CHAPTER II
QUANTUM MECHANIC THEORY

The key for theoretical chemistry is molecular mechanics. This is the science

relating molecular properties to the motion and interactions of electrons and nuclei. Soon
Hf clear that solution of the Schrédinger
ct quantitative prediction of most

stitutes an ab initio approach to chemistry,

after its formulating in 1925

differential equation could,

The most co . ( : q mechanical methods can be
classified as either ab inifio i g ' S. er semi-empirical methods use a
simpler Hamiltonian and us ters w s e“adjusted to fit experimental data
» ab initio calculation uses the full

Hartree-Fock Hamiltonian and dggg;ty;(gv 5¢ éxpérimental data other than the values of the

| ) |
In practice, ﬁ-\]e Schrodmger equatlon has t0 be replaced by approximate

mathematical nﬂ Wﬂ%ﬂﬂ ? W ﬂﬁ The advent of powerful

digital computersiand of mcreasmgly efficient computer programs has led to s1gmﬁcant
e PG T SN SN s s
quantum fnechanical models and in the application of these models to problems of
chemical significance. It is fair to say that theory has now advanced sufficiently far as to

provide the chemist with an alternative independent approach to his subject.



Ab Initio Calculation Method

2.1 The Schrodinger Equation

The energy and many properties of a stationary state of a molecule can be

calculated quantum mechanically by solution of the Schrédinger partial differential

equation.

2.1
where H is the Hamilz/ [ 2 1. Ttisia sum of all possible Coulombic
energy operators and ki fy/opera ors of both muglei and electrons, and ¥ is the
wavefunction of the sys

An ab initio ¢ ' as - bee cerned with the determination of
molecular wavefunctions pFoperties ] framework of the Born-Oppenheimer-
approximation, the molecular yaver d’: i written as the product of a nuclear
wavefunction X ang-an electronic wavefunction ¥ which depends on the nuclear

. 7 ' Ry
coordinates R as paramicters @ ‘
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QWﬂ ?ﬁ*‘ﬁ% 'ﬂ’%‘W tH time-independent

electronic’Schrodinger equation.

H™ W% (rR) = E* (R)¥*(r,R) 2.3)
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Where W is the electronic wavefunction, which depends on the electronic coordinates,
r, as well as on the nuclear coordinates R ; E*“is the electronic energy and H®™ is the

electronic Hamiltonian operator.

2.2 The Molecular Hamiltonian Operator

l//

system will be given as sum Ofali-p ible teractions plus kinetic energy of

e total Hamiltonian operator of the

i nl.leclelnuce|
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2.9)
where
V2 @.5)

'on (14), the total Hamiltonian
in equation (2.4) will be simplified. The ﬁstmrm the kinetic energy of the nuclei, can be

neglected due tﬂuﬂ 'J»iﬂ&l ﬁtﬂuﬂeﬂﬂ ‘jto electrons, since nucei

are much heav1er than electrons The last termythe repulsion Betweer the nuclei, is
wnicc] NS D IUIAI DN QL oy o

remaining terms should be considered within the Hartree-Fock approximation.

According to tl} Born-Opy

elearons electrons nuclei Z electrons elecwom

- g sz i N S Z Z T (2.6)
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when

therefore

clectronselectrons |
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H*" is a one-electroni . L*_ alled the electronic Hamiltonian

operator describing th e nuclei.

Molecular orbital Y-S 0 appi to molecular quantum mechanics which
uses one-electron wavefunctiofs 6t orbitals to approximate the full wavefunction. A
molecular orbital, y_'_p:' L function of the u:’ coordinates x,y,z of single

electron. The square o@xe Wa ction nterpre 1&! as a measure of the probability

distribution of the partlclqs within the molec le. To describe the dxstnbutlon of an electron

completely, thﬂpﬁlﬂ '}w &Wﬁﬂﬂ@ Q}cﬁas‘jc» be included.
Q"W ﬂvﬁe@vf’v}ﬁoﬁ!ﬂ for .4 ae'aeaa»mwa of a molecular

~ orbital an a spin wavefunction, ¢(x,y,z)a(&) or ¢(x,y,z)B(E). It is termed a spin orbital,

X®Y.2E).
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It might appear that the simplest type of closed-shell wavefunction appropriaie
for the description of an n-electron system could be written as a sum of a product of spin

orbitals.

IFproductz 11(1)12(2) ............. XM (2-9)

of antisymmetry if thi i) electr %hd j are interchanged in this

wavefunction. To ensuf€ andSymmetoy-and to guarantee with Pauli exclusion principle, the

Zp oM

- /.2(2 (2.10)

Z"/z(n)

1‘

For the close ,f she s, with n(even) electrons, doubly

occupying n/2 orbitals, fan be written down a full many-electron molecular orbital

weetosin (1Y TNUNTHYING
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To construct molecular orbitals for electrons in a molecular system, a linear

combination of atomic orbitals ( LCAO-MO method ) , known as basis Junctions, is u-sed.

An individual orbital ¢, can be written as

N
o = >c,P, (2.12).
u=1
where @, are the atomic orbitals 1 %,olecular orbital expansion coefficients,
whose variation allows to 6 the wrg@als used in the linear combination

are called basis orbitals

alues of the coefficients c,; are

determined by means o

construct a suitable mo or - ' the molecular-orbital expansion coefficients

¢, (as in equation ,',_
energy E', which is alwgs great 1e exact energy. The resulting value of E' will
then be as close to the exact.energy E as is pgssible within the limitations imposed by: (a)

the single-deteﬂ%wgmmﬁxma ni‘sjet employed. Hence, the

best single-determinant wavefunctiony'in an energy=sense, is foundtby minimizing E' with

ot GGG L) T el W vt oo £

&’l
dc

ui

= 0 (allyi) @.13).



For closed-,-shell_ system, the variational condition (2.13) leads to a set of
algebraic equations for c, that were derived independently for the closed-shell
wavefunction (2.6) by Roothaan (16) and by Hall (17). The Roothaan-Hall equations are

Z( & s,m =0 (u=123,...,N) (2.14)

with the normalization conditi

(2.15)

scul2 \“\ ®;, S, are the elements of an

a?*f

Here, ¢, is the one-electr

N x N matrix named the o
m‘. e

5 4
A (1)@, (1)d,dy,dz,

= P, (2.16)
e - 2
and F,, are the elem 0 \ he. ,- ) atrix,
V‘”‘“““‘ i )
L =EHZ°S° *. “[(#vlla) ) (MI vo)] (2.17)

A=1 o=1

ﬂ‘lJEl’WlEWlﬁWEﬂﬂ‘i

In this expressio) H’* is a matrix reg;esentmg the energy ofa sm%l e electron in a ﬁeld of

e RIRERT NN R

He = [O,()H™1)®,()dxdydz

H™ (1) = —%Vf 5 Za 18)

A=1 Dp



Here Z, is the atomic number of atom A, and summation is carried out over all atoms.

The quantities (uv{ Ao) appearing in (2.17) are two-electron repulsion integrals:

o) = 1] BMO,M)0 0, Ddsdndsdedyds,  (219)
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of the one-electron density matrix, P

Aa>

They are multiplied by the ele;

(2.20)
The summationgds cupi wolecular orbitals only. The factor of two
indicates that two electr ‘eac ole ( ular orbital. The electronic energy, E*, is
now given
83313
Accounting f-the-internuciear-repuision———
(2.22)

ﬂ‘IJEI’J wztrzvf‘swmm
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The Roothaan-Hall equations (2.14) can be written more compactly as the single

matrix equation
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SCE (2.23)

where F is a Fock matrix
C is a coefficient matrix
S is an Overlap matrix

Eis an Elgenvalue matrix

Since the coefficient mai F ock matrix, the equation cannot
;, can be calculated from equation

atrix, C. An iterative procedure

is required which is the lf &\\\\\ eld) " procedure. The process
is carried out iteratively al ele ﬁ\\\ he system remains unchanged
within given limits, usually ‘ \

.E,“'.f.-‘i-.f : 7

Mulliken Population Anal sn

W L,
The electron a :"‘“ : sbabidity distribution function, p(r),

is a three-dimensional fii CthIl deﬁned such that p(r)dr 1s the probability of finding an

elemmmaﬂﬂwmwmsw JINT
awwmnﬁz{rwmmaﬂ @z

where 7 is the total number of electrons. For a single-determinant wavefunction in which

the orbitals are expanded in terms of a set of N basis functions, ® ,;, p(r) is given by
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A(r)= 22 Puy®udy €2.25)
v _

According to the equation (2.16), suggestions about how to calculate the

electron density, starting from the density matrix, Ppv, were made by Mulliken (18) .

(2.26)
It is desirable to alloCake some fractional manner among the
various parts of a moleculg«(@fome, Houc tc.). Tt willbe useful, for example, to define a

total electronic charge g lecule in order that quantitative

meaning may be given to#f drawing or donating ability. In

addition, it will be used to ial of the Coulombic force.

Basis Functions

In quantum mietha S the basis set in the beginning

of the calculation. The u of an adequate basns set is an & sential requirement for success

of the calculatlowgtyxwm ﬁtzjﬁrﬂr?ted to the quality of the

basis set used.

QW’W&NﬂiﬁU UAINAY
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The are two types of atomic orbital (basis set) popularly in use.

2.5 Slater Type Orbital (STO)

The Slater Type Orbital basis functions, introduced by Slater (15), is based on

approximations of hydrogen-like atomic orbitals according to empirical rules. They were

orbitals, the integrations of.the™ ions are ve / timesconsuming. The typical form of

STO is denoted by the e
Y, (6,0) (2.27)

where o is the orbital expone t ythe D { m number and Y, (6,¢) is a
spherical harmonic. :

2.6 Gaussian T3
\ 7

The Gaussian Typf Orbital (19) are (E;med as

ﬂ‘lJEJ’J'VIEWlﬁWEﬂﬂ‘i

Banim(T,0,p) = Nr“" Sl Lm(6? ﬂ (2.28)
T GTO function are more suitable and mostly used nowadays. The integration
of such functions is easier and can be performed simply. However, due to the different

shape of the GTO, for the region near the nucleus, a combination of GTOs with different



exponents is required to obtain equivalent results. Contraction is applied to avoid a too

large size of the combination basis set.

According to the series of minimal basis sets termed " STO-#G" consists of

expansions of STOs in terms of # Gaussian functions. One starts with a minimal basis set
of one STO per AO, with the STO orb1 onents fixed at values found to work well in
calculation on small molecules. Each :.1: i)) pro‘umated as a linear combination of

n Gaussian functions, wheresthe coef] ear combination and the Gaussian
- - | —

orbital exponents are chose to the STO. Most commonly,

n =3, giving a set of co ". Since a linear combination
of three Gaussians is oni TO-3G basis set gives results

not quite as good as a mi

uses 1 STO per s,p,d, must use 2 STC per s,p,d,... function.

For extended basis $ts usuaily- olar: nctions, for example, p-
functions for hydrogen, ﬂa}x £ fu atoh_ﬂ These functions give a more

flexible shape to the molegu‘gr orbitals and help them to describe polarization effects

wiud o senidf b J 1 EJ NIneIna
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Basis Set Superposmon Error (BSSE)

When insufficient basis sets are used, an artificial set improvement will take place

in the complex, leading to an error which has been known as basis set superposition error,



and the interaction energies are always overestimated (20). The intermolecular interaction

AE is obtained as the difference of the separately calculated complex and constituent

energies :

AE = Ep(tup) - [Ey(24) + E(25)] (2.29)
where

XuB (2.30)
Here £, ,E; and E,5 ar ; @nomers A, B and the complex 4B

respectively. 7, and y; rs A and B. The intermolecular

interaction acquired in addition to the "real
interaction", the "non iéal gy tion called as "basis set superposition

error", which arises fro

One method whi eéi;x‘ v ed 0 estimate BSSE is the " counterpoise
(CP) correction" proposed Boys- d.a_ mardi (21). The counterpoise correction is
evaluated from the energy i ' fragment (monomer) of a molecule
(complex) when a "g ;‘; 5 s adde d to the ca_lchlation. In cher
word, the monomer eneﬁes ar asﬂset, and exactly the same basis

is used for both the monomers : and dimer as uhgxe following

ﬂ‘lJEJ’WIEWﬁWEI']ﬂ‘i

= [Exd - E@ap)]* [Es(iph-Ex(is)] o0 ~ (231)

’Q‘W’W&Nﬂim HRTINEUINE

The counterpmse corrected interaction energy is determined from

AE? = AE + Ae (2.32)

where AE  is interaction energy which calculate from truncated basis set.
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