REFERENCES

- Adams, RLP., Burdon, R.H., Campbell, AM., Leader, D.P. and Smellie, R.M.S. (eds.) Chemical Analysis of DNA. in The Biochemistry of Nucleic Acids, 9th ed., pp.37-39, Chapman and Hall, New York, 1971.
- Allen, E.K. and Allen, O.N. Bacteriological Reviews. 14 (1950):
- Andrew, C.S. <u>Nutritional Restraints on Legume Symbiosis</u>. in <u>Exploiting the Legume-Rhizobium Symbiosis</u>, (Vincent, JM. Whitney, A.S. and Bose J. eds.) pp. 253-254. Nif TAL, Hawaii, 1977.
- Bergersen, F.J. (ed.) Measurement of Nitrogen Fixation by Direct

 Means. in Methods for Evaluating Biological Nitrogen

 Fixation. pp. 112-131. A Wiley Interscience Publication,

 New York, 1980.
- Bohlool, B.B. andSchmidt. "Immunofluorescent Detection of

 Rhizobium japonicum in Soils." Soil Science 110 (1970):

 229-236.
- Bucchanan, R.E. and Gibbons, N.E. Bergey's Manual of Determinative Bacteriology. 8th ed. Williams & Wilkins, Baltimore, 1974.
- Burns, R.C. and Hardy, R.W.F. <u>Nitrogen Fixation in Bacteria and</u>
 Higher Plants. pp. 8-30. Springer-Verlag, New York, 1975.
- Christian, J.H.B. "The Water Relations of Growth and Respiration of Salmonella orianenberg at 30°C." Aust. J. Biol. Sci. 8 (1955): 490.

- Christian, J.H.B. and Waltho, J.A. "Water Relations of Salmonella orianenburg Stimulated by Amino Acids." J. Gen. Microbiol. 43 (1966):345.
- Cohen-Bazire, G. and Jolit, M. Genetics of Microganisms in Relation
 to Industrial Requirements. in Biotechnology vol.1: Microbial
 Fundamentals, (Rehm, H.J. and Reed, G. eds.) pp.257, Verlag
 Chemie, Germany, 1981.
- Dilworth, M.J. "Acetylene Reduction by Nitrogen-Fixing Preparation from Clostridium pasteurianum." Biochem. Biophys. Acta.

 127 (1966): 285-294.
- Elkan, G.H. Taxonomy of the Rhizobiaceae. in Biology of the Rhizobiaceae, (Gile, K.L., and Atherly, A.G. eds.)

 pp.1-14. Academic Press, New York, 1981.
- Garrett, S., Taylor, R.K. and Silhavy T.J. "Isolation and Characterization of Chain-Terminating Nonsense Mutations in a Porin Regulator Gene, env Z." J. Bacteriol. 156 (1983): 62-69.
- Gibson, A.H. Methods for Legumes in Glasshouses and Controlled

 Environment Cabinets. in Methods for Evaluating Biological

 Nitrogen Fixation, (Bergersen, F.J. ed.) pp. 140-183.

 A Wiley-Interscience Publication, New York, 1980.
 - Graham, P.H. In Analytical Serology of Microorganisms. (Kwapinski, J.B. ed.) vol. 2, pp. 353-378, Wiley, New york, 1969.
 - Hall, M.N. and S lhavy, T.J. "Genetic Analysis of the omp B Locus in Escherichia coli K-22: General Pattern of Resistance."

 J. Bacteriol. 121 (1981): 983-993.
 - Halliday, J. " an Interpretation of Seasonal and Short-Term

 Fluctuations in Nitrogen Fixation." Ph.D. Thesis,

 University of Australia, 1976.

- Hardy, R.W.F., Burns, R.C. and Holsten, R.D. "Application of the Acetylene-thylene Assay for Measurement of Nitrogen-Fixation." Soil Biol. Biochem. 5 (1973): 47-81.
- Harold, F.M. and Papineau, D. <u>Journal of Membrane Biology</u>. 8 (1972): 45-62.
- Herridge, D.F. Assesment of Nitrogen Fixation. in Nitrogen Fixation

 in Legumes. (Vincent, J.M. ed.) pp. 123-136. Academic Press,

 Australia, 1982.
 - Hinkel, P.C. and McCarty, R.E. "How Cells Make ATP." Scientific

 American. 238(1978):104-123.
- Jensen, H.L. "Nitrogen Fixation in Leguminous Plants: I. General Characters of Root-Nodule Bacteria Isolated from Species of Medicago and Trifolium in Australia." Proc. Linn. Soc. N.S.W. 66 (1942): 98-108.
- Kaback, H.R. and Hong J.S. Membranes and Transport. in CRC,

 Critical Reviews in Microorganisms, vol.2, pp. 333-374, 1973.
- Krulwich, T.A. "Na⁺/H⁺ Antiporters" <u>Biochim Biophys Acta.</u>726
 (1983): 245-264.
- Kushner, D.J.(ed.) Life in High Salt and Solute Concentrations:

 Halophilic Bacteria. in Microbial Life in Extreme Environments. pp. 318-368. Academic Press, London, 1978.
- Lakshmi-Kumari, et.al. Root Hair Infection and Nodulation in

 Lucerne (Medicago Sativa L.) As Influenced by Salanity

 and Alkalinity. Plant and Soil.40(1974): 261-268.
- Leonard, L.T. "Method of Testing Bacterial Cultures and Results of Tests of Commercial Inoculants, <u>U.S.DA. Circ.</u> 703 (1944) : 8.
- Lowry, O.H. et. al. "Protein Measurement with the Folin Phenol Reagent." Journal of Biological Chemistry. 193 (1951) : 265-275.

- Measure, J.C. "Role of Amino Acids in Osmoregulation of Nonhalophilic Bacteria." Nature. 257 (1975): 398.
 - Minchin, F.R. and Pate, J.S. "Effects of Water, Aeration and Salt Regimes on Nitrogen Fixation in a Nodulated Legume:

 Definition of an Optimum Root Environment." <u>J. exp. Bot</u>.

 26 (1975): 60-69.
 - Miller, J.H. in Experiments in Molecular Genetics. Cold Spring Harber Laboratory, 1972.
 - Nutman, P.S. The Physiology of Nodule Formation in Nutrition of Legumes. (Hallsworth, E.G. ed.) pp. 87-107. Scientific Publication, London, 1958.
 - Pankhurst, C.E. and Sprent, J.I. "Effects of Water Stress on the Respiratory and Nitrogen. Fixing Activity of Soybean Root Nodules." J. exp. Bot. 26 (1975): 287-304
 - Rai, R. "The Salt Tolerance of Rhizobium Strains and Lentil Genotypes and the Effect of Salinity on Aspects of Symbiotic Nitrogen Fixation." Journal of Agricultural Science. 100 (1983): 81-86.
 - Rai, R, Prasad, V., Prasad, T.N., Kumar, S.B. and Srivastaya,

 B.S. "Symbiotic Nitrogen Fixation Efficiency of Mutant

 Strains of Lentil (Len esculenta) Rhizobium Growing from

 pH 4.5 to 7.5." J. of Agricutural Science, Cambridge.

 98 (1982): 487-492.
 - Rodriguez, R.L. and Tait, R.C. in Recombinant DNA Techniques: An

 Introduction. pp. 45-46. Addison-Wesley Publishing

 Company, Canada, 1983.
 - Roughley, R.J., Dart, P.J., Nutman, P.S. and Rodriguez-Barrueco, C.

 "The Influence of Root Temperature on Root-Hair Infection
 of Trifolium subterraneum L. by Rhizobium trifolii."

 Proc. 11 th. Int. Grassld. Congr., University of Queensland
 Press, pp.451-454, 1970.

- Rudulier, D.L., Yang, SS. and Csonka, L.N. Proline Over-Production

 Enhances Nitrogenase Activity under Osmotic Stress in

 Klebsiella pneumoniae. in Genetic Engineering of Symbiotic

 Nitrogen Fixation and Conservation of Fixed Nitrogen, (Lyon,

 J.M., Valentine, R.C., Phillips, D.A. Rains, DW. and

 Haffaker, R.C. eds.) pp. 173-179. Plenum Press, New York

 and London, 1980.
- Schobert, B. and Tschesche, H. "Unusual Properties of Proline and
 Its Interaction with Proteins." <u>Biochim.Biophys. Acta.</u>
 541 (1978): 270.
- Schöllhorn, R, and Burris.R.H. "Reduction of Azide by the N2-Fixation Enzyme System." Proc. Nat. Acad. Sci. USA., 57(19670:1317-1323
- Schuldiner, S. and Fishkes, H. "Sodium-Proton Antiport in Isolated

 Membrane Vesicles of Escherichia coli." Biochemistry.

 17 (4) (1978): 706-710.
- Shapiro, B.M. and Stadman, E.R. Glutamine Synthetase (Escherichia coli) in Methods in Enzymology. vol.17 (Tabor, H. and Tabor, C.W. eds.) pp. 910-922, Academic Press, New York and London, 1970.
- Sinanuwong, S. and Takaya, Y. "Saline Soil in Northeast Thailand."

 Southeast Asian Studies. 12 (1), (1974): 105-120.
- Singleton, P.W. and Bohlool, B.B. "Effect of Salinity on Nodule Formation by Soybean," Plant. Physiol. 74(1984):72-76
- Sprent, J.I. Effects of Drought and Salinity on Heterotrophic

 Nitrogen Fixing Bacteria and on Infection of Legumes by

 Rhizobia. in Advances in Nitrogen Fixation Research,

 (Veeger, C. and Newton, W.E. eds.), Martius Nifhoff, 1984.
- Sprent, J.I. in The Biology of Nitrogen Fixing Organisms.

 pp. 94-98. McGraw-Hill Book, London, 1979.

- Steinborn, J. and Roughley, R.J. "Toxicity of Sodium Chloride ions to Rhizobium spp. in Broth and Peat Culture. J.Appl.Bacteriol. 39(1975):133-138.
- Thipayathasana, P. "Isolation and Properties of Escherichia coli

 ATPase Mutants with Altered Divalent Metal Specificity for

 ATP Hydrolysis." Biochimica et Biophysica Acta. 408(1975):

 47-57.
 - Villarejo, M. and Case, C.C. "env Z Mediates Transcriptional Control by Local Anesthetics but Is Not Reguired for Osmoregulation in Escherichia coli." J. Bacteriol.159 (1984): 883-887.
 - Vincent, J.M. (ed) The Cultivation, Isolation and Maintenance of

 Rhizobia. in A Manual for the Practical Study of the

 Root-Nodule Bacteria. pp. 1-13. Blackwell Scientific

 Publications, London, 1970.
 - Vincent, J.M. Rhizobium: General Microbiology. in A Treatise of

 Dinitrogen Fixation, (Hardy R.W.F. and Silver, W.S.)

 Section III. pp. 343-344. John-Wiley and Sons, 1977.
 - Vreeland, R.H., Anderson, R. and Murray, R.G.E. "Cell Wall and Phospholipid Composition and Their Contribution to the Salt Tolerance of Halomonas elongata." J. Bacteriol. 160 (1984): 879-883.
 - West, I.C. and Mitchell, P. "Proton /Sodium Ion Antiport in Escherichia coli." Biochem. J. 144 (1974): 87-90.
 - Zilberstein, D., Padan, E. and Schuldiner, S. "A Single Locus in Escherichia coli Governs Growth in Alkaline pH and on Carbon Sources Whose Transport is Sodium Dependent."

 FEBS Letters. 116 (2), (1980): 177-180.

APPENDIX

Appendix 1 Statistical analysis of nodule numbers by F test with completely randomized design (unequal of N)

Table 1.1 Data taken from Table 1, summation of nodule numbers was listed as follows:

number of		Number of	nodules p	er plant		
replication	TAL 113	P ₁₉	P ₁	P ₅	P ₂₁	
1	12	100	70	40	6	
2	90	230	60	20	20	
3	15	190	26	20	10	
4	60	80	75	25	15	
5	40	47	7	20	8	
6	35	47		7	15	
7	166				3	
8	171					
- A	18039		TALE	116		-
Total = T.j Mean	589 73	694 115	238 48	132	77	1730

1730= Tt

Total of all observations, Tt = 589 + 694 + --- + 77 = 1730

Correction term, CT =
$$\frac{\text{Tt}^2}{n}$$

= $\frac{(1730)^2}{32}$ = 93528.125

SS_{total} = $\frac{n}{2}$ $\frac{k}{2}$ x^2 ij - CT

= $(12)^2 + (90)^2 + --- + (3)^2 - 93528.125$

= 107363.88

SStreatment =
$$\sum_{j=1}^{k} \frac{T^{2}_{,j}}{n_{j}} = CT$$

= $(\frac{589}{8})^{2} + ---+ (\frac{77}{7})^{2} - 93528.125$
= 45189.467
SSrediual = SStotal-SStreatment
= 62174.41

Table 1.2 ANONA table for the randamized complete block design of number of nodules.

Source of Variation	Degree of freedom(df.)	Sum of Square (SS.)	Mean Square . (MS.)	F-ratio
treatments residual	4 27	45189.467 62174.41	11297.37 2220.51	5.09
Total	31	107363.88		

Mean Square = Sum of Square/degree of freedom

F-ratio = $\frac{MS \text{ treatments}}{MS \text{ residual}}$

Let's, Null Hypothesis, Ho = There are no significant difference compared between treatments

AT α = 0.05, the crical value of F, df (4,27) = 2.73

Since our computed F-ratio, 5.09 > 2.73

... The nodule numbers were significantly different compared among strains of mutants. (p < 0.005)

Data were paired and were subjected to further step of calculation using Duncan's new multiple range test.

Standard error of the mean,
$$S\bar{x} = \sqrt{\text{error mean square/ri}}$$

error mean square/ $_{ri}$ = $\frac{\text{error sum square}}{\text{df.of errorX ri}}$
error sum square/ $_{ri}$ = $\frac{k}{S^2} \left[\frac{n}{S^2} |X^2ij| + (\frac{n}{S^2} |X^2ij|^2) \right] / ri$
= $\{(12)^2 + (90)^2 + ---+ (171)^2 - (589)^2\} + 88 + ---$
+ $\{(6)^2 + (20)^2 + ---+ (3)^2 - (\frac{77}{7})^2\} / 7$
= 9254.48
. . . $S\bar{x}$ = $\sqrt{\frac{9294.48}{27}} = 18.5537$

AT α = 0.05, df. of error = 27, the significant studentized ranges(SSR.) were as follows:

	p = numbe	r of means for	range being	tested
CCD	2	3	4	5
SSR.	2,9	3,04	3,13	3,2
LSR.	53.8057	56.4032	58.0731	59,3718

Least significant range (L.S.R.) = SSR, x Sx

Summation of the range of minimal to maximal values of data.

Strain	P ₂₁	P ₅	P ₁	TAL 113	P ₁₉
Mean	11	22	48	73	115

Table 1.3 Statistical test for different pairs of mean by Duncan's new multiple range test.

pair-being tested	difference of mean	P	LSR.	Interpretation
P ₁₉ : P ₂₁	104.67	5	59.37	SD+
P ₁₉ : P ₅	93.67	4	58.07	SD+
P ₁₉ : P ₁	68.07	3	56.4	SD+
P ₁₉ : TAL 113	42.04	2	53.81	SD-
TAL 113 : P ₂₁	62,63	4	58.07	SD+
TAL 113 : P ₅	51.63	3	56.4	SD-
TAL 113 : P ₁	26.03	2	53.81	SD-
P ₁ : P ₂₁	36.6	3	56.4	SD-
P ₁ : P ₅	25.6	2	53.81	SD-
P ₅ : P ₂₁	11.0	2	53,81	SD-

SD+ = significant difference, SD- = no significant difference

From Table 1.3, Line drawn under group of strains indicated no statistical difference decided from the Duncan's new multiple range test. Common letters denoted the same sign, ie no significant difference (SD-), but for different alphabet signified the statistical different of treated data.

Appendix 2 The F test of acetylene reduction activity with completely randomized design. (unequal of N)

Table 2.1 Data taken from Table 1.; the values of acetylene reduction activity were as follows:

number of	Acetylene re	duction act		oles C ₂ H ₄ /hr/	g of nodul
replications	TAL 113	P ₁₉	P ₁	P ₅	P ₂₁
1	31.3	17.5	7.4	8.5	5.0
2	13.0	8.2	5.6	12.5	21.4
3	10.0	13.4	1.2	13.3	13.3
4	12.0	16.4	8.6	25.0	12.5
5	6.1	28.6	10.3	16.7	80.0
6	35.5	20.0		17.0	33.0
7	17.5				5.0
8	13.0				

C.T. =
$$\left(\frac{538.8}{32}\right)^2$$
 = 9072.045
SStotal = $(31.3)^2 + (13.0)^2 + ---+(5.0)^2 - 9072.045$
= 6329.32
SStreatment = $\left(\frac{138.4}{8}\right)^2 + \left(\frac{104.1}{6}\right)^2 + ---+\left(\frac{170.2}{7}\right)^2 - 9072.045$
= 927.32
SS.residual = 6329.46 - 927.91 = 5401.99

Table 2.2 ANOVA table for the completely randomized design of acetylene reduction activity.

Source of variations	đf	SS	MS	F-ratio
treatments	4	927.32	231.83	1.16
residual	27	5401.95	200.07	
total	32	6329.32		

At
$$\alpha$$
 = 0.05, the critical value of F, df = (4,27) = 2.73
Since, F-ratio = 1.16 < 2.73

... The values of acetylene reduction activity were not significantly different, compared among strains of mutants.(p > 0.1)

คูนย์จิทยทรัพยากร พาลงกรณ์มหาจิทยาลัย Appendix 3 The F test of plant wet weight with completely randomized design (unequal of N)

Table 3.1 Data taken from Table 1, summation of plant wet weight was as follows:

	Pla	nt wet we	ight (g/p	lant)		
TAL 113	P ₁₉	P ₁	P ₅	P ₂₁	control	
2.3	3.0	4.4	5.0	3.1	3,2	
3.6	5.8	6.2	6.2	4.0	2.9	
3.4	5.0	5.1	4.8	3.1	3.3	
4.0	6.2	4.6	5.5	3.9	3.9	
5.8	4.2	4.6	4.4	6.1	3.0	
4.6	5.8		5.0	7.0	4.4	
6.1 4.8		1828		6.2		
34.6	30.0	24,9	30.9	33.4	20.7	= 174.
4.32	5.00	4.98	5.15	4.77	3,45	

Mean

C.T. =
$$(\frac{174.5}{38})^2$$
 = 801.322
SStotal = $(2.3)^2 + (3.6)^2 + ---+ (4.4)^2 - 801.322$
= 52.3076
SStreatment = $(\frac{34.6}{8})^2 + (\frac{30.0}{6})^2 + ---+ (\frac{20.7}{6})^2 - 801.322$
= 12.24

.. SS residual = 52.3076 - 12.24 = 40.0676

Table 3.2 ANOVA table for completely randomized design of plant wet weight.

Source of Variation	df	SS.	MS.	F-ratio
treatments	5	12,24	2.448	1.96
residual	32	40.0676	1.2521	
total	37	52.3076		

At
$$\alpha$$
 = 0.05, the critical value of F, df = (5, 32) = 2.51
Since, F-ratio = 1.96 < 2.51

. The values of plant wet weight were not significantly different, compared among strains of WT and mutants. (p > 0.1)

คูนยวทยทรพยากร พาลงกรณ์มหาวิทยาลัย Appendix 4. The F test of plant height with completely randomized design (unequal of N)

Table 4.1 Data taken from Table 1., summation of plant height was as follows:

			height (cm	1)	
TAL 113	P ₁₉	P ₁	P ₅	P ₂₁	control
30	40	38	42	32	40
33	40	39	30	35	37
35	39	37	42	33	30
38	35	37	30	44	37
39	38	9. (6)	40	40	30
33				42	30
208	192	151	184	226	204 = 116
34.7	38.4	37,8	36,8	37.7	34,0

total mean

C.T.
$$= \frac{(1165)^2}{32} = 42413.281$$
SStotal
$$= (30)^2 + (33)^2 + --- (30)^2 - 42413.281$$

$$= 551.7180$$

$$= \frac{(208)^2}{6} + \frac{(192)^2}{5} + --- \frac{(204)^2}{6} - 42413.281$$

$$= 90.299$$

. SSresidual = 551.7180 - 90.299 = 461.42

Table 4.2 ANOVA table for completely randomized design of plant height.

Source of variation	df	SS.	MS.	F-ratio
treatments	5	90.299	18.0598	1.02
residual	26	461.42	17.7469	
total	31	551.7188		

AT α = 0.05, the critical value of F, df = (5, 26) = 2.59 Since; F-ratio = 1.02 < 2.59

. The values of plant height were not significantly different, compared among strains of WT and mutants.

ผูนยวทยทุกพยากร พาลงกรณ์มหาวิทยาลัย Appendix 5 Statistical analysis of the values of 0 consumption using F test with randomized complete block design.

Table 5.1 Data taken from Table 4., the data analysis of $^{0}2$ consumption of mutants was summarized:

Mutant strain	O ₂ co (µmoles/min	Ti	
(j)	Cell grown in YM	Cell grown in YM + 0.3 M NaCl	
P ₁	6.2	13.3	19.5
P ₅	4.8	11.5	16.3
P ₁₉	4.8	10.0	14.8
P ₂₁	4.1	13.4	17,5
T.j	19.9	48.2	68,1 = Tt

The total of ith block, Ti.
$$= \frac{2}{5}$$
 Xij
ie. T1, $= 6.2 + 13.3 = 19.5$
The total of jth column, T.j $= \frac{4}{5}$ Xij
ie. T.1 $= 6.2 + 4.8 + 4.8 + 4.1 = 19.9$
The grand total, Tt $= \frac{2}{5}$ T.j $= \frac{4}{5}$ Ti.
 $= 19.9 + 48.2 = 19.5 + 16.3 + 14.8 + 4.$

17.5 = 68.1

The computing formulas for sums of squares:

SStotal =
$$\frac{2}{5}$$
 $\frac{4}{5}$ X^{2} ij - CT $j=1$ $i=1$

SSblocks = $\frac{4}{5}$ $\frac{T^{2}}{2}$ i - CT $\frac{1}{5}$

SStreatments = $\frac{2}{5}$ $\frac{T^{2}}{4}$ j - CT $\frac{1}{5}$

when CT = correction term = $\frac{T^{2}}{n}$ t = $\frac{(68.1)^{2}}{8}$ = 579.7013

 \therefore SStotal = $(6.2)^{2}$ + $(13.3)^{2}$ + $\frac{1}{2}$ + $(13.4)^{2}$ - 579.7013

= 110.3287
 \therefore SSblocks = $\frac{(19.5)^{2}}{2}$ + $\frac{(16.3)^{2}}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ - 579.7013

= 5.9137
 \therefore SStreatments = $\frac{(19.9)^{2}}{4}$ + $\frac{1}{2}$ + $\frac{1}{2}$ - 579.7013

= 110.1112
 \therefore SSresidual = SStotal - (SSblocks + SStreatments)

= 4.3038

คูนยวทยทวพยากว สาลงกรณ์มหาวิทยาลัย

Table 5.2 ANOVA table for the randomized complete block design of O_{2} consumption.

Source of variations	Degree of freedom [df.]	Sum of Square [S.S.]	Mean Square {M.S.}	F-ratio	
treatments	1 3	100.1112 5.9137 4.3038	100.1112 1.9712 1.4346	69.78	
residual total	7	110.3287	1,4340		

d.f. (treatments) = k-1 (k - numbers of treatments)

df. (blocks) = n-1 (n = numbers of blocks)

df. (residual) = (n-1)(k-1)

Mean Square = Sum of Square /df.

F-ratio of treatments) = $\frac{MS}{MS}$ residual

F-ratio of block = $\frac{MS \text{ blocks}}{MS \text{ residual}}$

1) Compared between treatments.

Ho (null hypothesis) : No effect of treatment on O₂ consumption

At α = 0.05, the critical value of F with df. (1, 3) = 10.13 Since F-ratio of treatment (69.78) > the critical value of F (10.13)

... The values of $^{0}2$ consumption were significantly different compared between treatment with and without salt (p < 0.005)

2) Compared among strains.

Ho : The values of ${\rm O}_2$ consumption were not significantly different among strains.

At α = 0.05, the critical value of F, df.(3, 3) = 9.28 Since, F-ratio of blocks (1.37) < the critical value of F (9.28)

... The values of 0_2 consumption were not significantly different among strains of mutants. (p > 0.1)

Appendix 6 Statistical analysis of ATPase activities by F test with randomized complete block design.

Table 6.1 Data taken from Table 4., summation of the ATPase activity was as follows:

Mutant strain	ATPās (µmoles/r	Total		
nutant strain	YM + 0,3 M		1	
P ₁	2.7	3.4	6.1	
P ₅	2.7	3.5	6.2	
P ₁₉	2.7	2.7	5.4	
P ₂₁	2.6	2.3	4.9	
Total	10.7	11.9	22.6	

C.T =
$$\left(\frac{22.6}{8}\right)^2 = 63.845$$

SS.total = $(2.7)^2 + (3.4)^2 + (2.7)^2 + - + (2.3)^2 - 63.845 = 1.175$
SS.blocks = $\frac{(6.1)^2 + (6.2)^2 + - + (4.9)^2}{2} - 63.845 = 0.565$
SS.treatments = $\frac{(10.7)^2 + (11.9)^2}{4} - 63.845 = 0.18$
SS.residual = 1.175 - $(0.565 + 0.18) = 0.43$

Table 6.2. ANOVA table for the completely randomized design of ATPase activity.

Source of variation	df.	SS.	MS.	F-ratio
treatments	1	0.18	0.18	1.26
blocks	3	0.565	0.565	1.20
residual	3	0,43	0.1433	
total	7	1.175		

- 1) Compared between treatments $\text{At } \alpha = 0.05 \text{, the critical value of F, df. (1, 3) = 10.13}$ F-ratio of treatments, 1.26 < 10.13
- . . The values of ATPase activity were not significantly different, compared between treatments with and without salt, p > 0.1
 - 2) Compared among strains. At α = 0.05, the critical value of F, df. (3, 3) = 9.28 F-ratio of blocks, 1.20 < 9.28
- . The values of ATPase activity were not significantly different, compared among strains, p > 0.1

Appendix 7. Preparation and procedure of electron microscope technique

7.1 Scanning electron microscope (SEM.)

Cell sample in mid-log phase was first prefixed as cell suspension. An equal volume of cell sample was mixed with an equal volume of a mixture of 8% and 4% paraformaldehyde and glutaraldehyde, dissolved in 0.1 M phosphate buffer pH 7.3, used as the fixative agent. The fixation was allowed at room temperature for 2 hrs. Cells were collected into a millipore filtering pad (0.22μ) and washed once with 0.1 M phosphate buffer pH 7.3. The samples were dehydrated sequentially in a series of grading ethanol, 30%, 50%, 70% and 95% respectively. Soaking in each grading ethanol was allowed at room temperature of 10 min. The final step of dehydration was performed by soaking twice with absolute ethanol for 15 min. the dehydrated sample was then subjected to dry in Samdri Critical Dryer, model 780 (Tousimis USA). After the drying process, sample on filtering pad was mouthed on a brass-stub and subsequently coated with gold by using JEOL. Ion Sputter, model JFC-11000, Japan. Finally, the sample was ready for a visualization by JEOL Scanning Electron Microscope JSM-35 CF, Japan.

7.2 Transmission electron microscope (TEM.)

The cell pellet, collected from a culture of mid-log phase, was used as sample. The sample was subjected to a primary fixation with 4% paraformaldehyde in 0.1 M phosphate buffer pH 7.3 for 24 hrs. The fixative agent was removed by a centrifugation and washed 4 times with 0.1 M phosphate buffer pH 7.3. The secondary fixation was subsequently performed by suspending the sample in 1% OsO₄ at room temperature for 2 hrs. Decantation, washing the fixative agent and dehydration were performed in the same manner as did in the primary

fixation process. The dehydrated sample was embedded in Liquid Spurr Resin, (a mixture of 11.5 g vinyl cyclohexene dioxide, 7 g Dow epoxy resin, 31 g nonenyl succinic anhydride and 0.5 g Dimethyl amino ethanol) and the resin was allowed to polymerize at 65°C for 2 days. Thereafter, the sample was subjected to a thin sectioning on the LKB Ultratome V 2208, Sweden. The 60-90 nm thickness of the sections were selected and placed on the grid. The sample was first stained with 5% uranyl acetate. After washing the staining agent with distilled water, the sample was post-stained with lead acetate solution (1.33 g lead acetate, 1.76 g sodium citrate in 50 ml of distilled water.). The stained sections were dried and were ready for a visualization under the JEOL Transmission Electron Microscope JEM-200 CX, Japan.

BIOGRAPHY

Miss Patcharee Jearanaikoon was born on September 4, 1960 and graduated with the degree of Bachelor of Science in Medical Technology from Mahidol University in 1982.

คุนยวิทยทริพยากร พาลงกรณ์มหาวิทยาลัย