CHAPTER II

FREE SEMIGROUPS, FREE GROUPS, CYCLIC SEMIGROUPS AND CYCLIC GROUPS

The purpose of thi is to study whether each of
following semigroups ha : : bsemigroup : free.semigroups,
free groups, cyclic semig s _ c groups. We prove in this

Lte cyclic group have
\ group, every cyclic
loes not have a proper dense

subsemigroup. MoregVen =+ siBsemig .\- the infinite cyclic

chapter that every
proper dense subsem

semigroup and every

group are characteri

Theorem 2.1. 1onempLy “sef e free semigroup on X has

no proper dense ‘Subsemigroup

Proof : X be a nonemply set andg a dense subsemigroup
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To prove that every free group has a proper dense subserpigroup,
the following lemma which characterizes dense subsemigroups of groups

is given first.
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Lemma 2.2. Let G be a group and U a subsemigroup of G. Then U is

dense in G if and only if <U U u™'s = ¢ where 0 - V{x71| x e U}.
Proof : Assume that U is dense in G. Then Dom(U,G) =

Since U S <Uu U U_1>, Dom(U,G) < Dom(<U U U_1>, G). Then

1

G = Dom(<U U U '>, G). Since U-1>'is a subgroup of G, it follows

/ <Uyu > Hence

*—

from Theorerq 1.2 that B

> = G. We claim that

g 1

at 3
)2x %

i 8 x(x

ore U-_1S Dom(U,G) which

n(U,S) is a subsemigroup

- of G. It followe ' U, G E’; dense in G. "

Theorem 2.3. For &nysnonempty set X, the free group on X has a
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words er X. Then U is a proper subsemigroup o the free group

on X. It is clearly seen that <U U v > =9x. Hence, by Lemma 2.2,

we have that U is dense in '9')(. "

Next, we shall prove that every cyclic semigroup has no proper

dense subsemigroup. The following fact is recalled to use : If a
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finite cyclic semigroup S = {a, 32, ..., a°} is such that a° ' = a

and a* # al if i # j, then S is the cyclic group of order s.

Theorem 2.4. Every cyclic semigroup has no proper dense subsemigroup.

Proof : Let S be a cyclic semigroup and S = <a>. Let U be

a proper subsemigroup of so U is a subsemigroup of the

Case 1 : a #a Then {a* | i e N, i » 2}

is an ideal of S,
pom({a* | i eN, i 2} # S. Hence

Dom(U,S) # S.

Iidia,

Case 2 : at = a for somé.1 € N Let s be the smallest

positive integer-guck 5 = da, a%,i., a®) and

a, az,..., a  are & : hatl s is the cyclic

group of order s. mence a subgroup of @ By .Theorem 1.2,

Dom(U,S) = U, so Domf(U38) # S. Q/ |
AN SHEANT e wonmsir
ARV Y

The following theorem follows easily from Theorem 1.2 and the

fact that every subsemigroup of a finite group is a subgroup.

Theorem 2.5. Every finite group has no proper dense subsemigroup.
In particular, every finite cyclic group has no proper dense

subsemigroup.
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Because the infinite cyclic group is the free group on a set
of one element, by Theorem 2.3, we have that the infinite cyclic
group has a proper dense subsemigroup.

In the last theorem of this chapter, we characterize proper

dense subsemigroups of the infi

ite cyclic group. To prove the
theorem, the followin v required.
Lemma 2.6. Let iigroup of G. Then U is

dense in G if a

a subsemigroup of G and

Q8 T IR i ! . Hence, it follows

from Lemma 2.2 thaty ‘ '1 "G¥if \and only if Tl is dense in G.#

Lemma 2.7. n+2,..s) an@ {-n; -p=l;"0=2,..3}

are dense subs« roups of the group (Z, +),/the group of integers

]
U

under usual addifio

"’j:um n"ﬂm,wail_
=R awn‘mg UNINYINY

Clearly, A and B are subsemigroups of the group (Z, +) and B = -A.

- To prove A is dense in the group (%, +), let me Z~A.

Case 1 : 0 g mg n. Then

(n+m)+(-n) , ntme A, -nec 2,

3
n

(-n)+(2n+m)+(-n), 2n+m e A, -ne Z, n+m = (-n)+(2n+m),
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= (-n)+(n+m) , . n+m € A, (2n+m)+(-n) = n+m .

By Theorem 1.1, m € Dom(A, 2).

Case 2 : m < 0. Then

m = (n-m)+(2m-n) , n-m € A, 2m-n € Z,
= (m—n)+2(n-m)+( m -m)eA, m-n e"l,n-m__: (m-n)+2(n-m),
= (m-n)én, < é’ 2(n-m)+(2m-n) = "
By Theorem. tolsm e ) —‘=..-

Hence Dom( dense in the group

(Z, +). By Lemma group (Z, +). "

Lemma 2.8. Let m, = 1. If 2 e N is such

\\
N
that £ > mn, then £ #m \

i
Proof : Since r{u = for some a, b £ 2.
Then £ = mfa+nfb, angd

rv_':_ r n = ,.‘ ..... cesececsee (1.

s SN Dy
ﬂu%.l YRR IWNEIR e (2).

Sinceﬁﬁm and £ = mfafnfb, we have that [ 7

AN IUNAINYAY

A Wil 1<‘-m—n-=-;-+—— ...................... (3).

Then from (2) and (3), we have that
%(1+k<£a-+£+ksla+%—% =-€%

which implies that n(k+1) > -fa and m(k+1) < £b. Let x = 2a + n(k+1)

and y = & - m(k+1). Then x, y € N. Replace t in (1) with k+1,
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we have that

2= m(ga+n(k+1)) + n(Lb-m(k+1)) .

Hence £ = mx+ny . #

te cyclic group with a group

Theorem 2.9. Let G be the infi
generator a and U a sub Then U is dense in G if and

only if there exists t uch that

Proof he group (Z, +) by the
i somorphism define . = t follows by Lemma 2.7 that
for every n € N,- { a il R ) e
dense subsemigroups nce 1f U a’y a . an+2, TEE B

, then U is dense is G.
On the other han_,.-J _that.U is dense in G. If U = {1}
e - % b )
where 1 is the it J; G) = # G (Theorem 1254

Hence U N {a, a.,‘ St as 4.

= B AT S
= AN RIS A mﬁﬁ'ﬁm

1, Tpsees r . Suppose that there exists i € {1, 2,..., m} such that
) A ¢
pil ¢ for all £ e Nwith a €U. ThenU&<a , a ~>. But

I e P, -P; P, -P;
< 3" A > is a subgroup of G, so Dom(<a ', a >, G)=<a " ,a >#£G

(Theorem 1.2). It is a contradiction since U is dense in G. Hence

for every i € {1, 2,..., m}, there exists £ eN such that p.l‘|~ £, and

e ——

015397
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3
ateuy. For eachi €d1,2,..., m}, let

(2,1 p)) if m> 1,
j=1
{ J#i

y 5 3£ -m =1 .

Then for every i € {1, N n} A g p.* q and Py qj for all

jE {13 2)---:’ m}) i 3 i \\ ql) = 1. Suppose that

m
(ko Bg) o e 3 ies that th ist
Z L q:.) s a ere exists
{ ; » r z
: ; o8| Za e bt q
pj (J € 1, 2"" L s I : ql, p] |i=1 ql,

Sor all i e 1.2 00,
._ z

i # j. Hence we have ghe ola 2 = k Zqi)-l-‘l. Then n € N.

contrary to the fs&

It follows from Lemma 2.8_ - at ;‘_' ey £ € N, if 2 > n, then

m .
ggkx+(.2 \’_ - some X, A4

Y —

kx‘-c- ( qu)y

FT‘IJEJ’J?{]EW]?WEJ']ﬂ‘E

( Zqggy

amasmﬁmumqmwmaﬂ

=()(a)y( .

9 9 M

which belongs to U since ak, B 5B e we 500l € U. This proves that

2
{a", an+1, 7 SR ¥ g

Case 2 : UN {a-1, a-2, a_3....} # § and Un{a1, az, a3,...} =g.

Then 0" N {a, az, a3,...} # @ and U-1ﬂ{a_1, a~2, a-3,...} =g.
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Since U is dense is G, by Lemma 2.6, U_1 is dense in G. It follows

n n+1 n+2 -1

from Case 1 that there exists n € N such that {a R T & P
Hence {a” ", a-n—1, a-n—z,...} = 6. .
Case 3 = - By 1a, az, a3,...} 0 and un {5-1, a-z, a-3,...} # 9.

uchthatanandletk be

/ € U. It is clearly seen that

we are done. Assume

Let k be the least positive intege

the least positive i
ki I ke 1y

if and only if a ze 13

(a’e)k- B a1

2k-£ -2k
= a

that k. > 1. “¢claim

To prove this, let

-k, £ -2
= a

Since (a ) e U.

2. k-1 -2k+2

Conversely, if £ €' ‘ ) = a e U

which implies that = (ak)‘e € U. Hence

we have the claim.

Let k = P, p22... - «Pose-es Pp are distinct

primes and Ty r- Suppose that there

~ ]

exists i e {1, 2. %400 L& N with a~ & u.

Thenun{a,a,a,. }C<a i >, so we have that

@0 G a .FAWEJ‘J:WEWI”%WMT]‘% > 45 a subgroup

of G- But we have from the cl¥aim that

(un {a wrlaﬂ ﬂ ixm{;‘lmﬂ %m g‘l la)ﬂws that

U= (un {a,az,a3,...})U(Uﬂ {a-1,a'2,a aes oLl ThF & <a LR

pl -pi pl "pi pl -pi
But <a ~, a > is a subgroup of G, so Dom(<a ~,a ~>,6)=<a " ,a >#£G
(Theorem 1.2). It is a contradiction since U is dense in G. Hence for

2.
every i € {1,2,...,m}, there exists zi e N such that pi‘l~ li and a e U.
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The remaining of the proof for this casé is the same as the proof in

Case 1. "

“!
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