CHAPTER I

PRELIMINARIES
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A subsemigroup I of S is called an ideal of S if xa, ax e I

for all x.€ S, a € 1.

A semigroup S is called an inverse semigroup if for each

element x € S, there exists a unique element x-1 in S such that
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a homomorphism of S
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no symbol xt! is adjacent to x . The null set is called the empty

word, and denoted by 1. The product of nonempty reduced words is

\ given by juxtaposition, that is,
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respectively. Then Px is a semigroup with identity 1x (the identity

map on X) and zero O and it is called the partial transformation

semigroup on X.

By a transformation semigroup on X, we mean a subsemigroup
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Let Ix denote the

of X, that is,

Then Ix is an inve identity 1x and zero O,

which is called th ion semigroup on X or the
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full transfokmation semgrcup on X.
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transformations of X),

oy = laeTy | «is onto X.} (the set of all onto
transformations of X),
CP, = {o e Py | @ is a constant map.} (the set of all

constant partial transformations of X

-

(including the empty transformation))



and CT, = {a e Ty | @ is a constant map.} (the set of all

constant transformations of X).

Then Mx 5 ox A CPx and _CTX are subsemigroups of Px.

Let (F,+,+) be a field and n a positive integer. Let Mn(F)

be the set of all n x n ma es Then Mn(F) is a semigroup

under usual matrix

By a matri » a subsemigroup of Mk(F)

under usual matri positive integer k.

Let Gn(F) = x n nonsingular
Un(F)[Ln(F)] = 1ll n x n upper [lower]
r F and
Dn(F) of all n x n diagonal
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A subset A of a semigroup S is said to be dense in S if for
any semigroup T, for any homomorphisms a, B : S = T, uIA = _B IA

implies a = B.

Let S be a semigroup and U a subsemigroup of S. For any

element d of S, d is said to be dominated by U or U dominates d if

for any semigroup T and ng¥phisms o, B : S = T, “'U - BlU
implies do = dB. The s . of S which are dominated
by U is called the is denoted by Dom(U,S).

Hence U i

The following

(i) U <SDom

(ii) Dom(U,S)

(iii) If 'V ida

then Dom(U,SY-
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S mstem of equalities
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In Topology, it is known that for a metric space X and D& X,
D is dense in X if and only if for any metric space Y, for any

continuous mappings f, g : X =+ Y, fID = gID implies £ = g.



with Ups Ugseees Uop in U and Xqs Xoseees Xos Vao Yooeeesr Yo in 8,
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The followi [ 5 will be used in the thesis :
Theorem 1.1 Isbell'giZigzag ] g (13 \ or [4]). Let U be a
‘subsemigroup of a semig oup+ S . pom(U,S) if and only if
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d € U or there exists a zigzag i ! er S with value d.

It folld '{.

a semigroup S, theﬂ

Theorem 1.2 (@:ﬁﬂ 3?]%% EI;;Tﬁ fiup of a semigroup

S, then Dom
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Theorem 1.3 (Higgins [2]). Let X be a set and let S denote any one
of Tx, Px or Ix. Then S has a propef dense subsemigroup if and only

if X is infinite.
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