstructed images based on LIHT, LIHT+R,
OMP-PKS and OMP-PKS+R, respectively.
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LIHT LIHT+R

PSNR =14.66 dB, PSNR =14.66dB, PSNR =28.08 dB,
Time = 42.63 s. Time = 84.52 s. Time = 22.60 s.

(b) ¢ =0.05 PSNR = 14.86 dB, PSNR=15.11dB, PSNR=13.20dB, PSNR =26.93 dB,

Time = 37.08 s. Time = 80.29 s. Time =17.19 s. Time = 58.89 s.
K

© ¢=0.1 PSNR = 12.80 dB, PSNR = 14.65dB, PSNR=12.18dB, PSNR =25.99dB,

Time = 36.74 s. Time = 82.42 s. Time = 17.36 s. Time = 64.62 s.
i

(d) ¢=0.15 PSNR =12.66 dB, PSNR =14.60dB, PSNR=1237dB, PSNR =24.13dB,
Time = 37.86 s. Time = 83.59 s. Time=17.13 s. Time = 64.67 s.

PSNR =13.02dB, PSNR=14.15dB, PSNR=12.85dB, PSNR=23.78dB,

() ¢=0.2 Time = 37.78 s. Time = 88.35 s. Time = 17. s. Time = 67.92 s.

Figure 4.29: The part of the reconstructed Woman at M/N = 0.3 with the noise
probability (¢) of (a) 0, (b) 0.05, (¢) 0.1, (d) 0.15 and (e) 0.2. The images from left to
right are the original image and reconstructed images based on LIHT, LIHT+R,
OMP-PKS and OMP-PKS+R, respectively.
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Original image LIHT

%

7
Z

(@) ¢=0 PSNR =13.07dB, PSNR=13.07dB, PSNR=27.78dB, PSNR=27.78 dB,
Time = 38.11 s. Time = 59.46 s. Time = 20.54 s. Time =41.11 s.

o
Z

(b) ¢=0.05 PSNR =13.60 dB, PSNR=13.03dB, PSNR=9.04dB, PSNR=26.55dB,
Time = 39.13 s. Time = 79.85 s. Time =17.95 s. Time = 58.10 s.

o
Z

PSNR = 9.63dB, PSNR=13.12dB, PSNR=8.9dB, PSNR=26.01dB,

=0.1
© g Time = 37.04 s. Time = 72.80 s. Time = 18.17 s. Time = 57.52 s.
L LY A
(d) ¢=015 PSNR =8.85dB, PSNR=12.80dB, PSNR=9.28dB, PSNR=20.50dB,
=" Time = 33.45 s. Time = 71.90 s. Time =17.10s. Time = 55.58 s.
(©) ¢=02 PSNR =8.48 dB, PSNR=13.26dB, PSNR=9.33 dB, PSNR=19.19dB,

Time = 34.96 s. Time = 77.27 s. Time = 16.01 s. Time = 55.96 s.

Figure 4.30: The part of the reconstructed Ripple at M/N = 0.3 with the noise
probability (¢) of (a) 0, (b) 0.05, (¢) 0.1, (d) 0.15 and (e) 0.2. The images from left to
right are the original image and reconstructed images based on LIHT, LIHT+R,
OMP-PKS and OMP-PKS+R, respectively.
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Original image LIHT LIHT+R OMP-PKS OMP-PKS+R

ner

PSNR =13.07dB, PSNR=13.07dB, PSNR=27.78dB, PSNR=27.78dB,

@ ¢=0 Time = 38.11 s. Time = 59.46 s. Time = 20.54 s. Time =41.11 s.

(b) ¢=0.05 PSNR =13.60 dB, PSNR=13.03dB, PSNR=9.04dB, PSNR=26.55dB,
Time = 39.13 s. Time = 79.85 s. Time =17.95 s. Time = 58.10 s.

(¢) ¢=0.1 PSNR = 9.63dB, PSNR=13.12dB, PSNR=8.9dB, PSNR=26.01dB,

Time = 37.04 s. Time = 72.80 s. Time = 18.17 s. Time = 57.52 s.

(d) ¢=0.15 PSNR =8.85dB, PSNR=12.80dB, PSNR=9.28dB, PSNR=20.50dB,
Time = 33.45 s. Time = 71.90 s. Time =17.10 s. Time = 55.58 s.

PSNR =8.48 dB, PSNR=13.26dB, PSNR=9.33 dB, PSNR=19.19dB,
Time = 34.96 s. Time = 77.27 s. Time = 16.01 s. Time = 55.96 s.

() ¢=02

Figure 4.31: The part of the reconstructed Arc at M/N = 0.3 with the noise
probability (g) of (a) 0, (b) 0.05, (¢) 0.1, (d) 0.15 and (e) 0.2. The images from left to
right are the original image and reconstructed images based on LIHT, LIHT+R,
OMP-PKS and OMP-PKS+R, respectively.
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Original image LIHT+R OMP-PKS OMP-PKS+R

PSNR =14.27 dB, PSNR =14.27dB, PSNR =34.16 dB, PSNR =34.16 dB,
Time =27.98 s. Time = 46.13 s. Time = 17.46 s. Time = 35.64 s.

(b) ¢g=0.05 PSNR = 14.38 dB, PSNR =14.23 dB, PSNR=11.12dB, PSNR =33091 dB,
Time = 27.68 s. Time = 59.85 s. Time = 15.16 s. Time = 49.53 s.

o
. \

PSNR = 14.57 dB, PSNR 14.44 dB, PSNR=11.01dB, PSNR =33.13 dB,
Time = 29.53 s. Time = 64.68 s. Time = 15.78 s. Time = 53.83 s.

(d) ¢=0.15 PSNR =12.51 dB, PSNR=14.62dB, PSNR=10.32dB, PSNR =31.22 dB,
Time = 28.11 s. Time = 64.24 s. Time = 15.22 s. Time = 53.45 s.

PSNR =11.30dB, PSNR=14.33dB, PSNR=11.06dB, PSNR = 28 32 dB,
Time = 30.77 s. Time =71.34 s. Time = 16.70 s. Time = 59.64 s.

(@ ¢=0

©) ¢=0.1

(&) ¢=02

Figure 4.32: The part of the reconstructed Pillar at measurement M/N = 0.3 with the
noise probability (g) of (a) 0, (b) 0.05, (¢) 0.1, (d) 0.15 and (e) 0.2. The images from
left to right are the original image and reconstructed images based on LIHT, LIHT+R,
OMP-PKS and OMP-PKS+R, respectively.
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Original image LIHT+R OMP-PKS OMP-PKS+R

PSNR =15.73 dB, PSNR =15.73 dB, PSNR =26.18 dB, PSNR =26.18 dB,
Time = 73.57 s. Time = 140.33 s. Time = 35.32 s. Time = 80.03 s.

(b) ¢=0.05 PSNR =16.26 dB, PSNR =14.68 dB, PSNR =13.31dB, PSNR =25.08 dB,
Time = 69.70 s. Time = 149.76 s. Time = 32.73 s. Time = 113.88 s.

PSNR =14.09dB, PSNR=14.11dB, PSNR=13.32dB, PSNR=2391dB,

=0.1
(©) ¢=0 Time = 70.33 s. Time = 150.30 s. Time = 30.92 s. Time = 104.18 s.
(d) ¢=0.15 PSNR =13.85dB, PSNR=15.30dB, PSNR=13.62dB, PSNR =21.29dB,
1 ' Time = 62.23 s. Time = 141.41 s. Time = 30.22 s. Time = 102.07 s.
(©) ¢=02 PSNR =13.43 dB, PSNR=15.83dB, PSNR=12.95dB, PSNR=17.10dB,

Time = 65.49 s. Time = 137.21 s. Time =31.90 s. Time = 102.37 s.

Figure 4.33: The part of the reconstructed Fence at M/N = 0.3 with the noise
probability (g) of (a) 0, (b) 0.05, (¢) 0.1, (d) 0.15 and (e) 0.2. The images from left to
right are the original image and reconstructed images based on LIHT, LIHT+R,
OMP-PKS and OMP-PKS+R, respectively.
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4.4.1 Evaluation for 7

In order to cope with the higher error from the Gaussian noise, more energy
was allowed outside the third level subband and more data were required for the
reconstruction. 7 was evaluated based on the percent of inaccurate rejection from y
corrupted by both Gaussian and impulsive noises as shown in Figures 4.33-4.36. In
Figures 4.34-4.37, the variances of Gaussian noise (02) were 0.025, 0.05, 0.075, and
0.1, respectively. The figures shown that when o® was increased; the percent of
inaccurate rejection at < 0.05 was very high. However, the trend of percent of
inaccurate rejection at different values of 6> was the same. When the magnitude of the
impulsive noise was at least 2.5 ymax, the values of 7 giving less than 0.5% inaccurate
rejection was between 0.07 to 0.22. The result was in accordance with the one in the

Subsection 4.3.1. Thus, the values of 77 was set to 0.1 in Section 4.4.2.
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Figure 4.34: The percent of inaccurate rejection of OMP-PKS+R from y corrupted by

. . 2 . . . .
Gaussian noise (¢” = 0.025) and impulsive noise when 77 was varied.
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Figure 4.35: The percent of inaccurate rejection of OMP-PKS+R from y corrupted by
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Gaussian noise (¢~ = 0.05) and impulsive noise when 7 was varied.
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Figure 4.36: The percent of inaccurate rejection of OMP-PKS+R from y corrupted by
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Gaussian noise (¢~ = 0.075) and impulsive noise when 7 was varied.
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4.4.2 Performance evaluation

Figures 4.38-4.41 show the average PSNR of reconstruction images at ° of
0.025, 0.05, 0.075, and 0.1, respectively. The performances of both methods were
degraded by Gaussian noise. However, OMP-PKS+R+RS provided better
performance over LIHT in all cases. At g = 0.15, there were cases that LIHT failed to
reconstruct as found in Section 4.3.2. The performance of LIHT could be improved by

increasing measurement rate.

Since LIHT gave the successful reconstruction when g = 0.05, the part of
reconstruction images at ¢ = 0.05, M/N = 0.3, and o” = 0.1 were showed in Figures
4.42-4.47 for visual evaluation. The image in the first column was the original image.
The second and the third columns were reconstruction based on LIHT and OMP-
PKS+R+RS, respectively. The results from LIHT were noisy, while the results from
OMP-PKS+R+RS were smoother with higher contrast. OMP-PKS+R+RS combined
two benefits of OMP-PKS+RS and OMP-PKS+R, i.c. the tolerance to Gaussian and
impulsive noise. The experiments demonstrated that OMP-PKS+R+RS gave the
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successful reconstruction results in the environment corrupted by both Gaussian and

impulsive noise.
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Figure 4.38: The average PNSR of reconstruction images based on OMP-PKS+R+RS
and LIHT when y is corrupted by Gaussian noise with o* = 0.025 at various M/N and
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Figure 4.39: The average PNSR of reconstruction images based on OMP-PKS+R+RS

and LIHT when y is corrupted by Gaussian noise with 6 = 0.05 at various M/N and g.
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Figure 4.40: The average PNSR of reconstruction images based on OMP-PKS+R+RS

and LIHT when y is corrupted by Gaussian noise with 6> = 0.075 at various M/N and
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Figure 4.41: The average PNSR of reconstruction images based on OMP-PKS+R+RS

and LIHT when y is corrupted by Gaussian noise with 6 = 0.1 at various M/N and q.
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Original image LIHT OMP-PKS+R+RS

F

K

PNSR =17.83 dB PNSR =21.57 dB

Figure 4.42: The part of reconstructed Peppers based on LIHT and OMP-PKS+R+RS
when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, 6> = 0.1 and ¢ =
0.05.

PNSR =22.19 dB

Figure 4.43: The part of reconstructed Woman based on LIHT and OMP-PKS+R+RS
when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, 6* = 0.1 and g =

0.05.
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Figure 4.44: The part of reconstructed Ripple based on LIHT and OMP-PKS+R+RS
when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, 6> = 0.1 and ¢ =
0.05.
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Original image LIHT OMP-PKS+R+RS

PNSR =12.59 dB

Figure 4.45: The part of reconstructed Arc based on LIHT and OMP-PKS+R+RS
when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, 6> = 0.1 and ¢ =

0.05.

Original image OMP-PKS+R+RS

PNSR = 17.45 dB PNSR =21.01 dB
Figure 4.46: The part of reconstructed Pillar based on LIHT and OMP-PKS+R+RS
when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, 6> = 0.1 and ¢ =

0.05.

Original image LIHT OMP-PKS+R+RS

PNSR =18.54 dB PNSR =22.09 dB

Figure 4.47: The part of reconstructed Fence based on LIHT and OMP-PKS+R+RS
when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, 6> = 0.1 and ¢ =

0.05.



CHAPTER V

CONCLUSIONS

5.1 Conclusions

In this dissertation, the robust CS reconstruction algorithms for images in the
presence of Gaussian and/or impulsive noise are proposed. In the Gaussian noise
environment, OMP-PKS+RS was proposed. It first applied random subsampling to
create the ensemble of L sampled signals. Then OMP-PKS was used to reconstruct the
signal. The Gaussian denoising was performed by averaging the image reconstructed
from every signal in the ensemble. The experiment shows that by using the ensemble
of signal, the proposed algorithm improved the PSNR of the original OMP-PKS by at
least 0.79 dB. The proposed algorithm was efficient in removing the noise when the
compression rate was high (small measurement rate). Moreover, OMP-PKS+RS
provided higher PSNR improvement when the noise level was higher. However, the
computation complexity of OMP-PKS+RS was more than OMP-PKS because it
required the reconstruction of L signals instead of only one. The computational

complexity is shown in Appendix A.

In the impulsive noise environment, the preprocessing method for impulsive
noise rejection is proposed. In this method, the sparsified version of an image is
obtained by applying octave-tree DWT using db8 as the mother wavelet. The energy
distribution in wavelet domain and the capability to reconstruct the signal from an
incomplete y are exploited in order to detect the presence of the impulsive noise.
After the noise-corrupted elements are removed, the values of the removed elements
are estimated. The experiment on 40 test images indicates that the proposed rejection
method provided the robustness against the impulsive noise to conventional CS
reconstruction methods. The performance of the impulsive noise rejection method
depended on the probability of impulsive noise (¢) and the magnitude of impulsive
noise. Since the proposed method iteratively truncated the detectable impulsive noise

element from y, the size of y was smaller. When g was too high, the size of truncated
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y was too small to give a successful reconstruction. Regarding the magnitude of
impulsive noise, when the magnitude of the impulsive noise was very close to the
maximum magnitude of y, the energy distribution of the reconstructed signal was not
much different from the reconstructed impulsive noise-free signal. On the other hand,
when the impulsive noise was large, the energy distribution was very different. It
could then be concluded that there was the lower limit on the impulsive noise that the
proposed rejection method could reject. From the experiment, the lower limit was set

to 2.5 times of the maximum value of'y.

Finally, the robustness of the reconstruction method against both Gaussian and
impulsive noises was investigated. The combination of the proposed rejection method
as the preprocessing and the reconstruction on the signal ensemble was used as the
reconstruction method. The experiment indicates that the combination of the two
algorithms led to the reconstruction that was robust to both Gaussian and impulsive

noise.

5.2 Recommendations

1) Gaussian noise environment

e When the noise was high (6* > 0.05), OMP-PKS+RS should be used when the
fast computing time is not required. At high measurement rate ( M/N > 0.4) ,
DCS-SOMP+ReS could be applied as the faster method at the cost of lower
PSNR of the reconstruction image.

e When the noise is low (6 < 0.05), the original OMP-PKS should be applied.

e The value of p in OMP-PKS+RS is set such that it is lower when the noise is

higher.
2) Impulsive noise environment

e The proposed preprocessing should be applied with the (leakage) energy-ratio
threshold () and the rejection-ratio threshold (7) are set at 0.1 and 0.4,

respectively.
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e The proposed preprocessing can be applied even in noiseless environment.

3) Mixed Gaussian and impulsive noise environment
e The reconstruction should be performed by using both systems with the same

recommendations as in 1) and 2).

5.3 Future research

1) Additional denoising after the reconstruction should be included to improve the

performance of the reconstruction under Gaussian noise.

2) Since the computation complexity of impulsive noise rejection method was varied

as ¢, the fast impulsive noise rejection method is the plan of our future research.

3) Characteristics of the energy distribution for general signal should be investigated

in order to design the impulsive noise rejection for signals other than images.
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APPENDIX A

Computational Complexity

Table A.1. The computational cost of the #-th iteration in OMP.

The number of o
Step o The number of L, optimization
multiplication
1) A4 =argmax <rt_1,goj> : M(N-t+1) -
2) a, = (tht Mt -
3) z,=argmin, ||y -®z, || B 3 L, optimization for ¢ variables
Total MN+M L, optimization for ¢ variables

Table A.2. The computational cost of the basis preselection in OMP-PKS.

The number of o
Step The number of L, optimization

multiplication

1) z,=argmin,|y-®z,_|, - L, optimization for |['| variables

2) a, =@z, | -

Total |F| L, optimization for |I'| variables
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Table A.3. The computational cost of the #-th iteration in DCS-SOMP+ReS.

The number of

Step The number of ¢, optimization
multiplication
L
1) A =argmax,_ z <r,’t_1,¢)j> .| LM(N-t+1) -
[
2) a, =Dz, LMt R
3) z,=argmin, ”y Dz, ” 2 - L(L, optimization for ¢ variables)
Total L (MN+M) L(L, optimization for ¢ variables)

Table A.4. The computational cost of the #-th iteration in DCS-SOMP+RS.

The number of

Step The number of ¢, optimization
multiplication
L
1) 4= argmax . ZKr, 1P, >‘ LpM(N-t+1) -
=1
2) a, =(I)tzt LpMt -
3) z,=argmin, ||y -®,z, ” 2 - L(L, optimization for ¢ variables)
Total Lp(MN+M) L(L, optimization for ¢ variables)
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Table A.5. The total computational cost of the reconstruction of a k-sparse signal by

OMP, OMP-PKS, OMP-PKS+ReS, OMP-PKS+RS, DCS-SOMP+ReS and DCS-

SOMP+RS.
Method The r}urpbeT of The number of L, optimization
multiplication
k
OMP (MN + M)k Z (L, optimization for ¢ variables)
t=1
k
OMP-PKS (MN + M )(k— |F |) + |F| Z (L, optimization for ¢ variables)
t=1
OMP- : o .
PKS+ReS L [(MN + M) (k- |F|) + |F|] L; (L, optimization for # variables)
k
OMP-PKS+RS | L[ p(MN +M)(k—[T|)+|T{] | L (L, optimization for ¢ variables)
t=1
DCS- : L .
SOMP+ReS L[(MN + M )k]| L; (L, optimization for ¢ variables)
DCS :
i Lp[(MN + M )k| LY (L, optimization for  variables)

SOMP+RS

t=1
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