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 The Compressed Sensing (CS) reconstruction methods robust to Gaussian 

and/or impulsive noise are proposed in this dissertation. In the first part, the 

reconstruction in the Gaussian noise environment is proposed. The compressed 

measurement signal is subsampled for L times to create the ensemble of L compressed 

measurement signals. Orthogonal Matching Pursuit with Partially Known Support 

(OMP-PKS) is applied to each signal in the ensemble to reconstruct L noisy outputs. 

The L noisy outputs are then averaged for Gaussian denoising. The proposed method 

was evaluated on 40 test images and found to improve both PSNR and visual quality 

of the reconstructed results. 

In the second part of this dissertation, the reconstruction in the impulsive 

noise environment is investigated. In conventional methods, the impulsive noise 

tolerance is acquired by using the Lorentzian norm of robust statistics. The 

optimization of the robust statistic function is iterative and usually requires complex 

parameter adjustments. In this part, the impulsive noise rejection for the compressed 

measurement signal with the design for image reconstruction is proposed. It is used as 

the preprocessing for any compressed sensing reconstruction given that the sparsified 

version of the signal is obtained by utilizing octave-tree discrete wavelet transform 

with db8 as the mother wavelet. The presence of impulsive noise is detected from the 

energy distribution of the reconstructed sparse signal. After the noise removal, the 

noise corrupted coefficients are estimated. Moreover, the proposed method requires 

neither complex optimization nor complex parameter adjustments.  

In addition, the two proposed methods can be combined to create the 

reconstruction robust to both Gaussian and impulsive noise. 
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CHAPTER I 

INTRODUCTION 

 

 

1.1 Introduction 

Compressed sensing (CS) is a sampling paradigm that provides compressible 

signals at a rate significantly below the Nyquist rate. It reveals that a compressible or 

sparse signal can be recovered by a small amount of measurements [1]-[3]. The 

connection between sampling and reconstruction methods of CS and those of other 

sparse signal processing is presented in [4]. The description of commonly used 

reconstruction algorithms is also given. Consider a measurement process in CS that is 

modeled as  

 ,=y Φx   (1.1) 

where y and Φ  are an M×1 compressed measurement signal and an M×N random 

measurement matrix, respectively; x is an N×1 compressible signal. In CS, it is 

considered that M < N. A signal is compressible if it is sparse in some domain; thus, x 

can be written as follows. 

 ,=x Ψs   (1.2) 

where s and Ψ  are a k-sparse signal and an N×N orthogonal basis matrix, 

respectively. k is the number of non-zero elements or a sparsity level. Without loss of 

generality, Ψ  is defined as an identity matrix in this dissertation and x is equivalent to 

s. 

In practice, y can be corrupted by noise during transmission in a noisy 

channel. The measurement process in the noisy channel is modeled as 

 ,= +y Φs e   (1.3) 

where e is the additive noise. 
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CS reconstruction methods aim to find the sparsest s that creates y. The 

reconstruction of s in the noisy channel can be written as the following optimization 

problems. 

 
0 2

arg min . . ,s t ε− ≤
s

s y Φs   (1.4) 

where ɛ and 
P

u are the error bound and the LP norm of u, respectively. The error 

bound is set based on the noise characteristics, such as bounded noise, Gaussian noise, 

finite variance noise, etc [5]-[15]. L0 norm in equation (1.4) is relaxed to L1 norm in 

the reconstruction by Basis Pursuit Denoising (BPDN); whereas, it is replaced by 

heuristic rules in the reconstruction by greedy algorithms. 

The optimization problems in BPDN [7] is given 

 
1 2

arg min . . ,s t ε− ≤
s

s y Φs   (1.5) 

which is equivalent to  

 
2

2 1

1
arg min ,

2
τ− +

s
y Φs s   (1.6) 

where τ is a regularization parameter. 

When Φ  satisfies the Restricted Isometry Property (RIP) condition [7], the BP 

approach is an effective reconstruction approach and does not require the exactness of 

the sparse signal. However, it requires high computation. In the greedy approach 

[8][16], the heuristic rule is used in place of L1 optimization. One of the popular 

heuristic rules is that the non-zero components of s correspond to the coefficients of 

the random measurement vectors having the high correlation to y. The examples of 

greedy algorithm are OMP [16], Regularized OMP (ROMP) [8], etc. The greedy 

approach has the benefit of fast reconstruction.  

The reconstruction of the noisy compressed measurement signals requires the 

relaxation of the y Φs−  constraint. Most algorithms provide the acceptable bound for 
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the error between y and Φs  [5]-[13]. The error bound is created based on the noise 

characteristic such as bounded noise, Gaussian noise, finite variance noise, etc. The 

authors in [5] show that it is possible to use BP and OMP to reconstruct the noisy 

signals, if the conditions of the sufficient sparsity and the structure of the 

overcompleted system are met. The sufficient conditions of the error bound in BPDN 

for successful reconstruction in the presence of Gaussian noise is discussed in [9]. In 

[10], the Danzig selector is used as the reconstruction technique. L∞ norm is used in 

place of L2 norm.  

OMP is robust to the small Gaussian noise in y due to its L2 optimization 

during parameter estimation. Regularized OMP (ROMP) [8][13] and Compressed 

Sensing Matching Pursuit (CoSaMP) [11][13] have the stability guarantee as the L1-

minimization method and provide the speed as greedy algorithm. In [12], the authors 

used the mutual coherence of the matrix to analyze the performance of BPDN, OMP, 

and Iterative Hard Thresholding (IHT) when y was corrupted by Gaussian noise. The 

equivalent of cost function in BPDN was solved through IHT in [14]. IHT gives faster 

computation than BPDN but requires very sparse signal. 

When the noise is impulsive noise, e in equation (1.3) is considered to be very 

large. It is well known that the optimization of L2 norm is not robust to outliers in y; 

thus, the optimization leads to the incorrect result of s. In [17], the reconstruction 

from the signal corrupted by the impulsive noise is performed by solving one of the 

following two optimization problems. 

 
2

2 1 1,

1
arg min ,

2s e
y Φs e e s

δ
δ δ τ

α
− − + +   (1.7) 

 
2

2 1 TV,

1
arg min

2s e
y Φs e e s

δ
δ δ τ

α
− − + +   (1.8) 

where eδ  and α are a sparse vector with large non-zero coefficients (impulsive noise) 

and a pre-defined threshold, respectively; 
TV

u  is a total variation norm of u. First, 

this method estimates s and then estimates eδ . The estimation is performed 
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iteratively. However, the unique solution is guaranteed only when the cost function is 

convex. The effect of impulsive noise can be suppressed by applying robust statistics 

[18]-[24]. The Generalized Cauchy Distribution (GCD) based Maximum Likelihood 

(ML) has been proposed as the optimization algorithm that is robust to impulsive 

noise [18]. The Lorentzian norm, which is the special case of GCD, is utilized in a 

number of robust CS reconstructions [20]-[24]. The Lorentzian norm is used in place 

of L2 norm in equation (1.5) for the Lorentzian based Basis Pursuit (LBP) [20]. 

Similar to Basis Pursuit (BP), the LBP is slow to solve. Furthermore, it requires 

complex parameter adjustments for the effective optimization of the Lorentzian norm. 

The reconstruction in [21]-[22] applies the iterative algorithm and the weighted 

myriad operator to solve the following problem. 

 
0

arg min ,T

LL
τ− +

s
Η R s s   (1.9) 

where 
LL

u , H and R are the Lorentzian norm of u, a Cauchy random projection 

signal and a Cauchy random projection matrix, respectively. The reconstruction in 

[23] applies the weighted median operator and the iterative thresholding to solve the 

following L0-regularized Least Absolute Deviation (L0-LAD) regression problem. 

 
1 0

arg min ,
s

y Φs sτ− +   (1.10) 

The Lorentzian based Iterative Hard Thresholding (LIHT) approach is proposed as the 

fast reconstruction method in [24]. Iterative Hard Thresholding (IHT) is used in place 

of BP to increase the speed of LBP. However, it faces the same problem as IHT [14]. 

Consequently, LIHT is suitable for very sparse signals. 

 

1.2 Objectives 

1) To propose the robust compressed sensing (CS) reconstruction method for images 

corrupted by Gaussian noise. 
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2) To propose the robust CS reconstruction method for images corrupted by 

impulsive noise. 

3) To propose the robust CS reconstruction method for images corrupted by both 

Gaussian and impulsive noise. 

 

1.3 Problem Statements 

The methods robust to Gaussian noise are based on the solution of L1 

minimization. No method makes use of the fact that the signal can be reconstructed 

from parts of y instead of the entire signal. From one given signal, multiple signals 

can be reconstructed. Each signal can be considered as a signal corrupted by the same 

noise at different instance. By merging these signals, more accurate signal can be 

reconstructed.   

The robust statistic provides the tolerance against impulsive noise; however, 

its optimization problem is non-convex. When a compressed measurement signal is 

corrupted by the impulsive noise, the reconstructed signal has different energy 

distribution in wavelet domain. When the octave-tree discrete wavelet transform is 

used to transform signals to sparse domain, the reconstruction from a noise corrupted 

signal leads to high energy leaking outside the third level subband. Hence, the 

detection of high energy outside the third level subband can be used in place of robust 

statistic to detect and remove the impulsive noise.  

 

1.4 Contributions 

1) Propose the ideas of subsampling and sampling with replacement in the 

reconstruction robust to Gaussian noise. 
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2) Propose the ratio between the energy leaking outside the third-level subband and 

the total signal energy to detect the presence of impulsive noise in the 

compressed measurement signal. 

 

1.5 Scopes 

1) The proposed CS is for gray-scale image only. 

2) The sparse domain is wavelet domain. 

3) The compressed measurement signal is corrupted by Gaussian and/or impulsive 

noises. 

4) The magnitude of impulsive noise must be at least five times higher than the peak 

of signal. 

5) The process is performed off-line. 

 

1.6 Research Procedures  

1) Study previous research papers relevant to the research works of the dissertation. 

1.1) Papers on the fundamental of CS. 

1.2) Papers on applying CS to image. 

1.3) Papers on CS reconstruction of noisy signal. 

2) Develop CS reconstruction algorithm in noiseless case. 

3) Test the proposed algorithm in Step 2 on 1-D signals. 

4) Test the proposed algorithm in Step 2 on standard tested images such as Lena, 

Peppers, Mandrill, etc. 
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5) Develop CS reconstruction algorithm in the presence of zero-mean white 

Gaussian noise. 

6) Test the proposed algorithm in Step 5 on standard tested images  

7) Develop CS reconstruction algorithm in the presence of impulsive noise. 

8) Test the proposed algorithm in Step 7. 

9) Collect and analyze computational results obtained from simulation programs. 

10) Summarize the major findings as we found in Step 9 and conclude the 

performance of the proposed CS reconstruction algorithm in all concerned 

aspects. 

11) Check whether the conclusions meet all the objectives of the research work of the 

dissertation. 

12) Write the dissertation.  
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CHAPTER II 

BACKGROUND  

 

 

This chapter addresses the related research of the dissertation. It is divided into 

two parts. The compressed sensing theory is described in Section 2.1. The examples 

of reconstruction method are then given in Section 2.2 where five popular 

reconstruction methods are described.  

 

2.1 Compressed Sensing 

CS is based on the assumption of the sparse property of signals and 

incoherency between the basis of the sparse domain and the basis of measurement 

vectors [1]-[3]. CS has three major steps: (1) the construction of k-sparse 

representation, (2) the measurement and (3) the reconstruction. The first step is the 

construction of the k-sparse representation, where k is the number of non-zero 

component of the sparse signal. Most natural signals can be made sparse by applying 

orthogonal transforms such as wavelet transform, Fast Fourier Transform (FFT), or 

Discrete Cosine Transform (DCT). This step is represented as previous equation (1.2).  

Next step, the random measurement matrix is applied to measure the signal by 

the following equation. 

 = =y Φx ΦΨs  (2.1) 

Since Ψ  is an identity matrix in this dissertation, s is equivalent to x. The sufficient 

condition for the high probability of successful reconstruction is as follows. 

 2 ( , ) log ,M C k Nµ≥ Φ Ψ  (2.2) 

for some positive constant C. M and N are the number of measurement and the 

dimension of sparse signal, respectively. ( )µ Φ, Ψ is the coherence between Φ  and 

Ψ , and defined by 
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,

( ) max , ,i j
i j

Nµ ϕ ψ=Φ,Ψ  (2.3) 

where iϕ  and jψ   are the i-th and the j-th column in Φ  and Ψ , respectively. ,A B  

stands for the dot product between A and B. If the elements in Φ  and Ψ are 

correlated, the coherence is large. Otherwise, it is small. From linear algebra, it is 

known that ( ) 1, Nµ  ∈  Φ,Ψ [2]. In the measurement process, the error (due to 

hardware noise, transmission error, etc.) may occur. The error is added into the 

compressed measurement vector as described in equation (1.3). 

The final step is the reconstruction. There are two major reconstruction 

approaches: L1-minimization [5] and greedy algorithm [11]. Convex optimization is 

applied in the reconstruction by L1-minimization approach. The successful 

reconstruction depends on the degree that Φ  complies with the Restricted Isometry 

Property (RIP). RIP is defined as follows. 

 ( )2 2 2

2 2 2
(1 ) 1 ,k kδ δ− ≤ ≤ +s Φs s  (2.4) 

where k
δ is the k-restricted isometry constant of Φ . RIP is used to ensure that all 

subsets of k  columns taken from Φ  are nearly orthogonal. It should be noted that Φ  

has more columns than rows; thus, Φ  cannot be exactly orthogonal [2]. 

 

2.2 Reconstruction Methods 

A number of reconstruction methods have been proposed for CS 

reconstruction. They can be divided into two main categories: (1) L1 optimization and 

(2) the heuristic method. Five reconstruction methods are presented in this section. 

They are Basis Pursuit DeNoising (BPDN), Orthogonal Matching Pursuit (OMP), OMP 

with Partially Known Support (OMP-PKS), Lorentzian based Iterative Hard 

Thresholding (LIHT) and Distributed Compressed Sensing Simultaneous OMP (DCS-

SOMP).  BPDN is one of the popular reconstruction methods based on L1 optimization. 

It is designed for the bounded noisy signal. OMP is one of the popular reconstruction 
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methods based on heuristic rules. OMP-PKS is the variant of OMP. The advantage of 

OMP-PKS is the ability to reconstruct the signal with lower measurement rate than the 

original OMP. LIHT is the reconstruction method that is designed for general noisy 

signal.  LIHT has the advantage over the other four methods in that it can be used in the 

unbounded noise environment. The example of the unbounded noise is the impulsive 

noise. DCS-SOMP is the example of the reconstruction method using signal ensemble. 

 

2.2.1 Basis Pursuit Denoising (BPDN) 

Basis Pursuit (BP) [5] is one of the popular L1-minimization methods. The 

main idea of this algorithm is to relax the L0-norm in (2.5) to L1-norm.  

 
0

arg min   
s

s.t. =s y Φs  (2.5) 

It reconstructs the signal by solving the following problem. 

 
1

arg min   
s

s.t. =s y Φs   (2.6) 

BPDN [6] is the relaxed version of BP and is the reconstruction method for the 

noisy y. It reconstructs the signal by solving the following optimization problem. 

 
1 2

arg min  ,
x

s.t. ε− ≤s y Φs  (2.7) 

where ε  is the error bound. 

BPDN is often solved by linear programming. It guarantees a good 

reconstruction if Φ  satisfies RIP condition. However, it has the high computational 

cost as BP.  

 

2.2.2   Orthogonal Matching Pursuit (OMP) 

OMP is a well known reconstruction algorithm [16]. It was developed from 

Matching Pursuit (MP) [33] u sing different method to estimate the magnitude of the 

non-zero elements in s. Instead of projecting the residual signal onto the selected 
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basis, it estimates the magnitude of the non-zero elements by solving the least squared 

error between the projection of the reconstructed s and y. OMP has the advantage of 

simple and fast implementations. The algorithm is as follows. 

Input: 

• The M × N measurement matrix, 1 2[ ... ]Nϕ ϕ ϕ=Φ  

• The M-dimension compressed measurement signal, y 

• The sparsity level of the sparse signal, k  

Output: 

• The reconstructed signal, ŝ  

• The set containing k indexes of non-zero elements in ŝ , 1 2{ , ,..., }k kλ λ λΛ =  

Procedure: 

a) Initialize the residual (r0), the index set ( 0Λ ) and the iteration counter (t) as 

follows. 

0 0, , 1t= Λ = ∅ =r y  

b) Find the index tλ  of the measurement basis that has the highest correlation to the 

residual in the previous iteration, 1t−r . 

1
1,...,

arg max ,t t j
j N

λ ϕ−
=

= r  

If the maximum occurs in multiple bases, select one deterministically. 

c) Augment the index set and the matrix of chosen bases: { }1t t tλ−Λ = Λ ∪  and 

1 tt t λϕ−
 =  Φ Φ , where 0Φ  is an empty matrix. 

d) Solve the following least squared problem to obtain the new reconstructed signal, 

zt. 

2arg mint t
z

= −z y Φ z  
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e) Calculate the new approximation, at, that best describes y. Then, calculate the 

residual of the t-th iteration, rt. 

t t t

t t

=

= −

a Φ z

r y a
 

f) Increment t by one. 

g) If t k> , terminate; otherwise, go to step b). 

The reconstructed signal, ŝ , has non-zero elements at the indexes listed in kΛ . 

The value of the jλ -th elements in ŝ  equals to the j-th element of ( )1, 2,...,k j k=z . 

The termination criterion can be changed from t k>  to that 1t−r  is less than the 

predefined threshold. 

 

2.2.3  OMP with Partially Known Support (OMP-PKS) 

The noise tolerance can be increased by including a priori information. One of 

the popular knowledge is the model of a sparse signal [25], such as the wavelet-tree 

structure. Model based reconstruction methods have three benefits: (1) the reduction 

of the number of measurements, (2) the increase in robustness and (3) the faster 

reconstruction. 

OMP-PKS [30] is adapted from the classical OMP [16]. The partially known 

support gives a priori information to determine which subbands in the sparse signal 

structure are more important than the others and should be selected as non-zero 

elements. It has the characteristic of OMP that the requirement of RIP is not as severe 

as BP’s [5]. It has a fast implementation but may fail to reconstruct the signal (lacks 

stability). It requires very low measurement rate. It is different from Tree-based OMP 

(TOMP) [26] in that the subsequent basis selection of OMP-PKS does not consider 

the previously selected bases, while TOMP sequentially compares and selects the next 

good wavelet sub-tree and the group of related atoms in the wavelet tree. 
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Figure 2.1: Wavelet decomposition by filter bank analysis. HP and LP are high pass 

filter and low pass filter, respectively. 

 

 

 

 

 
 

       

(a)            (b) 

Figure 2.2: The example of octave-tree discrete wavelet transform; (a) the original 

image and (b) the wavelet transformed image. Subbands inside the blue, orange and 

green windows are the first, the second and the third level subbands, respectively. 

 

 

The wavelet transform of an image is realized using filter banks as shown in 

Figure 2.1. The image is decomposed into four subbands: HH, HL, LH and LL. The 

HH, HL, LH and LL subbands contain diagonal details, vertical details, horizontal 

details and approximation coefficients, respectively. In this paper, octave-tree discrete 

wavelet transform (DWT) is used to obtain the sparse representation of images. The 

second and the third level subbands are constructed by applying the filter bank 
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analysis to the LL subband in the first and the second level, respectively. The example 

of octave-tree discrete wavelet transform is shown in Figure 2.2. The original image 

and the wavelet transformed image are shown in Figures 2.2(a) and 2.2(b), 

respectively. Since the LL subband in the third level (LL3 subband) contains most 

information in the image, the signal in the LL3 subband must be included for 

successful reconstruction. All elements in the LL3 subband are selected as non-zero 

elements without testing for the correlation. The algorithm for OMP-PKS when the 

data are represented in wavelet domain is as follows. 

Input: 

• The M × N measurement matrix, 1 2[ ... ]Nϕ ϕ ϕ=Φ  

• The M-dimension compressed measurement signal, y 

• The sparsity level of the sparse signal, k 

• The set containing the indexes of the bases in LL3 subbands, 

{ }1 2 | | , ,  ...,γ γ γ ΓΓ =   

Output: 

• The reconstructed signal, ŝ  

• The set containing k indexes of the non-zero element in ŝ , 1 2{ , ,..., }k kλ λ λΛ =  

Procedure: 

Phase 1: Selection without correlation test 

a) Select every basis in the LL3 subband.  

t = Γ  

tΛ = Γ  

1 2
...

tt γ γ γϕ ϕ ϕ =  Φ
 

b) Solve the least squared problem to obtain the new reconstructed signal, tz . 

2
arg mint t

z
= −z y Φ z  
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c) Calculate the new approximation, at, and find the residual (error, rt). at is the 

projection of y on the space spanned by tΦ .  

t t t

t t

=

=

a Φ z

r y - a
 

Phase 2: Reconstruction by OMP 

a) Increment t by one, and terminate if t k> . 

b) Apply steps b) - g) of OMP described in Section 2.2.2 to find the remaining 

k − Γ  non-zero elements of ŝ . 

The reconstructed sparse signal, ŝ , has the indexes of non-zero elements listed 

in k
Λ . The value of the 

jλ -th element of ŝ  equals to the j-th element of 
k

z . 

 

2.2.4   Lorentzian based Iterative Hard Thresholding (LIHT) 

LIHT [24] was proposed to reconstruct signals in the presence of Gaussian and 

impulsive noise. It differs from IHT in the usage of Lorentzian norm instead of 

L2norm. It reconstructs the signal according to the following function. 

 
2 , 0

arg min s.t. 
LL

k
α

− ≤
s

y Φs s  (2.8) 

where 
2 ,LL

u
α is Lorentzian norm (LLq norm with q (tail parameter) = 2) of u and 

defined as follows. 

 
2

2

,

1
log 1 ,

2LL

u
u

α α

  = +     
 (2.9) 

where α  is a scale parameter. The algorithm for LIHT is as follows. 

Input:  

• The M × N measurement matrix, 1 2[ ... ]Nϕ ϕ ϕ=Φ  

• The M-dimension compressed measurement signal, y 

• The sparsity level of the sparse signal, k  
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Output:  

• The reconstructed signal, s 

Procedure: 

a) Set s(0) to zero vector and t to 0. 

b) At each iteration, s(t+1) was computed by 

s(t+1) = Hk (s(t) + µg(t)), 

where Hk(a) is the non-linear operator where the k largest components in a are 

kept but the remaining components are set to zero. µ is the step size. In this 

dissertation, g is defined as follows. 

( ) ( ( ))T

tt t= −g Φ W y Φs  

Wt  is an M×N diagonal matrix. The diagonal element in Wt is defined as 

2

2 2
( , ) , 1,...., .

( ( ))
t T

i i

i i i M
y s t

α
α

= =
+ −

W
Φ  

The step size is set as 

2

( ) 2

2
1/2

( ) ( ) 2

( )
( ) .

( )

k t

t k t k t

t
t

t
µ =

g

W Φ g
 

In case that 
2 2, ,

( 1) ( ) ,
LL LL

t t
α α

− + > −y Φs y Φs   µ(t) is set to 0.5µ(t). 

c) Terminate when the difference between Φs  and y is less than or equal to the 

predefined error. 

 LIHT is the fast and robust algorithm but it faces the same problem as IHT. It 

requires that either s must be very sparse or y must be very large (high measurement 

rate). It is faster than OMP but has less stability. 
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2.2.5   Distributed Compressed Sensing Simultaneous Orthogonal Matching 

Pursuit (DCS-SOMP) 

 Distributed Compressed Sensing (DCS) uses the concept of joint sparsity, 

which is the sparsity of every signal in the ensemble [27][29]. It is used under the 

environment that there are a number of y whose original signals (s) are related. The 

reconstructed sparse signals of these y’s share some information (common 

components) even though they are not the same. The unique information of each y is 

defined as innovation. There are 3 models in DCS.  

(1) sparse common component + innovations: both the common information 

(component) and the unique information (innovation) in y are sparse. 

(2) common sparse support: every y is constructed from the sparse signal 

whose non-zero elements locate at the same position.  The non-zero 

amplitude may be different. 

(3) non-sparse common component + sparse innovations: the common 

component in y is non-sparse signal, but the innovation is sparse. 

 

 In this dissertation, the common sparse support model is used. As there is only 

one y, there is no innovation in the ensemble of the sampled y. Simultaneous OMP 

(SOMP) [27][32] is proposed as the reconstruction algorithm. SOMP is adapted from 

OMP.  

DCS-SOMP searches for the solution that contains maximum energy in the 

signal ensemble. Given that the ensemble of y is {yi}; i = 1,2,...,L. The basis selection 

criterion in DCS-SOMP is changed from 
1

1
[1, ],

arg max ,
t

t t j
j N j

λ ϕ
−

−
= ∉Λ

= r  to 

1

, 1 ,1[1, ],
arg max , ,

t

L

t i t i jij N j
λ ϕ

−
−== ∉Λ

= ∑ r where ri,t-1 is the residual of yi to the projection of yi 

on to the space spanned by Φ t-1. The rest of the procedure remains the same as OMP. 

The indexes of non-zero components in the reconstructed si (i = 1, 2, ..., L) are the 

same, but the value of non-zero components may differ. It should be noted that when 

L is equal to one, the DCS-SOMP is OMP.  



18 

CHAPTER III 

PROPOSED METHODS 

 

 

This chapter addresses the problems of reconstructing from a compressed 

measurement signal (y) in three noise environments: (1) Gaussian noise (2) impulsive 

noise and (3) Gaussian and impulsive noise. The block processing is applied to reduce 

the computational cost. The block processing and the vectorization of the wavelet 

coefficients are described in Section 3.1. The proposed reconstruction process in 

Gaussian noise environment is explained in Section 3.2. The proposed impulsive 

noise rejection method is described in Section 3.3. The reconstruction in both 

Gaussian and impulsive noises environment is presented in Section 3.4. 

 

3.1 Block processing and the vectorization of the wavelet coefficients 

In this dissertation, the Discrete Wavelet Transform (DWT) is used to obtain 

the sparsified version of an image. Figure 3.1 shows an example of block processing 

and the vectorization of the wavelet coefficients. Figure 3.1(a) shows the structure of 

a wavelet transformed image. The LL3 subband is presented in red. Other subbands 

(LH, HL, and HH) in the third, the second and the first levels are presented in green, 

orange, and blue, respectively. The LL3 subband is the most important subband, 

because it contains most of the energy in the image. Figure 3.1(b) shows the re-

ordering of the wavelet coefficients. The coefficients are ordered such that the LL3 

subband is located at the beginning of each row. The LL3 subband is followed by the 

other subbands in the third, the second, and the first levels. 

The wavelet-domain image in Figure 3.1(b) is divided into blocks along its 

rows as shown in Figure 3.1(c). In Figure 3.1(c), the image has 8 rows; consequently, 

it is divided into 8 blocks. Each row in Figure 3.1(c) is considered as a sparse signal 

in this dissertation.  
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(a) (b) (c) 

Figure 3.1: The illustration of block processing and vectorization in Section 3.1; (a) 

wavelet transformed image, (b) wavelet subbands vectorization and reorganization, 

and (c) wavelet blocks. 

 

 

The signal can be made more sparse by the wavelet shrinkage thresholding 

[34]. In the wavelet shrinkage thresholding, all coefficients in the LL3 subband are 

preserved, while coefficients outside the LL3 subband with magnitude less than the 

wavelet shrinkage threshold are set to zero. Note that not all coefficients outside the 

LL3 subband are set to zero. Since only the small coefficients in high frequency 

subband are set to zero, most distinct edges in the image are preserved. The 

sparsifying transformation by the wavelet shrinkage thresholding has little distinct 

visual degradation if the wavelet shrinkage threshold is selected properly. Figure 3.2 

shows one example of an image before and after wavelet shrinkage thresholding. 

 

  

(a) (b) 

Figure 3.2: The part of Lena before and after wavelet shrinkage thresholding; (a) 

original Lena and (b) Lena which has 90% of its wavelet coefficients set to zero by 

wavelet shrinkage thresholding (threshold = 23.4). The mother wavelet is db8. 
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(a) Lena 
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(b) Artificial image  
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(c) Airplane (F-16) 
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(d) Mandrill 

 

Figure 3.3: The reconstruction examples for different vectorization of the wavelet 

blocks. Type I and Type II indicate the vectorization according to the structure in 

Figure 3.1(c) and the vectorization by the lexicographic order of Figure 3.1(a), 

respectively. (a) Lena, (b) Artificial image, (c) Airplane (F-16), and (d) Mandrill. 



21 

In the experiments, it is found that the vectorization according to the structure 

of Figure 3.1(c) is better than the one by the lexicographic order of Figure 3.1(a). 

Figure 3.3 shows some reconstruction examples when these two vectorization 

methods were used. The sparsity rate (k/N) and the measurement rate (M/N) were set 

to 0.1 and 0.3, respectively. All images were reconstructed by OMP-PKS. The top 

row of each image shows the reconstruction when the vectorization in each block was 

done such that it had the structure as shown in Figure 3.1(c). The bottom row of each 

image shows the reconstruction when the vectorization in each block was done by the 

lexicographic order of the structure shown in Figure 3.1(a). There was no fail 

reconstruction (dark spot) in the top row; whereas, there were some in the bottom 

row. 

 

3.2 Reconstruction in Gaussian noise environment 

The reconstruction method is divided into three stages: the construction of the 

ensemble of y, the reconstruction by OMP-PKS [30], and data merging. 

 

3.2.1 Construction of the ensemble of y 

Given that there are L different pM-dimension signals in the ensemble of y. p 

is the ratio of the sampled signal’s size to the original size and 0 < p ≤ 1. p and L are 

predefined. The i-th signal in the ensemble is denoted by yi. The algorithm for 

constructing yi is as follows. 

Input: 

• An M × N measurement matrix, Φ  

• The M-dimensional compressed measurement signal, y 

• The dimension of yi, β = pM  

Output: 

• The i-th signal in the ensemble, yi 

• The truncated measurement matrix for yi, Φ i   
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Procedure: 

a) Create the set of β  random integers, R = {r1, r2,...,rβ}, having the following 

properties.  

b) For all j, l ∈ [1, β], rj ∈ [1, M] and rj = rl only if j = l. 

c) Construct yi by setting the j-th component of yi to the rj -th component of y for all 

j ∈ [1, β]. 

d) Construct Φ i, according to the following function. 

For all j ∈ [1, β], set the jth row of Φ i to the rj -th row of Φ . 

 

 

 

 

Figure 3.4: The ensemble of compressed measurement vector and measurement 

matrix. 

 

 

Figure 3.4 shows the result of applying the above procedure for L times to 

create the ensemble of L sampled signals. The total dimension of the ensemble is 

pM × 1 × L. The ensemble is accompanied by L truncated measurement matrices. The 

size of the truncated matrix is pM × N. Since all yi’s are the parts of the same y, their 

information is the same and they contain Gaussian noise of the same mean and the 

same variance. As long as the reconstruction does not use all signals in the ensemble 
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at once, it is safe to assume that reconstruction results from different yi contain 

different noise. 

 

3.2.2   Reconstruction by OMP-PKS 

The reconstruction of the proposed algorithm has the following requirements: 

(1) The reconstruction of the signal at low measurement rate (M/N), 

(2) fast reconstruction, 

(3) independent reconstruction result for each signal in the ensemble. 

The first requirement comes from the fact that the reconstruction is performed 

on the sampled signal which is smaller than y. The RIP in (2.4) is not always 

guaranteed. The second requirement is necessary because the reconstruction must be 

performed L times (L is the number of the signal in the ensemble). The third 

requirement is the result of taking the information from only one signal. By 

combining every sampled signal, original noisy y will be acquired. In the proposed 

algorithm, the denoising by averaging is possible when each yi has the distinct 

reconstruction result from one another. Since each yi carries different set of the y’s 

components, its total noise is different. Consequently, the reconstruction on each yi 

gives the result having different noise corrupted to each pixel. The noise in each pixel 

can be reduced by averaging. 

Even though the reconstruction is performed on the ensemble of y as DCS, 

DCS-SOMP is not applicable, since it does not meet the third requirement. Any 

greedy algorithms applied to each yi meet the second and the third requirements. The 

measurement rate can be kept low (the first requirement) by including the model into 

the reconstruction. OMP-PKS [30] is chosen in this algorithm, because its 

requirement for measurement rate is low. The experiment in [30] shows that the 

requirement of OMP-PKS was lower than CoSaMP-PKS. 

OMP-PKS is applied to every yi in the ensemble and forms L different sparse 

signals (wavelet coefficient). At the end of this stage, there are L noisy images. 
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3.2.3 Data merging 

L noisy cropped images at the end of the reconstruction process have noise 

that is similar to Gaussian noise (Figure 3.5). At the same position, the noise in 

different reconstructed images had distinctly different magnitude; consequently, it can 

be reduced by taking the average at each pixel in spatial domain. Because the average 

is not done in spatial domain, therefore the loss in spatial resolution is low. The 

denoising in spatial domain can be done by using the conventional denoising 

algorithms such as the Gaussian smoothing model [36], the Yaroslavsky 

neighborhood filters and an elegant variant [37]-[38], the translation invariant wavelet 

thresholding [39], and the discrete universal denoiser [40]. 

 

     

(a) Airplane (F-16) 

 

     

(b) Mandrill 

 

Figure 3.5: The reconstruction examples of yi.   

 

 

3.3   Reconstruction in impulsive noise environment 

The proposed noise rejection method is applied before the reconstruction and 

divided into two stages. In the first stage, the algorithm to detect impulsive noise is 

applied. Then OMP-PKS is also applied to estimate the information that is lost due to 
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the impulsive noise. The algorithm to detect the impulsive noise and the estimation of 

the missing information are described in Subsections 3.3.1 and 3.3.2, respectively. 

 

3.3.1   The detection of the impulsive noise 

Figures 3.6 and 3.7 show the examples of the reconstruction from y  corrupted 

by impulsive noise. In these two figures, Figures (a), (b) and (c) show the original 

blue y corrupted by the red impulsive noise, the original s and the reconstructed ŝ  

from Figure (a), respectively. The figures clearly indicate that the energy distribution 

was different. The energy of the signals in Figures 3.6(c) and 3.7(c) was spread out, 

while most energy of the signals in Figures 3.6(b) and 3.7(b) was contained in the 

third-level subbands. 

Even though there is no definite structure of y, Figures 3.6 and 3.7 indicate 

that the energy distribution of s can be exploited to detect the existence of impulsive 

noise. The large impulsive noise leads to a bad approximation of ŝ  whose energy 

leaks out of the third level subband. The ratio of the energy outside the third level 

subband to the total energy is used to determine the existence of the impulsive noise 

in y. The high ratio indicates that the energy is spread out; thus, the existence of the 

impulsive noise. The impulsive noise has very large magnitude in comparison to y. 

Consequently, if the impulsive noise exists, it has the largest magnitude. The removal 

of the impulsive noise is simply the removal of the elements with the largest 

magnitude. The size of the impulsive noise may vary, so the removal is performed 

iteratively until either of the following two stopping criteria is satisfied.  

(1) The reconstructed ŝ  has most of its energy inside the third level subband. 

(2) The reconstruction is unlikely to be successful because too many elements in y 

have been removed. 

According to the stopping criteria, there are two thresholds that need to be 

defined. The threshold in the first criterion is used to indicate the amount of the 

energy that is allowed to be leaked out of the third level subband. The amount of the 

energy is measured as the ratio to the total energy. The threshold is defined as the 
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(leakage) energy-ratio threshold, η . The threshold in the second criterion is required 

to ensure that there is sufficient information left for the reconstruction. This threshold 

is called rejection-ratio threshold, T, which is defined as the ratio between the 

numbers of the removed elements to the size of y (M). Thus, the maximum number of 

the elements that can be removed is TM. The optimum values of η  and T are 

investigated in Chapter 4. 

At each iteration, the noise corrupted elements are removed from y and the 

size of the available measurement signal becomes smaller. Hence, it is required that 

the reconstruction algorithm is still effective at low measurement rate. OMP-PKS is 

adopted by including the algorithm for the detection and the removal of impulsive 

noise as follows. 

Input: 

• An M × N measurement matrix, Φ  

• The M-dimensional compressed measurement signal, y 

• The sparsity level of the sparse signal, k 

• The number of wavelet coefficients in the third level subband, l3 

• The (leakage) energy-ratio threshold, η  

• The rejection-ratio threshold, T   

Output: 

• The number of impulsive noise corrupted elements, nδ  

• The set containing the nδ  indexes of the impulsive noise corrupted elements, 

{ }1 2
, , ...,

nδδς ϖ ϖ ϖ=  
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Noisy y 

 

(a) 

 

Original s 

 

(b) 

 

ŝ from noisy y 

 

(c) 

 

Figure 3.6: The first reconstruction example when y was corrupted by impulsive 

noise. (a) The 128-D y corrupted by 6 impulsive noise, (b) the original 256-D s (k = 

25) and (c) the signal reconstructed from (a) by OMP-PKS. In (b) and (c), the area to 

the left of the red dashed line belongs to the third level subband; the area to the right 

belongs to the first and the second level subbands. 
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Noisy y 

 

(a) 

 

Original s 

 

(b) 

 

ŝ from noisy y 

 

(c) 

 

Figure 3.7: The second reconstruction example when y was corrupted by impulsive 

noise. (a) The 128-D y corrupted by 6 impulsive noise, (b) the original 256-D s (k = 

25) and (c) the signal reconstructed from (a) by OMP-PKS. In (b) and (c), the area to 

the left of the red dashed line belongs to the third level subband; the area to the right 

belongs to the first and the second level subbands. 
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Procedure: 

a) Initialize 0, 0, , ,
t t

t nδ δς= = = ∅ = =y y Φ Φ . 

b) Apply OMP-PKS to reconstruct ŝ  from 
t

y  and 
t

Φ . 

c) Calculate the (leakage) energy-ratio (ER). 

3

2

1

2

1

ˆ

ER ,

ˆ

N

i

i l

N

j

j

s

s

= +

=

=
∑

∑
 

where îs and l3 are the i-th element of ŝ and the number of wavelet coefficients in 

the third level subband. 

d) Terminate if ER < η . 

e) Assign the elements in ty  having the maximum magnitude as the impulsive noise. 

mα  ( 1, 2, , ;
t t

m n nδ δ= …  is the number of the elements having the maximum 

magnitude in ty .) are defined as the indexes of  the recently assigned impulsive 

noise elements. Note that mα  are the indexes of y. In case that there are more than 

one element having the maximum magnitude ( 1
t

nδ > ), all of them are to be 

removed in Step i) 

f) Increment nδ  by 
t

nδ  and add mα  to δς .  

g) Terminate if n TMδ ≥ . 

h) Set 1t t= + . 

i) ty  is assigned the value of y after the noise elements (the elements with the 

indexes in δς ) are removed from y. tΦ  is assigned the value of Φ  after the rows 

corresponding to the noise elements are removed from Φ . 

j) Go to step b). 

If the algorithm is terminated in step g), the removal of impulsive noise is 

unsuccessful. Too many elements have been removed and it is unlikely that there is 

sufficient information to reconstruct ŝ  and estimate the missing information in the 

next stage.  
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It should be noted that the proposed algorithm is applicable to images because 

image data have some degree of redundancy. The rejection-ratio threshold, T, can be 

set quite large. For the signal data that has low degree of redundancy, the value of T 

has to be very small. In this case, the reconstruction is unlikely to succeed if every 

information in y is not used.  

 

3.3.2   Estimation of the missing information 

 The outputs ( nδ  and δς ) from the detection stage and y are used as the inputs 

of this stage. The noise corrupted elements, specified in δς , are removed. After the 

noise removal, the size of the compressed measurement signal y is smaller than the 

size of the original y; consequently, the reconstruction methods requiring high 

measurement rate may fail to reconstruct ŝ . It is necessary to estimate the values of 

the removed elements to preserve the measurement rate. In the proposed method, the 

values are estimated such that they comply with other noiseless elements. The 

estimation algorithm is as follows. 

Input:  

• The M-dimension compressed measurement signal, y 

• The number of impulsive noise corrupted elements, nδ  

• The set containing the nδ  indexes of the impulsive noise corrupted elements, 

{ }1 2, , ..., nδδς ϖ ϖ ϖ=  

Output :  

The estimated noise-free y, ŷ  

Procedure: 

a) Define sy  as y with its iϖ -th ( )1, 2, ...,i nδ= elements removed. Define sΦ  as Φ  

with its iϖ -th ( )1, 2, ...,i nδ=  rows removed. 

b) Apply OMP-PKS to reconstruct sŝ from sy  and sΦ . 
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c) Define s
ˆ=y Φsɶ  and estimate the i-th elements in ŷ  as follows. 

;
ˆ ,

;

i

i

i

y i
y

y i

δ

δ

ς

ς

∉
= 

∈ ɶ
 

where the subscript i indicates the i-th elements of the signal and 1, 2, ...,i M= .  

After this process, the impulsive noise corrupted elements in y are replaced by 

values complying with noise-free elements. Conventional CS reconstruction methods 

can be applied to reconstruct ŝ  from the impulsive noise free ŷ .  

 

3.4 Reconstruction in both Gaussian and impulsive noises 

environment 

It is possible that more than one kind of noise exist in the system. Figures 3.8 

and 3.9 show the examples of the reconstruction signal from y corrupted by the 

Gaussian and impulsive noise. Figures 3.8(a) and 3.9(a) show the blue y corrupted by 

the red Gaussian noise and impulsive noise. Figures 3.8 (b), (c), and (d) and 3.9(b), 

(c), and (d) show the original s, the reconstructed ŝ  from the noisy y, and ŝ  from the 

noisy y without impulsive noise corrupted elements, respectively. In Figures 3.8(b), 

(c), and (d) and 3.9(b), (c), and (d), the area to the left of the red dash line belongs to 

the third level subband; the area to the right belongs to the first and the second level 

subbands. The figures clearly indicate that the energy distribution were different. 

Most energy in Figures 3.8(b), (d) and 3.9(b), (d) located in the third-level subbands. 

While the energy in Figures 3.8(c) and 3.9(c) were spread out from the effect of the 

impulsive noise. 

The characteristic of energy distribution of ŝ  from Gaussian noise corrupted y 

is similar to the characteristic of energy distribution ŝ  from noise-free y. Thus, the 

impulsive noise rejection method in Section 3.3 can be applied to estimate impulsive 

noise free of y. However, the reconstructed signal is not exactly the same as the 

original s, because of the Gaussian noise in ŝ  (Figures 3.8(d) and 3.9(d)). The effect 

of Gaussian noise can be removed by using the method in Section 3.2. 
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Noisy y 

 
(a) 

Original s 

 
(b) 

ŝ from noisy y  

 
(c) 

ŝ from noisy y without impulsive noise 

 
(d) 

 

Figure 3.8: The first reconstruction example when y was corrupted by Gaussian and 

impulsive noises. (a) The 128-D y corrupted by 6 impulsive noise and Gaussian noise 

with 10 dB SNR. (b) The original 256-D s (k = 25). (c) The signal reconstructed from 

the noisy y in (a). (d) The signal reconstructed from y without the impulsive noise 

corrupted elements. 
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Noisy y 

 
(a) 

Original s 

 
(b) 

ŝ from noisy y 

 
(c) 

ŝ from noisy y without impulsive noise 

 
(d) 

 

Figure 3.9: The second reconstruction example when y was corrupted by Gaussian 

and impulsive noises. (a) The 128-D y corrupted by 6 impulsive noise and Gaussian 

noise with 10 dB SNR. (b) The original 256-D s (k = 25). (c) The signal reconstructed 

from the noisy y in (a). (d) The signal reconstructed from y without the impulsive 

noise corrupted elements. 
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 CHAPTER IV 

EXPERIMENT AND DISCUSSION 

 

 

4.1 Experiment setup 

The experiment was conducted on a PC with 2.83GHz Intel Core 2 Quad CPU 

and 4 GB of RAM. All methods were implemented by 64-bit MATLAB R2011a. The 

proposed methods were tested on 40 images. All test images were resized to 256×256. 

Figure 4.1 shows the test images. Images in the first row and the second row are the 

standard test images. The remaining images in the third row, the fourth row and the 

first two images in the fifth row are the artificial images. The remaining images are 

the natural images. (The artificial and natural images are available at 

http://sourceforge.net/projects/testimages/files/.)  

Octave-tree DWT was used to transform test images to sparse domain. The 

mother wavelet was Daubechies 8 (db8). The wavelet shrinkage thresholding [33] was 

applied to make the signal sparser. The measurement matrix was based on Hadamard 

matrix. Each wavelet image was divided into the block of 1×256. The number of 

blocks was 256. The average sparsity rate (k/N) of blocks in an image was 0.1. The 

average measurement rates used in the experiment were 0.2, 0.3, 0.4, 0.5 and 0.6. 

Peak signal-to-noise ratio (PSNR) and visual inspection were used for performance 

evaluation. All PSNRs shown in the graph were average PSNRs. 

 

4.2 Experiment on Gaussian noise environment 

OMP-PKS+Resampling (OMP-PKS+ReS) and OMP-PKS+Random 

Subsampling (OMP-PKS+RS) were compared with BPDN, LIHT, OMP-PKS, DCS-

SOMP+ReS, and DCS-SOMP+RS. Since the compression step in CS consists mostly 

of linear operations, Gaussian noise corrupting the signal in the earlier states is 

approximated as the Gaussian noise corrupting the compressed measurement vector.  
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Figure 4.1: The test images 
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The state where the noise corrupted the image was not specified; therefore, in this 

study, the compressed measurement y was simply corrupted by Gaussian noise. The 

level of Gaussian noise was varied according to its variance. 

The experiment consisted of three parts: (1) the evaluation for the size of an 

ensemble (L) and the size of a signal in the ensemble (p) for OMP-PKS+RS and DCS-

SOMP+RS in Section 4.2.1,  (2) the evaluation for OMP-PKS+ReS and DCS-

SOMP+ReS in Section 4.2.2, and (3) the performance evaluation in Section 4.2.3. 

 

4.2.1 Evaluation for L and p for DCS-SOMP+RS and OMP-PKS+RS 

Both OMP-PKS+RS and DCS-SOMP+RS require the ensemble of y. y was 

randomly subsampled with the algorithm described in Section 3.2.1 to create the 

ensemble. L and p for the optimum performance were investigated. p was measured in 

term of the ratio to the size of y. It should be noted that p is always less than 1. 

Figures 4.2-4.5 show the PSNR of the reconstruction images at different L and 

p when the noise variance (σ2
) were 0.025, 0.05, 0.075, and 0.1, respectively. The 

figures clearly show that the best performance of OMP-PKS+RS was better than the 

one of DCS-SOMP+RS in all cases. 

The line in the graph of Figures 4.2-4.5 was shown in different color to 

represent different p. The effect of p was more pronounced in OMP-PKS+RS than in 

DCS-SOMP+RS. The maximum PSNR in OMP-PKS+RS was achieved when 

p = 0.9, 0.7, 0.6, and 0.6 when σ2 
was 0.025, 0.05, 0.075, and 0.1, respectively. When 

the noise was low, the reconstruction by OMP-PKS+RS at higher p provided the 

higher PSNR; whereas, when the noise was high, the reconstruction at lower p was 

better. At lower p, the information of the signal was lower leading to the higher 

reconstruction error. However, when the signal was noisy, more information at higher 

p led to the ensemble of more similar noisy signals and averaging had lower effect for 

Gaussian denoising. On the other hand, at lower p, signals were more different 

leading to the different reconstruction images, which could be considered as the 

images corrupted by Gaussian noise of the same variance. Consequently averaging 
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would lead to the noise reduction. The effect of the reconstruction error was more 

pronounced at low noise environment, while the effect of Gaussian noise was more 

pronounced at the high noise environment. The PSNRs of DCS-SOMP+RS were 

almost the same because all signals were combined in the reconstruction which led to 

the original signal. 

The x-axis in Figures 4.2-4.5 represents L. When L was changed, the 

performance of DCS-SOMP+RS was almost unchanged. On the other hand, the 

performance of OMP-PKS+RS was better, when L was larger. When the noise was 

higher, OMP-PKS+RS required larger L to achieve the optimum performance. In 

order to achieve the best performance, OMP-PKS+RS required the larger L than 

DCS-SOMP+RS in all cases. In most cases, DCS-SOMP+RS and OMP-PKS+RS had 

already converged to their optimum performance at L = 6 and 16, respectively. 

The optimum p and L at various M/N and various noise levels were 

summarized in Tables 4.1 and 4.2, respectively. In DCS-SOMP+RS, the optimum p 

varied from 0.6 to 0.9. Out of 20 cases shown in the table, the optimum p was 0.9 in 

18 cases. Figures 4.2-4.5 indicated that p had little effect to the PSNR, so p for DCS-

SOMP+RS was set to 0.9 in Section 4.2.2. In OMP-PKS+RS, the optimum p varied 

from 0.6 to 0.9, note that in most cases (11 out of 20 cases), the optimum p was 0.6.  

Even though p in OMP-PKS+RS had more effect to the result’s PSNR than DCS-

SOMP+RS, it was found that the PSNR difference between the best case and p = 0.6 

was less than 1.2 dB. Hence, p for OMP-PKS+RS was set to 0.6 in Section 4.2.3. 

From Table 4.2, the optimum L for DCS-SOMP+RS was always equal to 6; 

thus, L for DCS-SOMP+RS was set to 6 in Section 4.2.3. In OMP-PKS+RS, the 

optimum L varied from 16 to 26. Out of 20 cases shown in the table, the optimum L 

was 21 in 9 cases. The optimum  L for OMP-PKS+RS was set to 21 in Section 4.2.3. 
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Figure 4.2: The average PSNR of reconstruction images by DCS-SOMP+RS and 

OMP-PKS+RS at M/N = 0.3 from y corrupted by Gaussian noise at σ
2
 = 0.025. 

 

 

 

 

 

 

Figure 4.3: The average PSNR of reconstruction images by DCS-SOMP+RS and 

OMP-PKS+RS at M/N = 0.3 from y corrupted by Gaussian noise at σ
2
 = 0.05. 
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Figure 4.4: The average PSNR of reconstruction images by DCS-SOMP+RS and 

OMP-PKS+RS at M/N = 0.3 from y corrupted by Gaussian noise at σ
2
 = 0.075. 

 

 

 

 

 

 

Figure 4.5: The average PSNR of reconstruction images by DCS-SOMP+RS and 

OMP-PKS+RS at M/N = 0.3 from y corrupted by Gaussian noise at σ
2
 = 0.1. 
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Table 4.1: The number of p which provided the highest PSNR 

 

M/N 

0.2 0.3 0.4 0.5 0.6 

σ
2
 

DCS-

SOMP 

+RS 

OMP-

PKS 

+RS 

DCS-

SOMP 

+RS 

OMP-

PKS 

+RS 

DCS-

SOMP 

+RS 

OMP-

PKS 

+RS 

DCS-

SOMP 

+RS 

OMP-

PKS 

+RS 

DCS-

SOMP 

+RS 

OMP-

PKS 

+RS 

0.025 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 

0.05 0.9 0.8 0.9 0.7 0.9 0.8 0.9 0.6 0.9 0.7 

0.075 0.6 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 

0.1 0.8 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 

 

 

Table 4.2: The number of L at which the converged PSNR was guaranteed  and  p 

were set according to Table 4.1. 

 M/N 

0.2 0.3 0.4 0.5 0.6 

σ
2
 

DCS-

SOMP 

+RS 

OMP-

PKS 

+RS 

DCS-

SOMP 

+RS 

OMP-

PKS 

+RS 

DCS-

SOMP 

+RS 

OMP-

PKS 

+RS 

DCS-

SOMP 

+RS 

OMP-

PKS 

+RS 

DCS-

SOMP 

+RS 

OMP-

PKS 

+RS 

0.025 6 16 6 16 6 21 6 21 6 21 

0.05 6 16 6 21 6 26 6 21 6 26 

0.075 6 26 6 16 6 21 6 31 6 26 

0.1 6 21 6 16 6 21 6 21 6 26 

 

 

4.2.2 Evaluation for L in DCS-SOMP+ReS and OMP-PKS+ReS 

The size of the signal in the ensemble for OMP-PKS+ReS and DCS-

SOMP+ReS was equal to the original size of y. Thus, only L was investigated for 

DCS-SOMP+ReS and OMP-PKS+ReS. y was resampled by the algorithm described 

in Section 3.2.1 to create the ensemble and p was set to 1.  

Figures 4.6-4.10 show the average PSNR of the reconstruction images at 

different L and variances. The measurement rate (M/N) in Figures 4.6-4.10 was set to 

0.2, 0.3, 0.4, 0.5, and 0.6, respectively. The solid line and the dashed line show the 
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PSNR of the reconstruction by DCS-SOMP+ReS and OMP-PKS+ReS, respectively. 

The figures clearly show that the best performance of OMP-PKS+ReS was better than 

the one of DCS-SOMP+ReS in all cases. 

The line in the graph of Figures 4.6-4.10 was shown in different color to 

represent different level of Gaussian noise level (in term of variance (σ2
)). The 

maximum PSNRs in both OMP-PKS+ReS and DCS-SOMP+ReS were achieved at σ2 

= 0.025 (the lowest noise level). Moreover, when the measurement rate was increased, 

the PSNR improvement of OMP-PKS+ReS over DCS-SOMP+ReS decreased. 

The x-axis in Figures 4.6-4.10 represents L. The performance of DCS-

SOMP+ReS was almost unchanged when L was changed. While the performance of 

OMP-PKS+ReS was better, when L was larger. OMP-PKS+ReS required the same L 

to achieve the optimum performance at different noise levels. In order to achieve the 

best performance, OMP-PKS+ReS required the larger L than DCS-SOMP+ReS in all 

cases. In most cases, DCS-SOMP+ReS and OMP-PKS+ReS had already converged to 

their optimum performance at L = 6 and 21, respectively. Thus, in Section 4.2.3, L for 

DCS-SOMP+ReS and OMP-PKS+ReS was set to 6 and 21, respectively. 

 

4.2.3 Performance evaluation 

 

The performance of OMP-PKS+RS and OMP-PKS+ReS were compared to 

the ones of BPDN, LIHT, OMP-PKS, DCS-SOMP+RS and DCS-SOMP+ReS in this 

section. BPDN, LIHT, and OMP-PKS used the single y to reconstruct the result, 

while OMP-PKS+RS, OMP-PKS+ReS, DCS-SOMP+RS, and DCS-SOMP+ReS used 

the ensemble of y. The error bound of BPDN was set to σ2
. The value of α in LIHT 

was set to the optimum value of 0.25 [24]. 
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Figure 4.6: The average PSNR of reconstruction images by DCS-SOMP+ReS and 

OMP-PKS+ReS at M/N = 0.2 from y corrupted by different levels (variances) of 

Gaussian noise. 

 

 

 

 

Figure 4.7: The average PSNR of reconstruction images by DCS-SOMP+ReS and 

OMP-PKS+ReS at M/N = 0.3 from y corrupted by different levels (variances) of 

Gaussian noise 
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Figure 4.8: The average PSNR of reconstruction images by DCS-SOMP+ReS and 

OMP-PKS+ReS at M/N = 0.4 from y corrupted by different levels (variances) of 

Gaussian noise 

 

 

 

 

Figure 4.9: The average PSNR of reconstruction images by DCS-SOMP+ReS and 

OMP-PKS+ReS at M/N = 0.5 from y corrupted by different levels (variances) of 

Gaussian noise. 
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Figure 4.10: The average PSNR of reconstruction images by DCS-SOMP+ReS and 

OMP-PKS+ReS at M/N = 0.6 from y corrupted by different levels (variances) of 

Gaussian noise. 

 

 

4.2.3.1  Evaluation by PSNR 

 

Figures 4.11-4.14 show the PSNR when σ2
 was set to 0.025, 0.05, 0.075, and 

0.1, respectively. BPDN, LIHT, and OMP-PKS are shown in blue, magenta, and 

black solid line with circle maker, respectively. OMP-PKS+ReS and DCS-

SOMP+ReS are shown in red and green solid line with square marker, respectively. 

OMP-PKS+RS and DCS-SOMP+RS are shown in red and green dash line with x 

marker, respectively. When M/N was higher, the reconstruction was better in all cases. 

However, the effect of the measurement rate to the performance of OMP-PKS+RS 

was lower than the others techniques. 

Figures 4.11-4.14 also indicate that the proposed OMP-PKS+ReS was the 

most effective reconstruction at all M/N, except at M/N = 0.4, σ2
 = 0.025. The PSNR 

acquired by the reconstruction from OMP-PKS+ReS and OMP-PKS+RS was 

approximately the same. When the noise was increased, the reconstruction from the 

signal ensemble (OMP-PKS+ReS, OMP-PKS+RS, and DCS-SOMP+ReS) was better 



45 

than the performance of the reconstruction from one signal (BPDN, LIHT, and OMP-

PKS) in all cases but at M/N = 0.2. 

It should be noted that even though LIHT was designed for the reconstruction 

of noisy signal, its performance was the worst in almost all cases. This was due to its 

requirement of very sparse data (or very high M/N). Its performance was still not 

converged at M/N = 0.6; however, M/N could not be increased indefinitely. The major 

benefit of CS is the capability to reconstruct the signal from small y, so the large M/N 

will eliminate the CS benefit. For example, at the sparsity rate of 0.1, M/N = 0.5 

would lead to y with the size of 50% of the original image size. Such large 

compressed image could be achieved by conventional image compression techniques. 

Thus, it was rare that M/N could be increased to 0.5 or larger. 

Since OMP-PKS+ReS, OMP-PKS+RS, and OMP-PKS used the same 

reconstruction method, the PSNR difference between OMP-PKS+ReS, OMP-

PKS+RS and OMP-PKS indicated the PSNR improvement by using the ensemble of 

y. The average PSNR improvement was more than 0.79 dB when σ2 
> 0.025. The 

PSNRs from OMP-PKS based ensemble method at M/N = 0.2 were higher than the 

one from OMP-PKS for all σ2
. It indicated that by using the ensemble of signal, 

OMP-PKS+ReS and OMP-PKS+RS required lower M/N to achieve the same 

performance level of OMP-PKS.  

 

4.2.3.2  Evaluation by visual inspection 

The reconstruction results of seven test images were evaluated in this section. 

Figures 4.15-4.20 show the reconstruction of Peppers, Woman, Ripple, Arc, Pillar, 

and Fence, respectively. M/N and σ2 
were 0.3 and 0.1, respectively. The original 

images are shown in the first column of the top row. The reconstruction results based 

on BPDN, LIHT, and OMP-PKS are shown in the second, the third, and the fourth 

columns of the top row, respectively. DCS-SOMP+ReS, OMP-PKS+ReS, DCS-

SOMP+RS, and OMP-PKS+RS are shown in the first, the second, the third, and the  
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Figure 4.11: The average PSNR of reconstruction images based on BPDN, LIHT, 

OMP-PKS, OMP-PKS+ReS (L = 21), DCS-SOMP+ReS (L = 6), OMP-PKS+RS (p = 

0.6, L = 21), and DCS-SOMP+RS (p = 0.9, L = 6) when y is corrupted by Gaussian 

noise with σ
2
 = 0.025. 

 

 

Figure 4.12: The average PSNR of reconstruction images based on BPDN, LIHT, 

OMP-PKS, OMP-PKS+ReS (L = 21), DCS-SOMP+ReS (L = 6), OMP-PKS+RS (p = 

0.6, L = 21), and DCS-SOMP+RS (p = 0.9, L = 6) when y is corrupted by Gaussian 

noise with σ
2
 = 0.05. 
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Figure 4.13: The average PSNR of reconstruction images based on BPDN, LIHT, 

OMP-PKS, OMP-PKS+ReS (L = 21), DCS-SOMP+ReS (L = 6), OMP-PKS+RS (p = 

0.6, L = 21), and DCS-SOMP+RS (p = 0.9, L = 6) when y is corrupted by Gaussian 

noise with σ
2
 = 0.075. 

 

 

Figure 4.14: The average PSNR of reconstruction images based on BPDN, LIHT, 

OMP-PKS, OMP-PKS+ReS (L = 21), DCS-SOMP+ReS (L = 6), OMP-PKS+RS (p = 

0.6, L = 21), and DCS-SOMP+RS (p = 0.9, L = 6) when y is corrupted by Gaussian 

noise with σ
2
 = 0.1 
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fourth columns of the bottom row, respectively. BPDN and LIHT failed to reconstruct 

some blocks as shown as dark dots (such as on the face of woman in Figure 4.16, the 

middle of the vertical pillar in Figure 4.19). DCS-SOMP+ReS method gave the 

results that were too smoothed in some regions and noisy in some other regions. The 

results by DCS-SOMP+ReS contained less noise but in some case (Figure 4.15-4.16, 

4.19-4.20), most of its information was smoothed out. OMP-PKS, OMP-PKS+ReS 

and OMP-PKS+RS successfully reconstructed all seven images. The reconstruction 

by OMP-PKS+ReS and OMP-PKS+RS provided the result that was not 

oversmoothed; most edges were visible and Gaussian noise was suppressed in most 

area. In all images, the change in the intensity contrast was due to the normalization 

of the inverse wavelet transform. 

The PSNR performance and visual quality of the proposed OMP-PKS+ReS 

and OMP-PKS+RS were very close. Moreover, the optimum L for both methods was 

21. However, the size of a sampled signal in the ensemble of OMP-PKS+RS (p = 0.6) 

was smaller than the one of OMP-PKS+ReS (p = 1). Thus, the processing time of 

OMP-PKS+RS was lower. It can then be concluded that OMP-PKS+RS was more 

optimal than OMP-PKS+ReS. 

The reason behind the noise reduction of OMP-PKS+RS and OMP-PKS+ReS 

was that the reconstruction based on OMP-PKS+ReS and OMP-PKS+RS produced 

different result for difference signal in the ensemble; therefore, the noise in each pixel 

could be reduced by averaging the intensity among signals in the ensemble. On the 

other hand, DCS-SOMP+ReS and DCS-SOMP+RS tried to find one result for every 

signal in the ensemble. Because the ensemble came from only one signal; hence, the 

noise was the same and the noise went directly to the result. 
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Original image 
BPDN 

(PSNR = 17.06 dB) 

LIHT 

(PSNR = 14.59 dB) 

OMP-PKS 

(PSNR = 17.61 dB) 

    

    
DCS-SOMP+ReS 

(PSNR = 19.18 dB) 

OMP-PKS+ReS 

(PSNR = 20.89 dB) 

DCS-SOMP+RS 

(PSNR= 18.45 dB)) 

OMP-PKS+RS 

(PSNR= 20.91 dB) 

Figure 4.15: Comparisons of the reconstructed Peppers with M/N = 0.3 and σ
2
 = 0.1. 

 

 

    

Original image 
BPDN 

(PSNR = 14.65 dB) 

LIHT 

(PSNR = 14.80 dB) 

OMP-PKS 

(PSNR = 16.56 dB) 

    

    
DCS-SOMP+ReS 

(PSNR = 19.81 dB) 

OMP-PKS+ReS 

(PSNR = 21.34 dB) 

DCS-SOMP+RS 

(PSNR = 19.34 dB) 

OMP-PKS+RS 

(PSNR = 21.53 dB) 

Figure 4.16: Comparisons of the reconstructed Woman with M/N = 0.3 and σ
2
 = 0.1. 
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Original image 
BPDN 

(PSNR = 12.99 dB) 

LIHT 

(PSNR = 11.74 dB) 

OMP-PKS 

(PSNR = 13.53 dB) 

    

    
DCS-SOMP+ReS 

(PSNR = 14.37 dB) 

OMP-PKS+ReS 

(PSNR = 16.57 dB) 

DCS-SOMP+RS 

(PSNR = 13.89 dB) 

OMP-PKS+RS 

(PSNR = 16.65 dB) 

Figure 4.17: Comparisons of the reconstructed Ripple with M/N = 0.3 and σ
2
 = 0.1. 

 

 

    

Original image 
BPDN 

(PSNR = 10.20 dB) 

LIHT 

(PSNR = 7.77 dB) 

OMP-PKS 

(PSNR = 9.96 dB) 

    

    
DCS-SOMP+ReS 

(PSNR = 12.93 dB) 

OMP-PKS+ReS 

(PSNR = 12.24 dB) 

DCS-SOMP+RS 

(PSNR = 11.57 dB) 

OMP-PKS+RS 

(PSNR = 12.69 dB) 

Figure 4.18: Comparisons of the reconstructed Arc with M/N = 0.3 and σ
2
 = 0.1. 
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Original image 
BPDN 

(PSNR = 12.30 dB) 

LIHT 

(PSNR = 12.53 dB) 

OMP-PKS 

(PSNR = 16.89 dB) 

    

    
DCS-SOMP+ReS 

(PSNR = 21.95 dB) 

OMP-PKS+ReS 

(PSNR = 21.64 dB) 

DCS-SOMP+RS 

(PSNR = 19.52 dB) 

OMP-PKS+RS 

(PSNR = 21.91 dB) 

Figure 4.19: Comparisons of the reconstructed Pillar with M/N = 0.3 and σ
2
 = 0.1. 

 

 

    

Original image 
BPDN 

(PSNR = 19.47 dB) 

LIHT 

(PSNR = 16.19 dB) 

OMP-PKS 

(PSNR = 19.91 dB) 

    

    
DCS-SOMP+ReS 

(PSNR = 20.31 dB) 

OMP-PKS+ReS 

(PSNR = 21.04 dB) 

DCS-SOMP+RS 

(PSNR = 17.23 dB) 

OMP-PKS+RS 

(PSNR = 20.86 dB) 

Figure 4.20: Comparisons of the reconstructed Fence with M/N = 0.3 and σ
2
 = 0.1. 
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4.3  Experiment on impulsive noise environment 

In this section, the performance of OMP-PKS with the proposed rejection 

method as the preprocessing (OMP-PKS+R) was investigated. The probability of 

impulsive noise is denoted as q; q∈ {0, 0.05, 0.10, 0.15, 0.20}. The magnitude of 

impulsive noise was set relative to the maximum magnitude in y (ymax). The 

experiment consists of two parts: (1) the evaluation of the two thresholds (η  and T) 

and the minimum size of the detectable impulsive noise in Subsection 4.3.1 and (2) 

the performance evaluation of the proposed method in Subsection 4.3.2 

 

4.3.1 Evaluation of the two thresholds and the minimum size of the detectable 

impulsive noise  

 In this section, 500 blocks were randomly selected from blocks in 40 test 

images. The sparsity rate was fixed at 0.1. Figure 4.21 shows the relationship between 

the energy ratio threshold (η ) and the percent that the proposed method was unable to 

correctly reject the impulsive noise corrupted elements. The result form different 

magnitudes of impulsive noise are shown in different color. The value in the figure 

was the value averaged over five values of q and five values of measurement rates 

(M/N) which were 0.2, 0.3, 0.4, 0.5, and 0.6. The result indicated that percent of 

inaccurate rejection decreased when the magnitude of the impulsive noise was 

increased. From further investigation, it was found that the proposed impulsive noise 

rejection method was unable to keep the percent of inaccurate rejection to less than 

0.5% if the magnitude of the impulsive noise was less than 2.5 ymax. 

Figure 4.21 also indicated the relationship of η  to the percent of inaccurate 

rejection. The inaccurate rejection was the result of (1) the rejection of the noise-free 

elements and (2) the failure to reject the noise corrupted elements. When η  was too 

small, the energy-ratio criterion was too strict and the proposed method did not accept 

even the correct energy distribution of ŝ ; consequently, it started to remove the 

elements uncorrupted by noise. In the opposite case, when η  was too large, the 

energy-ratio criterion became too lax and the proposed method accepted even the 
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incorrect energy distribution of ŝ ; consequently, it failed to remove the noise 

corrupted elements. The range of η  giving less than 0.5% of inaccurate rejection was 

larger, when the magnitude of the impulsive noise was larger. This was because the 

effect of the impulsive noise to the energy distribution became more distinct and 

easier to detect when the size of the noise was larger. When the magnitude of the 

impulsive noise was at least 2.5ymax, the values of η  giving less than 0.5% inaccurate 

rejection were 0.07 to 0.22. Among these values, the values of η  = 0.1 gave the most 

accurate rejection. 

 

 

Figure 4.21: The percent of inaccurate rejection of OMP-PKS+R from y corrupted by 

impulsive noise when η  ((leakage) energy-ratio threshold) was varied. 

 

The evaluation for the optimum rejection-ratio threshold, T, was performed by 

investigating for the maximum number of the elements in y that can be removed 

without causing the high error between ŝ  and s. Figure 4.22 shows the MSE of the 

signals reconstructed by OMP-PKS when TM elements in y were removed. Different 

M/N are presented with different colors. The figure indicates that when M/N 

increased, more elements could be removed without causing a drastic change in MSE. 

At M/N = 0.2, MSE approximately increased at the exponential rate, when T was 



54 

larger or equal to 0.45. At the higher measurement rates, the effect of T was not 

distinct, even when more than half of y was removed.  

 Because the benefit of CS is the capability of compressing the signal to very 

small size, M/N should be kept low. It is recommended that T be selected such that it 

is applicable even at low measurement rate. In the following section, T was set to 0.4 

to ensure the high probability of successful reconstruction. The value of η  was set to 

0.1 as it was the optimal value. 

 

 

Figure 4.22: The MSE of the reconstructed signal when T was varied. The sparsity 

rate was set to 0.1 

 

4.3.2 Performance Evaluation 

 In this section, the following four reconstruction methods were investigated. 

• OMP-PKS 

• OMP-PKS+R 

• LIHT 

• LIHT with the proposed rejection method as the preprocessing (LIHT+R) 
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The Lorentzian parameter and the number of iteration for LIHT were 0.25 and 

100, respectively. The values of η  and T were 0.1 and 0.4, respectively. There were 

256 y’s in an image and ymax was chosen as the maximum magnitude among 256 y’s 

in the image. The magnitude of impulsive noise varied according to the Gaussian pdf 

with the mean of 7ymax and the standard deviation of ymax. The performance is 

evaluated based on the PSNR of the reconstructed images, the computational time and 

the visual quality of the reconstructed images.   

 The experiments in Figures 4.23-4.27 show the average results of the 40 test 

images. Figures 4.23-4.27 show the PSNR (subfigure a) and the computational time 

(subfigure b) at different q (noise probability). At q = 0 (noiseless) in Figure 4.23(a), 

the addition of the proposed method to OMP-PKS and LIHT did not reduce the PSNR 

of the reconstructed images. It indicated that the proposed method preserved y when 

there was no impulsive noise. When y was corrupted by impulsive noise (q > 0) in 

Figures 4.24(a)-4.27(a), the reconstruction based on OMP-PKS (the blue line) gave 

very low PSNR, because OMP-PKS is designed with the assumption of bounded 

noise. The reconstruction based on OMP-PKS could not be improved by increasing 

M/N. However, when the noisy y was preprocessed by the proposed method, the 

reconstruction based on OMP-PKS (the dashed blue line) was very effective. At M/N 

= 0.4 and higher, the reconstruction from the noisy y by OMP-PKS+R had the 

comparable PSNR to the reconstruction from the noiseless y by OMP-PKS. 

At p = 0.05 in Figure 4.24(a), the effect of adding the proposed method as the 

preprocessing to LIHT was minimal; however, at higher q, the addition of the 

proposed method (the dashed red line) resulted in higher PSNR than the 

reconstruction by LIHT alone (the red line). When q was 0.15 or higher as shown in 

Figures 4.26(a)-4.27(a), LIHT was no longer an effective reconstruction method, but 

LIHT+R was still effective. It indicated that the addition of the proposed method 

increased the robustness against q to LIHT. 

It should be noted that even though LIHT was based on LIHT which was 

designed to be robust against impulsive noise. LIHT+R provided less PSNR than 

OMP - PKS + R,  because  LIHT  required   the   higher  M/N.  Figures  4.23(a)-4.27(a)  
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(a) 

 

 

 

 

 

(b) 

Figure 4.23: The performance comparisons in term of (a) PSNR and (b) 

computational time at various M/N when q = 0. 
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(a) 

 

 

 

 

 

(b) 

Figure 4.24: The performance comparisons in term of (a) PSNR and (b) 

computational time at various M/N when noise q = 0.05. 
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(a) 

 

 

 

 

 

b) 

Figure 4.25: The performance comparisons in term of (a) PSNR and (b) 

computational time at various M/N when q = 0.1. 
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(a) 

 

 

 

 

 

 

(b) 

Figure 4.26: The performance comparisons in term of (a) PSNR and (b) 

computational time at various M/N when q = 0.15. 
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(a) 

 

 

 

 

 

 

(b) 

Figure 4.27: The performance comparisons in term of (a) PSNR and (b) 

computational time at various M/N when q = 0.2. 
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indicated that LIHT+R provide the most effective PSNR when M/N was 0.6 and it 

should become better at the higher M/N. However, the improvement by increasing 

M/N is not recommended because it leads to the large size of y and eliminates the 

benefit of CS. 

Figures 4.23(a)-4.27(a) also indicates the relationship between M/N and q. 

When q was higher, M/N should be set higher. This was because the number of the 

noise corrupted elements was larger at higher q. Consequently, the larger size of y 

was required to cope with the removal of more elements. The figures show that in 

OMP-PKS+R, M/N of 0.4 gave the good reconstruction for all q in this experiment. 

 Figures 4.23(b)-4.27(b) show the computational time of OMP-PKS, OMP-

PKS+R, LIHT and LIHT+R. Since at least one reconstruction is required in the 

proposed method, the computation time will be at least doubled. The computational 

time for reconstructing 256 blocks in an image could be reduced as follows.  

a) Apply the proposed rejection method to the first block. Define β  as the smallest 

magnitude of the noise corrupted elements in the first block.  

b) Move to the next block. Define the compressed measurement of the new block as 

ycurr. 

c) Assign the elements in ycurr having the magnitude not less than β  as the 

impulsive noise. Initialize variables in Step a) of Section 3.3.1 such that they 

reflect the removal of the elements with the magnitude not less than β . 

d) Apply the proposed rejection method to ycurr. If β  is larger than the smallest 

magnitude of the noise corrupted elements in ycurr, set β  to this value. 

e) If the current block is the last block in the image, terminate. Otherwise, go to step 

b). 

The assumption of the above algorithm is that the magnitude of impulsive 

noise in every block is approximately the same (or share the same distribution). The 

graphs indicated that the computational time of the reconstruction with the proposed 

rejection method was no more than 4 times the computational time of the 

reconstruction without the proposed rejection method. 
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 From the experiments, it could be concluded that the proposed method should 

be included in the reconstruction from the impulsive noise corrupted y. The addition 

of the proposed method increased the computational time no more than 4 times the 

original computational time. Finally, OMP-PKS+R was more optimal than LIHT+R. 

 Figures 4.28-4.33 show the examples of the reconstruction images when M/N 

is 0.3. The original image is shown in the first column. The reconstruction results 

based on LIHT, LIHT+R, OMP-PKS and OMP-PKS+R are shown in the second, the 

third, the fourth and the fifth columns, respectively. When the impulsive noise was 

added to y, the reconstruction based on OMP-PKS failed in every case. The 

reconstruction based on LIHT failed in some cases at q = 0.1, and failed in every case 

at q ≥ 0.15. The addition of the proposed algorithm to OMP-PKS and LIHT, namely 

OMP-PKS+R and LIHT+R led to the successful reconstruction in every case. 

Furthermore, the reconstruction based on OMP-PKS+R provided the reconstruction 

results that were more similar to the original images than the ones based on LIHT+R. 

These results complied with the conclusion that was drawn from the PSNR graphs in 

Figures 4.23-4.27. 

4.4 Experiment on Gaussian and impulsive noises environment 

The experiments in Sections 4.2 and 4.3 showed that the reconstruction from 

OMP-PKS+RS and OMP-PKS+R could reduce the effect of Gaussian and impulsive 

noise. Thus, if y is corrupted by both Gaussian and impulsive noise, the combination 

of OMP-PKS+RS and OMP-PKS+R should be applied. In this section, the proposed 

method (OMP-PKS+R+RS) is compared with LIHT. The parameters for OMP-

PKS+R+RS were analyzed in the previous sections. p, L and T were set to 0.6, 21, and 

0.4, respectively.  

The experiment consists of two parts: (1) evaluation for η  in Section 4.4.1 and 

(2) performance evaluation in Section 4.4.2. 
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Original image LIHT LIHT+R OMP-PKS OMP-PKS+R 

    

(a) q = 0 
PSNR = 15.75 dB, 

Time = 40.99 s. 

PSNR = 15.75 dB, 

Time = 84.62 s. 

PSNR = 27.29 dB, 

Time = 22.22 s. 

PSNR = 27.26 dB, 

Time = 54.64 s. 

 

    

(b) q = 0.05 PSNR = 15.49 dB, 

Time = 38.10 s. 

PSNR = 15.67 dB, 

Time = 95.48 s. 

PSNR = 11.83 dB, 

Time = 19.82 s. 

PSNR = 25.81 dB, 

Time = 65.06 s. 

 

    

(c) q = 0.1 PSNR = 12.49 dB, 

Time = 39.35 s. 

PSNR = 15.66 dB, 

Time = 100.91 s. 

PSNR = 11.90 dB, 

Time = 20.22 s. 

PSNR = 23.88 dB, 

Time = 72.76 s. 

 

    

(d) q = 0.15 PSNR = 12.27 dB, 

Time = 39.39 s. 

PSNR = 15.69 dB, 

Time = 96.91 s. 

PSNR = 12.05 dB, 

Time = 20.23 s. 

PSNR = 23.07dB, 

Time = 72.49 s. 

 

    

(e) q = 0.2 
PSNR = 12.06 dB, 

Time = 43.12 s. 

PSNR = 15.78 dB, 

Time = 104.03 s. 

PSNR = 11.82 dB, 

Time = 19.62 s. 

PSNR = 22.38 dB, 

Time = 71.19 s. 

Figure 4.28: The part of the reconstructed Peppers at M/N = 0.3 with the noise 

probability (q) of (a) 0, (b) 0.05, (c) 0.1, (d) 0.15 and (e) 0.2. The images from left to 

right are the original image and reconstructed images based on LIHT, LIHT+R, 

OMP-PKS and OMP-PKS+R, respectively. 
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Original image LIHT LIHT+R OMP-PKS OMP-PKS+R 

    

(a) q = 0 PSNR = 14.66 dB, 

Time = 42.63 s. 

PSNR = 14.66 dB, 

Time = 84.52 s. 

PSNR = 28.08 dB, 

Time = 22.60 s. 

PSNR = 28.08 dB, 

Time = 48.18 s. 

 

    

(b) q = 0.05 PSNR = 14.86 dB, 

Time = 37.08 s. 

PSNR = 15.11 dB, 

Time = 80.29 s. 

PSNR = 13.20 dB, 

Time = 17.19 s. 

PSNR = 26.93 dB, 

Time = 58.89 s. 

 

    

(c) q = 0.1 PSNR = 12.80 dB, 

Time = 36.74 s. 

PSNR = 14.65 dB, 

Time = 82.42 s. 

PSNR = 12.18 dB, 

Time = 17.36 s. 

PSNR = 25.99 dB, 

Time = 64.62 s. 

 

    

(d) q = 0.15 PSNR = 12.66 dB, 

Time = 37.86 s. 

PSNR = 14.60 dB, 

Time = 83.59 s. 

PSNR = 12.37 dB, 

Time = 17.13 s. 

PSNR = 24.13dB, 

Time = 64.67 s. 

 

    

(e) q= 0.2 
PSNR = 13.02 dB, 

Time = 37.78 s. 

PSNR = 14.15 dB, 

Time = 88.35 s. 

PSNR = 12.85 dB, 

Time = 17. s. 

PSNR = 23.78 dB, 

Time = 67.92 s. 

Figure 4.29: The part of the reconstructed Woman at M/N = 0.3 with the noise 

probability (q) of (a) 0, (b) 0.05, (c) 0.1, (d) 0.15 and (e) 0.2. The images from left to 

right are the original image and reconstructed images based on LIHT, LIHT+R, 

OMP-PKS and OMP-PKS+R, respectively. 
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Original image LIHT LIHT+R OMP-PKS OMP-PKS+R 

    

(a) q = 0 PSNR = 13.07 dB, 

Time = 38.11 s. 

PSNR = 13.07 dB, 

Time = 59.46 s. 

PSNR = 27.78 dB, 

Time = 20.54 s. 

PSNR = 27.78 dB, 

Time = 41.11 s. 

 

    

(b) q = 0.05 PSNR = 13.60 dB, 

Time = 39.13 s. 

PSNR = 13.03 dB, 

Time = 79.85 s. 

PSNR = 9.04 dB, 

Time = 17.95 s. 

PSNR = 26.55 dB, 

Time = 58.10 s. 

 

    

(c) q = 0.1 
PSNR =  9.63 dB, 

Time = 37.04  s. 

PSNR = 13.12 dB, 

Time = 72.80 s. 

PSNR = 8.9 dB, 

Time = 18.17 s. 

PSNR = 26.01 dB, 

Time = 57.52 s. 

 

    

(d) q = 0.15 
PSNR = 8.85dB, 

Time = 33.45 s. 

PSNR = 12.80 dB, 

Time = 71.90 s. 

PSNR = 9.28 dB, 

Time = 17.10 s. 

PSNR = 20.50 dB, 

Time = 55.58 s. 

 

    

(e) q = 0.2 
PSNR = 8.48 dB, 

Time = 34.96 s. 

PSNR = 13.26 dB, 

Time = 77.27 s. 

PSNR = 9.33  dB, 

Time = 16.01 s. 

PSNR = 19.19 dB, 

Time = 55.96 s. 

Figure 4.30: The part of the reconstructed Ripple at M/N = 0.3 with the noise 

probability (q) of (a) 0, (b) 0.05, (c) 0.1, (d) 0.15 and (e) 0.2. The images from left to 

right are the original image and reconstructed images based on LIHT, LIHT+R, 

OMP-PKS and OMP-PKS+R, respectively. 
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Original image LIHT LIHT+R OMP-PKS OMP-PKS+R 

    

(a) q = 0 
PSNR = 13.07 dB, 

Time = 38.11 s. 

PSNR = 13.07 dB, 

Time = 59.46 s. 

PSNR = 27.78 dB, 

Time = 20.54 s. 

PSNR = 27.78 dB, 

Time = 41.11 s. 

 

    

(b) q = 0.05 PSNR = 13.60 dB, 

Time = 39.13 s. 

PSNR = 13.03 dB, 

Time = 79.85 s. 

PSNR = 9.04 dB, 

Time = 17.95 s. 

PSNR = 26.55 dB, 

Time = 58.10 s. 

 

    

(c) q = 0.1 PSNR =  9.63 dB, 

Time = 37.04  s. 

PSNR = 13.12 dB, 

Time = 72.80 s. 

PSNR = 8.9 dB, 

Time = 18.17 s. 

PSNR = 26.01 dB, 

Time = 57.52 s. 

 

    

(d) q = 0.15 PSNR = 8.85dB, 

Time = 33.45 s. 

PSNR = 12.80 dB, 

Time = 71.90 s. 

PSNR = 9.28 dB, 

Time = 17.10 s. 

PSNR = 20.50 dB, 

Time = 55.58 s. 

 

    

(e) q = 0.2 
PSNR = 8.48 dB, 

Time = 34.96 s. 

PSNR = 13.26 dB, 

Time = 77.27 s. 

PSNR = 9.33  dB, 

Time = 16.01 s. 

PSNR = 19.19 dB, 

Time = 55.96 s. 

Figure 4.31: The part of the reconstructed Arc  at M/N = 0.3 with the noise 

probability (q) of (a) 0, (b) 0.05, (c) 0.1, (d) 0.15 and (e) 0.2. The images from left to 

right are the original image and reconstructed images based on LIHT, LIHT+R, 

OMP-PKS and OMP-PKS+R, respectively. 
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Original image LIHT LIHT+R OMP-PKS OMP-PKS+R 

     

(a) q = 0 
PSNR = 14.27 dB, 

Time = 27.98 s. 

PSNR = 14.27 dB, 

Time = 46.13 s. 

PSNR = 34.16 dB, 

Time = 17.46 s. 

PSNR = 34.16 dB, 

Time = 35.64 s. 

 

    

(b) q = 0.05 PSNR = 14.38 dB, 

Time = 27.68 s. 

PSNR = 14.23 dB, 

Time = 59.85 s. 

PSNR = 11.12 dB, 

Time = 15.16 s. 

PSNR = 33.91 dB, 

Time = 49.53 s. 

 

    

(c) q = 0.1 
PSNR = 14.57 dB, 

Time = 29.53  s. 

PSNR = 14.44 dB, 

Time = 64.68 s. 

PSNR = 11.01 dB, 

Time = 15.78 s. 

PSNR = 33.13 dB, 

Time = 53.83 s. 

 

    

(d) q = 0.15 PSNR = 12.51 dB, 

Time = 28.11 s. 

PSNR = 14.62 dB, 

Time = 64.24 s. 

PSNR = 10.32 dB, 

Time = 15.22 s. 

PSNR = 31.22 dB, 

Time = 53.45 s. 

 

    

(e)  q = 0.2 
PSNR = 11.30 dB, 

Time = 30.77 s. 

PSNR = 14.33 dB, 

Time = 71.34 s. 

PSNR = 11.06 dB, 

Time = 16.70 s. 

PSNR = 28.32 dB, 

Time = 59.64 s. 

Figure 4.32: The part of the reconstructed Pillar at measurement M/N = 0.3 with the 

noise probability (q) of (a) 0, (b) 0.05, (c) 0.1, (d) 0.15 and (e) 0.2. The images from 

left to right are the original image and reconstructed images based on LIHT, LIHT+R, 

OMP-PKS and OMP-PKS+R, respectively. 
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Original image LIHT LIHT+R OMP-PKS OMP-PKS+R 

     

(a) q = 0 
PSNR = 15.73 dB, 

Time = 73.57 s. 

PSNR = 15.73 dB, 

Time = 140.33 s. 

PSNR = 26.18 dB, 

Time = 35.32 s. 

PSNR = 26.18 dB, 

Time = 80.03 s. 

 

    

(b) q = 0.05 PSNR = 16.26 dB, 

Time = 69.70 s. 

PSNR = 14.68 dB, 

Time = 149.76 s. 

PSNR = 13.31 dB, 

Time = 32.73 s. 

PSNR = 25.08 dB, 

Time = 113.88 s. 

 

    

(c) q = 0.1 
PSNR = 14.09 dB, 

Time = 70.33  s. 

PSNR = 14.11 dB, 

Time = 150.30 s. 

PSNR = 13.32 dB, 

Time = 30.92 s. 

PSNR = 23.91 dB, 

Time = 104.18 s. 

 

    

(d) q = 0.15 
PSNR = 13.85 dB, 

Time = 62.23 s. 

PSNR = 15.30 dB, 

Time = 141.41 s. 

PSNR = 13.62 dB, 

Time = 30.22 s. 

PSNR = 21.29 dB, 

Time = 102.07 s. 

 

    

(e) q = 0.2 
PSNR = 13.43 dB, 

Time = 65.49 s. 

PSNR = 15.83 dB, 

Time = 137.21 s. 

PSNR = 12.95 dB, 

Time = 31.90 s. 

PSNR = 17.10 dB, 

Time = 102.37 s. 

Figure 4.33: The part of the reconstructed Fence at M/N = 0.3 with the noise 

probability (q) of (a) 0, (b) 0.05, (c) 0.1, (d) 0.15 and (e) 0.2. The images from left to 

right are the original image and reconstructed images based on LIHT, LIHT+R, 

OMP-PKS and OMP-PKS+R, respectively. 
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4.4.1 Evaluation for η  

In order to cope with the higher error from the Gaussian noise, more energy 

was allowed outside the third level subband and more data were required for the 

reconstruction. η  was evaluated based on the percent of inaccurate rejection from y 

corrupted by both Gaussian and impulsive noises as shown in Figures 4.33-4.36. In 

Figures 4.34-4.37, the variances of Gaussian noise (σ2
) were 0.025, 0.05, 0.075, and 

0.1, respectively. The figures shown that when σ2
 was increased; the percent of 

inaccurate rejection at η  < 0.05 was very high. However, the trend of percent of 

inaccurate rejection at different values of σ2
 was the same. When the magnitude of the 

impulsive noise was at least 2.5 ymax, the values of η  giving less than 0.5% inaccurate 

rejection was between 0.07 to 0.22. The result was in accordance with the one in the 

Subsection 4.3.1. Thus, the values of η  was set to 0.1 in Section 4.4.2. 

 

 

 

Figure 4.34: The percent of inaccurate rejection of OMP-PKS+R from y corrupted by 

Gaussian noise (σ
2
 = 0.025) and impulsive noise when η  was varied. 
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Figure 4.35: The percent of inaccurate rejection of OMP-PKS+R from y corrupted by 

Gaussian noise (σ
2
 = 0.05) and impulsive noise when η  was varied. 

 

 

 

Figure 4.36: The percent of inaccurate rejection of OMP-PKS+R from y corrupted by 

Gaussian noise (σ
2
 = 0.075) and impulsive noise when η  was varied. 
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Figure 4.37: The percent of inaccurate rejection of OMP-PKS+R from y corrupted by 

Gaussian noise (σ
2
 = 0.1) and impulsive noise when η  was varied. 

 

4.4.2 Performance evaluation  

Figures 4.38-4.41 show the average PSNR of reconstruction images at σ2 
of 

0.025, 0.05, 0.075, and 0.1, respectively. The performances of both methods were 

degraded by Gaussian noise. However, OMP-PKS+R+RS provided better 

performance over LIHT in all cases. At q = 0.15, there were cases that LIHT failed to 

reconstruct as found in Section 4.3.2. The performance of LIHT could be improved by 

increasing measurement rate.  

Since LIHT gave the successful reconstruction when q = 0.05, the part of 

reconstruction images at q = 0.05, M/N = 0.3, and σ2 
= 0.1 were showed in Figures 

4.42-4.47 for visual evaluation. The image in the first column was the original image. 

The second and the third columns were reconstruction based on LIHT and OMP-

PKS+R+RS, respectively. The results from LIHT were noisy, while the results from 

OMP-PKS+R+RS were smoother with higher contrast. OMP-PKS+R+RS combined 

two benefits of OMP-PKS+RS and OMP-PKS+R, i.e. the tolerance to Gaussian and 

impulsive noise. The experiments demonstrated that OMP-PKS+R+RS gave the 
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successful reconstruction results in the environment corrupted by both Gaussian and 

impulsive noise. 

 

 

Figure 4.38: The average PNSR of reconstruction images based on OMP-PKS+R+RS 

and LIHT when y is corrupted by Gaussian noise with σ
2
 = 0.025 at various M/N and 

q. 

 

 

Figure 4.39: The average PNSR of reconstruction images based on OMP-PKS+R+RS 

and LIHT when y is corrupted by Gaussian noise with σ
2
 = 0.05 at various M/N and q.  
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Figure 4.40: The average PNSR of reconstruction images based on OMP-PKS+R+RS 

and LIHT when y is corrupted by Gaussian noise with σ
2
 = 0.075 at various M/N and 

q. 

 

 

 

 

 

 Figure 4.41: The average PNSR of reconstruction images based on OMP-PKS+R+RS 

and LIHT when y is corrupted by Gaussian noise with σ
2
 = 0.1 at various M/N and q. 
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 Original image LIHT OMP-PKS+R+RS 

   
 PNSR = 17.83 dB PNSR = 21.57 dB 

Figure 4.42: The part of reconstructed Peppers based on LIHT and OMP-PKS+R+RS 

when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, σ
2
 = 0.1 and q = 

0.05. 

 

 

Original image LIHT OMP-PKS+R+RS 

   
 PNSR = 17.46 dB PNSR = 22.19 dB 

Figure 4.43: The part of reconstructed Woman based on LIHT and OMP-PKS+R+RS 

when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, σ
2
 = 0.1 and q = 

0.05. 

 

Original image LIHT OMP-PKS+R+RS 

   
 PNSR = 13.47 dB PNSR = 16.47 dB 

Figure 4.44: The part of reconstructed Ripple based on LIHT and OMP-PKS+R+RS 

when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, σ
2
 = 0.1 and q = 

0.05. 

 



75 

 

Original image LIHT OMP-PKS+R+RS 

   
 PNSR = 9.91 dB PNSR = 12.59 dB 

Figure 4.45: The part of reconstructed Arc based on LIHT and OMP-PKS+R+RS 

when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, σ
2
 = 0.1 and q = 

0.05. 

 

 

Original image LIHT OMP-PKS+R+RS 

   
 PNSR = 17.45 dB PNSR = 21.01 dB 

Figure 4.46: The part of reconstructed Pillar based on LIHT and OMP-PKS+R+RS 

when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, σ
2
 = 0.1 and q = 

0.05. 

 

Original image LIHT OMP-PKS+R+RS 

   
 PNSR = 18.54 dB PNSR = 22.09 dB 

Figure 4.47: The part of reconstructed Fence based on LIHT and OMP-PKS+R+RS 

when y is corrupted by Gaussian and impulsive noise at M/N = 0.3, σ
2
 = 0.1 and q = 

0.05. 



76 

CHAPTER V 

CONCLUSIONS 
 

 

5.1   Conclusions 

In this dissertation, the robust CS reconstruction algorithms for images in the 

presence of Gaussian and/or impulsive noise are proposed. In the Gaussian noise 

environment, OMP-PKS+RS was proposed. It first applied random subsampling to 

create the ensemble of L sampled signals. Then OMP-PKS was used to reconstruct the 

signal. The Gaussian denoising was performed by averaging the image reconstructed 

from every signal in the ensemble. The experiment shows that by using the ensemble 

of signal, the proposed algorithm improved the PSNR of the original OMP-PKS by at 

least 0.79 dB. The proposed algorithm was efficient in removing the noise when the 

compression rate was high (small measurement rate). Moreover, OMP-PKS+RS 

provided higher PSNR improvement when the noise level was higher. However, the 

computation complexity of OMP-PKS+RS was more than OMP-PKS because it 

required the reconstruction of L signals instead of only one. The computational 

complexity is shown in Appendix A. 

In the impulsive noise environment, the preprocessing method for impulsive 

noise rejection is proposed. In this method, the sparsified version of an image is 

obtained by applying octave-tree DWT using db8 as the mother wavelet. The energy 

distribution in wavelet domain and the capability to reconstruct the signal from an 

incomplete y are exploited in order to detect the presence of the impulsive noise. 

After the noise-corrupted elements are removed, the values of the removed elements 

are estimated. The experiment on 40 test images indicates that the proposed rejection 

method provided the robustness against the impulsive noise to conventional CS 

reconstruction methods. The performance of the impulsive noise rejection method 

depended on the probability of impulsive noise (q) and the magnitude of impulsive 

noise. Since the proposed method iteratively truncated the detectable impulsive noise 

element from y, the size of y was smaller. When q was too high, the size of truncated 
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y was too small to give a successful reconstruction. Regarding the magnitude of 

impulsive noise, when the magnitude of the impulsive noise was very close to the 

maximum magnitude of y, the energy distribution of the reconstructed signal was not 

much different from the reconstructed impulsive noise-free signal. On the other hand,  

when the impulsive noise was large, the energy distribution was very different. It 

could then be concluded that there was the lower limit on the impulsive noise that the 

proposed rejection method could reject. From the experiment, the lower limit was set 

to 2.5 times of the maximum value of y. 

Finally, the robustness of the reconstruction method against both Gaussian and 

impulsive noises was investigated. The combination of the proposed rejection method 

as the preprocessing and the reconstruction on the signal ensemble was used as the 

reconstruction method. The experiment indicates that the combination of the two 

algorithms led to the reconstruction that was robust to both Gaussian and impulsive 

noise. 

 

5.2   Recommendations 

1) Gaussian noise environment 

• When the noise was high (σ
2
 
 
≥ 0.05), OMP-PKS+RS should be used when the 

fast computing time is not required. At high measurement rate ( M/N ≥ 0.4) , 

DCS-SOMP+ReS could be applied as the faster method at the cost of lower 

PSNR of the reconstruction image. 

• When the noise is low (σ
2
 < 0.05), the original OMP-PKS should be applied. 

• The value of p in OMP-PKS+RS is set such that it is lower when the noise is 

higher. 

2) Impulsive noise environment 

• The proposed preprocessing should be applied with the (leakage) energy-ratio 

threshold (η) and the rejection-ratio threshold (T) are set at 0.1 and 0.4, 

respectively. 
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• The proposed preprocessing can be applied even in noiseless environment.   

3) Mixed Gaussian and impulsive noise environment 

• The reconstruction should be performed by using both systems with the same 

recommendations as in 1) and 2). 

 

5.3   Future research 

1) Additional denoising after the reconstruction should be included to improve the 

performance of the reconstruction under Gaussian noise. 

2) Since the computation complexity of impulsive noise rejection method was varied 

as q, the fast impulsive noise rejection method is the plan of our future research.  

3) Characteristics of the energy distribution for general signal should be investigated 

in order to design the impulsive noise rejection for signals other than images. 
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APPENDIX A 

Computational Complexity  

 

 

Table A.1. The computational cost of the t-th iteration in OMP. 

Step 
The number of 

multiplication 
The number of L2 optimization 

1) 1arg max , .
tt j t jλ ϕ∉Λ −= r  M(N-t +1) - 

2) t t t=a Φ z  Mt - 

3) 1 2arg mint t t−= −zz y Φ z  - 2  optimization for  variablesL t  

Total MN+M 2  optimization for  variablesL t  

 

 

 

 

 

 

 

 

 

 

Table A.2. The computational cost of the basis preselection in OMP-PKS. 

Step 
The number of 

multiplication 
The number of 2L  optimization 

1) 1 2arg mint t t−= −zz y Φ z  - 2  optimization for | | variablesL Γ  

2) t t t=a Φ z  Γ  - 

Total Γ  2  optimization for | | variablesL Γ  
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Table A.3. The computational cost of the t-th iteration in DCS-SOMP+ReS. 

Step 
The number of 

multiplication 
The number of 

2
ℓ  optimization 

1) 1,..., , 1

1

arg max , .
L

t j N l t j

l

λ ϕ= −
=

= ∑ r LM(N-t+1) - 

2) t t t=a Φ z  LMt - 

3) 1 2arg mint t t−= −zz y Φ z  - L(L2 optimization for t variables) 

Total L (MN+M) L(L2 optimization for t variables) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.4. The computational cost of the t-th iteration in DCS-SOMP+RS. 

Step 
The number of 

multiplication 
The number of 

2
ℓ  optimization 

1) 1,..., , 1

1

arg max , .
L

t j N l t j

l

λ ϕ= −
=

= ∑ r LpM(N-t+1) - 

2) t t t=a Φ z  LpMt - 

3) 1 2arg mint t t−= −zz y Φ z  - L(L2 optimization for t variables) 

Total Lp(MN+M) L(L2 optimization for t variables) 
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Table A.5. The total computational cost of the reconstruction of a k-sparse signal by 

OMP, OMP-PKS, OMP-PKS+ReS, OMP-PKS+RS, DCS-SOMP+ReS and DCS-

SOMP+RS. 

Method 
The number of 

multiplication 
The number of L2 optimization 

OMP ( )MN M k+  2

1

(  optimization for variables)
k

t

L t
=
∑  

OMP-PKS ( )( )MN M k+ − Γ + Γ  2

1

(  optimization for variables)
k

t

L t
=
∑  

OMP-

PKS+ReS 
( )( )L MN M k + − Γ + Γ    

2

1

(  optimization for variables)
k

t

L L t
=
∑  

OMP-PKS+RS ( )( )L p MN M k + − Γ + Γ    
2

1

(  optimization for variables)
k

t

L L t
=
∑  

DCS-

SOMP+ReS 
[ ]( )L MN M k+  2

1

(  optimization for variables)
k

t

L L t
=
∑  

DCS-

SOMP+RS 
[ ]( )Lp MN M k+  2

1

(  optimization for variables)
k

t

L L t
=
∑  
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