

CHAPTER I

PRELIMINARIES

Let S be a semigroup.

An element e of S is called an identity of S if xe = ex = x for all $x \in S$. If an identity of S exists, then it is unique and usually denoted by 1.

An element x of S is called a <u>right</u> [left] <u>zero</u> of S if yx = x [xy = x] for all $y \in S$. An element z of S is called a <u>zero</u> of S if it is both a right and a left zero of S. A zero of S is unique if it exists, and it is usually denoted by 0.

A semigroup in which every element is a right [left] zero is called a right [left] zero semigroup.

For a nonempty subset A of S, let <A> denote the subsemigroup of S generated by A, that is,

$$\langle A \rangle = \{a_1 a_2 \dots a_n \mid a_i \in A, n \in \mathbb{N}\}$$

where N is the set of all positive integers. For a ϵ S, let <a> denote <{a}>, that is,

$$\langle a \rangle = \{a^n \mid n \in \mathbb{N}\}$$
.

S is said to be a <u>cyclic</u> <u>semigroup</u> if $S = \langle a \rangle$ for some a ϵ S. If $S = \langle a \rangle$, a ϵ S, then S is finite if and only if $a^i = a^j$ for some i, $j \in \mathbb{N}$, $i \neq j$.

A subsemigroup I of S is called an <u>ideal</u> of S if xa, $ax \in I$ for all $x \in S$, $a \in I$.

A semigroup S is called an <u>inverse</u> <u>semigroup</u> if for each element $x \in S$, there exists a unique element x^{-1} in S such that $x = xx^{-1}x$ and $x^{-1} = x^{-1}xx^{-1}$.

Let S and T be semigroups and $\phi\colon S\to T$. The map ϕ is called a homomorphism of S into T if

$$(xy)\phi = (x\phi)(y\phi)$$

for all x, $y \in S$.

Let X be a nonempty set. A nonempty finite sequence a_1, a_2, \ldots a_n , usually written by juxtaposition, $a_1 a_2 \ldots a_n$, of elements of X is called a <u>word</u> over the alphabet X. The set \mathcal{F}_X of all words with the operation of juxtaposition

$$(a_1 a_2 \dots a_m)(b_1 b_2 \dots b_n) = a_1 a_2 \dots a_m b_1 b_2 \dots b_n$$

is a semigroup called the free semigroup on the set X.

Let $E = X \times \{1,-1\}$. We shall write the element of E as a^{α} where $a \in X$ and $\alpha \in \{1,-1\}$. A finite sequence of elements of E is a word, a word may be written in the form $w = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_m^{\alpha_m}$ where $x_i \in X$, $\alpha_i = \pm 1$, $i = 1,2,\ldots,m$. The word w is a reduced word if and only if no symbol x^{+1} is adjacent to x^{-1} . The null set is called the empty word, and denoted by 1. The product of nonempty reduced words is given by juxtaposition, that is,

$$(x_1, x_2, \dots, x_m) (y_1, y_2, \dots, y_n) = x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n$$

More precisely, if $x_1^{\alpha_1}x_2^{\alpha_2}\dots x_m^{\alpha_m}$ and $y_1^{\lambda_1}y_2^{\lambda_2}\dots y_n^{\lambda_n}$ are nonempty reduced words on X with $m\leqslant n$, let k be the largest integer $(0\leqslant k\leqslant m)$ such that $x_{m-j}^{\alpha_{m-j}}=y_{j+1}^{-\lambda_{j+1}}$ for $j=0,1,\ldots,\,k-1$. Then define

$$(x_1^{\alpha_1} \dots x_m^{\alpha_m}) (y_1^{\lambda_1} \dots y_n^{\lambda_n}) \; = \; \begin{cases} x_1^{\alpha_1} \dots x_{m-k}^{\alpha_{m-k}} \; y_{k+1}^{\lambda_{k+1}} \dots y_n^{\lambda_n} & \text{if } k < m \text{ ,} \\ \\ y_{m+1}^{\lambda_{m+1}} \dots \; y_n^{\lambda_n} & \text{if } k = m < n \text{ ,} \\ \\ 1 & \text{if } k = m = n \text{ .} \end{cases}$$

If m > n, the product is defined analogously. The definition insures that the product of reduced words is a reduced word.

Let \mathcal{G}_X be the set of all reduced words on E. Then \mathcal{G}_X is a group under the operation defined above. The group \mathcal{G}_X is called the free group on the set X.

respectively. Then P_X is a semigroup with identity 1_X (the identity map on X) and zero O and it is called the <u>partial transformation</u> semigroup on X.

By a $\underline{\text{transformation}}$ $\underline{\text{semigroup}}$ on X, we mean a subsemigroup of P_{X} .

Let I_X denote the set of all 1-1 partial transformations of X, that is,

$$I_{X} = \{ \alpha \in P_{X} \mid \alpha \text{ is } 1-1. \}.$$

Then I_X is an inverse subsemigroup of P_X with identity 1_X and zero 0, which is called the <u>1-1 partial transformation semigroup</u> on X or the symmetric inverse semigroup on X.

By a <u>transformation</u> of a set X, we mean a map of X into itself. Then an element $\alpha \in P_X$ is a transformation of X if and only if $\Delta \alpha = X$. Let T_X denote the set of all transformations of X, that is,

$$T_X = \{\alpha \in P_X \mid \Delta\alpha = X\}$$
.

Then T_X is a subsemigroup of P_X with identity $\mathbf{1}_X$, which is called the full transformation semigroup on X.

Let $M_{X} = \{\alpha \in T_{X} \mid \alpha \text{ is 1-1.} \}$ (the set of all 1-1 transformations of X),

 $O_X = \{\alpha \in T_X \mid \alpha \text{ is onto } X.\}$ (the set of all onto transformations of X),

 $CP_X = \{\alpha \in P_X \mid \alpha \text{ is a constant map.} \}$ (the set of all constant partial transformations of X (including the empty transformation))

and $CT_X = \{\alpha \in T_X \mid \alpha \text{ is a constant map.} \}$ (the set of all constant transformations of X).

Then M_X , O_X , CP_X and CT_X are subsemigroups of P_X .

Let $(F,+,\bullet)$ be a field and n a positive integer. Let $M_n(F)$ be the set of all n × n matrices over F. Then $M_n(F)$ is a semigroup under usual matrix multiplication.

By a matrix semigroup over F, we mean a subsemigroup of M_k(F) under usual matrix multiplication for some positive integer k.

- Let $G_n(F)$ = the matrix group of all $n \times n$ nonsingular matrices over F,
- $U_n(F)[L_n(F)] =$ the matrix semigroup of all n × n upper [lower] triangular matrices over F and
 - $D_n(F)$ = the matrix semigroup of all $n \times n$ diagonal matrices over F.

The following statements are well-known :

- (i) For A, B ϵ M_n(F), rank(A) = rank(B) if and only if A = PBQ for some P, Q ϵ G_n(F).
- (ii) $\{\det A \mid A \in M_n(F)\} = F$ and $\{\det A \mid A \in G_n(F)\} = F \setminus \{0\}$.

A subset A of a semigroup S is said to be dense in S if for any semigroup T, for any homomorphisms α , $\beta: S \to T$, $\alpha\big|_A = \beta\big|_A$ implies $\alpha = \beta$.

Let S be a semigroup and U a subsemigroup of S. For any element d of S, d is said to be <u>dominated</u> by U or U <u>dominates</u> d if for any semigroup T and for any homomorphisms α , $\beta: S \to T$, $\alpha\big|_U = \beta\big|_U$ implies $d\alpha = d\beta$. The set of all elements of S which are dominated by U is called the <u>dominion</u> of U in S and it is denoted by Dom(U,S).

Hence U is dense in S if and only if Dom(U,S) = S.

The following statements clearly hold :

- (i) $U \subseteq Dom(U,S)$.
- (ii) Dom(U,S) is a subsemigroup of S.
- (iii) If V is a subsemigroup of S such that $U \subseteq V$, then $Dom(U,S) \subseteq Dom(V,S)$.

Let U be a subsemigroup of a semigroup S. A \underline{zigzag} of \underline{length} m (m ϵ N) in U over S with \underline{value} d ϵ S is a system of equalities

$$d = u_0 y_1, \ u_0 = x_1 u_1$$

$$x_i u_{2i} = x_{i+1} u_{2i+1},$$

$$u_{2i-1} y_i = u_{2i} y_{i+1} \quad (i=1,2,...,m-1),$$

$$u_{2m-1} y_m = u_{2m}, \ x_m u_{2m} = d,$$

^{*} In Topology, it is known that for a metric space X and $D \subseteq X$, D is dense in X if and only if for any metric space Y, for any continuous mappings f, g : X \rightarrow Y, f|_D = g|_D implies f = g.

with u_0 , u_1 ,..., u_{2m} in U and x_1 , x_2 ,..., x_m , y_1 , y_2 ,..., y_m in S, that is,

$$d = u_0 y_1, \quad u_0 \in U, y_1 \in S,$$

$$= x_1 u_1 y_1, \quad u_1 \in U, \quad x_1 \in S, \quad u_0 = x_1 u_1,$$

$$= x_1 u_2 y_2, \quad u_2 \in U, \quad y_2 \in S, \quad u_1 y_1 = u_2 y_2,$$

$$= x_2 u_3 y_2, \quad u_3 \in U, \quad x_2 \in S, \quad x_1 u_2 = x_2 u_3,$$

$$= x_m u_{2m-1} y_m, \quad u_{2m-1} \in U, \quad x_m \in S, \quad x_{m-1} u_{2m-2} = x_m u_{2m-1},$$

$$= x_m u_{2m}, \quad u_{2m} \in U, \quad u_{2m-1}, \quad y_m = u_{2m}.$$

The following known results will be used in the thesis:

Theorem 1.1 Isbell's Zigzag Theorem ([3] or [4]). Let U be a subsemigroup of a semigroup S. Then d ϵ Dom(U,S) if and only if d ϵ U or there exists a zigzag in U over S with value d.

It follows easily from Theorem 1.1 that if I is an ideal of a semigroup S, then Dom(I,S) = I.

Theorem 1.2 ([4]). If U is an inverse subsemigroup of a semigroup S, then Dom(U,S) = U.

The following theorem is known :

Theorem 1.3 (Higgins [2]). Let X be a set and let S denote any one of T_X , P_X or I_X . Then S has a proper dense subsemigroup if and only if X is infinite.