CHAPTER I

PRELIMINARIES

Let X be a set. By a transformation of X, we mean a mapping of X into itself. Let \mathcal{T}_X denote the set of all transformations of X. A partial transformation of X is a mapping from a subset of X into X. The empty transformation of X is the partial transformation with empty domain and is denoted by 0. For a partial transformation α of X, the domain and the range of α are denoted by $\Delta \alpha$ and $\nabla \alpha$, respectively. Let $\mathcal{P}\mathcal{T}_X$ be the set of all partial transformations of X. For $\alpha, \beta \in \mathcal{P}\mathcal{T}_X$, define the product $\alpha\beta$ as follows: If $\nabla \alpha \cap \Delta \beta = \emptyset$, let $\alpha\beta = 0$. If $\nabla \alpha \cap \Delta \beta \neq \emptyset$, let $\alpha\beta$ be the composition of mappings $\alpha|_{(\nabla \alpha \cap \Delta \beta)\alpha^{-1}}$ and $\beta|_{(\nabla \alpha \cap \Delta \beta)}$ where $\alpha|_{(\nabla \alpha \cap \Delta \beta)\alpha^{-1}}$ and $\beta|_{(\nabla \alpha \cap \Delta \beta)}$ denote the restrictions of α and β to $(\nabla \alpha \cap \Delta \beta)\alpha^{-1}$ and $\nabla \alpha \cap \Delta \beta$, respectively. Then for $\alpha, \beta \in \mathcal{P}\mathcal{T}_X$, we have that

$$\triangle \alpha \beta = (\nabla \alpha \cap \triangle \beta) \alpha^{-1} \subseteq \triangle \alpha, \quad \nabla \alpha \beta = (\nabla \alpha \cap \triangle \beta) \beta \subseteq \nabla \beta$$

and indeed,

$$|\nabla \alpha \beta| \le \min \{ |\nabla \alpha|, |\nabla \beta| \}$$

since $|(\nabla \alpha \cap \Delta \beta)\beta| \leq |\nabla \alpha \cap \Delta \beta| \leq |\nabla \alpha|$. If $\alpha \in \mathcal{PT}_X$ and $A \subseteq X$, we define $A\alpha = (A \cap \Delta \alpha)\alpha$. It then follows that

$$A\alpha \subseteq \nabla \alpha$$
, $(A \cup B)\alpha = A\alpha \cup B\alpha$,

$$\nabla \alpha \beta = (\nabla \alpha) \beta, \quad A \alpha \beta = (A \alpha) \beta$$

for all $\alpha, \beta \in \mathfrak{PT}_X$ and $A, B \subseteq X$. Under the product defined above, \mathfrak{PT}_X is a semigroup with identity i_X and zero 0 where i_X is the identity mapping on X. By a transformation semigroup on X, we mean a subsemigroup of \mathfrak{PT}_X . Let \mathfrak{I}_X denote the set of all 1-1 partial transformations of X. Then $0 \in \mathfrak{I}_X$ and \mathfrak{I}_X are both transformation semigroups on X containing i_X . The semigroups \mathfrak{PT}_X , \mathfrak{I}_X and \mathfrak{I}_X are called respectively as the partial transformation semigroup on X, the full transformation semigroup on X and the symmetric inverse semigroup on X. Let \mathfrak{G}_X denote the symmetric group on X. Then \mathfrak{G}_X is a subsemigroup of both \mathfrak{T}_X and \mathfrak{I}_X .

We clearly have the following properties of mappings which will be used later.

- 1. For any nonempty sets A, B, if $\alpha: A \to B$ is 1-1, then there exists an onto mapping $\beta: B \to A$ such that $\alpha\beta = i_A$.
- 2. For any sets A, B, if $\alpha: A \to B$ is onto, then there exists a 1-1 mapping $\beta: B \to A$ such that $\beta \alpha = i_B$.
- 3. If X is finite and $\alpha \in \mathcal{P}\mathcal{T}_X$ is such that $\nabla \alpha = X$, then $\alpha \in \mathcal{G}_X$.
- 4. If X is finite and $\alpha, \beta \in \mathfrak{PT}_X$ are such that $\alpha\beta \in \mathfrak{G}_X$, then $\alpha, \beta \in \mathfrak{G}_X$.

Let X and Y be sets and let $\mathcal{PT}(X,Y)$ denote the set of all mappings from subsets of X into Y. Then $\mathcal{PT}(X,Y) \cup \mathcal{PT}(Y,X) \cup \mathcal{PT}(X,X) \cup \mathcal{PT}(Y,Y) \subseteq \mathcal{PT}_{X \cup Y}$ and we shall consider the product of two elements in $\mathcal{PT}(X,Y) \cup \mathcal{PT}(Y,X) \cup \mathcal{PT}(X,X) \cup \mathcal{PT}(Y,Y)$ as their product in $\mathcal{PT}_{X \cup Y}$. If S is a nonempty subset of $\mathcal{PT}(X,Y)$ and $\theta \in \mathcal{PT}(Y,X)$ such that $\alpha\theta\beta \in S$ for all $\alpha,\beta \in S$, then (S,*) with $\alpha*\beta = \alpha\theta\beta$ for all $\alpha,\beta \in S$, is a semigroup and we denote this semigroup by (S,θ) which is called a generalized transformation semigroup of X into Y.

Let $\mathfrak{I}(X,Y)$ and $\mathfrak{I}(X,Y)$ be the set of all mappings from X into Y and the set of all 1–1 mappings from subsets of X into Y, respectively. Then $\mathfrak{I}(X,Y)$ and $\mathfrak{I}(X,Y)$ are subsets of $\mathfrak{PI}(X,Y)$. If $\mathfrak{S}(X,Y)$ is any one of $\mathfrak{I}(X,Y)$, $\mathfrak{PI}(X,Y)$ or $\mathfrak{I}(X,Y)$, $\mathfrak{S}(X,Y)\neq\varnothing$ and $\theta\in\mathfrak{S}(Y,X)$, then $\alpha\theta\beta\in\mathfrak{S}(X,Y)$ for all $\alpha,\beta\in\mathfrak{S}(X,Y)$, that is, $(\mathfrak{S}(X,Y),\theta)$ is a generalized transformation semigroup of X into Y. In this research, we consider generalized transformation semigroups of these types. Necessary and sufficient conditions for $\mathfrak{S}(X,Y)\neq\varnothing$ and $\mathfrak{S}(Y,X)\neq\varnothing$ are as follows:

- (1) $\mathfrak{I}(X,Y)\neq\varnothing$ and $\mathfrak{I}(Y,X)\neq\varnothing$ if and only if $X\neq\varnothing$ and $Y\neq\varnothing$ or $X=Y=\varnothing$.
- (2) All of $\mathfrak{PT}(X,Y)$, $\mathfrak{PT}(Y,X)$, $\mathfrak{I}(X,Y)$ and $\mathfrak{I}(Y,X)$ always contain 0. The following theorem has been given by Vorobev in [11].

Theorem 1.1. [11]. Let X be a finite set. If $\alpha \in \mathfrak{T}_X$ is such that $|\nabla \alpha| = |X| - 1$, then $\mathfrak{T}_X = \langle \mathfrak{G}_X \cup \{\alpha\} \rangle$, the subsemigroup of \mathfrak{T}_X generated by $\mathfrak{G}_X \cup \{\alpha\}$.

We recall the following basic concepts on semigroups. A congruence on a semigroup S is an equivalence relation ρ on S such that for all $a,b,c \in S$, $a \rho b$ implies $ac \rho bc$ and $ca \rho cb$, and the quotient semigroup of S modulo the congruence ρ is the semigroup S/ρ with a binary operation defined by

$$(a\rho)(b\rho) = (ab)\rho$$
 $(a, b \in S).$

The semigroup S/ρ is a homomorphic image of S by the natural homomorphism $\rho^{\natural}: S \to S/\rho$ defined by

$$a\rho^{\natural} = a\rho$$
 $(a \in S).$

If T is a semigroup and $\varphi: S \to T$ is a homomorphism, then the relation ρ on S defined by

$$a \rho b \iff a\varphi = b\varphi$$
 $(a, b \in S)$

is a congruence on S and $S/\rho \cong S\varphi$ by the isomorphism $a\rho \mapsto a\varphi$.

Let U be a subsemigroup of a semigroup S. For any element $d \in S$, d is said to be dominated by U or U dominates d if for any semigroup T and for any homomorphisms $\varphi, \psi \colon S \to T, \varphi|_U = \psi|_U$ implies $d\varphi = d\psi$. The set of all elements of S dominated by U is called the dominion of U in S and is denoted by Dom(U,S). Then $U \subseteq Dom(U,S) \subseteq S$. The subsemigroup U is said to be dense in S if Dom(U,S) = S, that is, for any semigroup T and for any homomorphisms $\varphi, \psi \colon S \to T, \varphi|_U = \psi|_U$ implies $\varphi = \psi$ on S.

We give a remark here that if U is dense in S, S' is a semigroup and $\pi: S \to S'$ is a homomorphism, then $U\pi$ is dense in $S\pi$. To prove this, let T be a semigroup and $\varphi, \psi: S\pi \to T$ homomorphisms such that $\varphi|_{U\pi} = \psi|_{U\pi}$. Then $\pi\varphi, \pi\psi: S \to T$ are homomorphisms and for every $x \in U$, $x(\pi\varphi) = (x\pi)\varphi = (x\pi)\psi = x(\pi\psi)$. Since U is dense in S, it follows that $\pi\varphi = \pi\psi$ on S and thus for each $x \in S$, $(x\pi)\varphi = x(\pi\varphi) = x(\pi\psi) = (x\pi)\psi$. Hence $\varphi = \psi$ on $S\pi$. From this proof and the relationship between congruences and homomorphisms of semigroups mentioned above, we have the following proposition.

Proposition 1.2. Let U be a dense subsemigroup of a semigroup S. If S' is a semigroup and $\phi\colon S\to S'$ is a homomorphism, then $U\phi$ is a dense subsemigroup of $S\phi$. Equivalently, if ρ is a congruence on S, then $\{x\rho\mid x\in U\}$ is a dense subsemigroup of the quotient semigroup S/ρ .

Let U be a subsemigroup of a semigroup S. A zigzag of length m in S over U with value $d \in S$ is a system of equalities

$$d = u_0 y_1 \quad , \quad u_0 = x_1 u_1 \quad ,$$

$$u_{2i-1} y_i = u_{2i} y_{i+1} \quad , \quad x_i u_{2i} = x_{i+1} u_{2i+1} \quad (i = 1, \dots, m-1),$$

$$u_{2m-1} y_m = u_{2m} \quad , \quad x_m u_{2m} = d$$

where $u_0, u_1, \ldots, u_{2m} \in U$ and $x_1, \ldots, x_m, y_1, \ldots, y_m \in S$, that is,

$$d = \underbrace{u_0 y_1}_{}, u_0 \in U , y_1 \in S ,$$

$$= \widehat{x_1} u_1 y_1 , u_1 \in U , x_1 \in S , u_0 = x_1 u_1,$$

$$= \underbrace{x_1} u_2 y_2 , u_2 \in U , y_2 \in S , u_1 y_1 = u_2 y_2,$$

$$\vdots , u_2 \vdots \vdots , u_2 \vdots , u$$

We give a remark here that if a zigzag in S over U with value d exists, then a zigzag Z of minimum length with value d always exists and for the case that $d \in S \setminus U$, we have that all x_i, y_i for the zigzag Z are in $S \setminus U$.

A very important tool for this research is the Zigzag Theorem given as follows:

Theorem 1.3. [4] Let U be a subsemigroup of a semigroup S. Then $d \in Dom(U, S)$ if and only if $d \in U$ or there is a zigzag in S over U with value d.

The following corollary follows directly from the Zigzag Theorem and the remark given above.

Corollary 1.4. Let U be a subsemigroup of a semigroup S and $d \in S \setminus U$. Then $d \in \text{Dom}(U,S)$ if and only if there exists $u_0,u_1,\ldots,u_{2m} \in U,x_1,\ldots,x_m,y_1,\ldots,y_m \in S \setminus U$ such that

$$d = u_0 y_1 \quad , \quad u_0 = x_1 u_1 \quad ,$$

$$u_{2i-1} y_i = u_{2i} y_{i+1} \quad , \quad x_i u_{2i} = x_{i+1} u_{2i+1} \quad (i = 1, \dots, m-1),$$

$$u_{2m-1} y_m = u_{2m} \quad , \quad x_m u_{2m} = d.$$

It is clear that if S has an identity, then for every $u \in U$, there exists a zigzag in S over U with value u. Hence, the Zigzag Theorem under the assumption that S has an identity can be restated as follows:

"Let S be a semigroup with identity and U a subsemigroup of S.

Then for $d \in S$, $d \in Dom(U, S)$ if and only if there exists a zigzag in S over U with value d."

A semigroup S is said to be regular if for each $x \in S$, there exists $y \in S$ such that x = xyx. Using the Zigzag Theorem, Hall has proved the following theorem in [1].

Theorem 1.5. If U is a proper regular subsemigroup of a finite semigroup S, then $Dom(U, S) \neq S$.

The next theorem is a special case of a theorem given by Howie and Isbell in [3] which is also an application of the Zigzag Theorem.

Theorem 1.6. If G is a subgroup of a semigroup S, then Dom(G, S) = G.

Since every subsemigroup of a finite group G is a subgroup of G, the following corollary is obtained from Theorem 1.6.

Corollary 1.7. If U is a subsemigroup of a finite group G, then Dom(U,G)=U.

