CHAPTER I

PRELIMINARIES

A <u>semigroup</u> is a pair (S, \cdot) consisting of a nonempty set S and a binary operation \cdot on S such that $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in S$. A nonempty subset T of a semigroup S is called a <u>subsemigroup</u> of S if T is closed under the same operation of S.

A semigroup S is said to be <u>commutative</u> if xy = yx for all $x,y \in S$. A <u>maximal</u> <u>commutative</u> <u>subsemigroup</u> of a semigroup S is a commutative subsemigroup of S which is not contained properly in any commutative subsemigroup of S.

An element e of a semigroup S is called an <u>idempotent</u> of S if $e^2 = e$. A <u>semilattice</u> is a commutative semigroup in which all elements are idempotents.

An element a of a semigroup S is said to be <u>regular</u> if a = axa for some $x \in S$. A semigroup S is said to be <u>regular</u> if every element of S is regular. Then every idempotent of a semigroup S is a regular element of S. It is known that a semigroup S is a group if and only if S is a regular semigroup containing exactly one idempotent.

A triple (S,+,*) is called a semiring if

- (i) (S,+) is a semigroup,
- (ii) (S,•) is a semigroup,
- (iii) $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$ for all $x,y,z \in S$.

If (S,+,*) is a semiring, the operations + and * are usually called the <u>addition</u> and the <u>multiplication</u> of the semiring (S,+,*), respectively. A semiring (S,+,*) is said to be <u>additively</u> [multiplicatively] <u>commutative</u> if (S,+) [(S,*)] is a commutative semigroup, and it is said to be <u>commutative</u> if it is both additively commutative and multiplicatively commutative.

Let $S = (S, +, \cdot)$ be a semiring.

An element 0 of S is called a zero of the semiring S if x+0=0+x=x and $x\cdot 0=0\cdot x=0$ for every $x\in S$. An element 1 of S is called an identity of the semiring S if $x\cdot 1=1\cdot x=x$ for every $x\in S$. An element a of the semiring S is called an additive [multiplicative] idempotent of the semiring S if a is an idempotent of the semigroup (S,+) [(S,\cdot)]. If the semiring S has a zero 0 [an identity 1] and $x,y\in S$ are such that x+y=y+x=0 [$x\cdot y=y\cdot x=1$], then y is called an additive [multiplicative] inverse of x. If the semiring S has identity 1, an element x of S is said to be (multiplicatively) invertible if x has a multiplicative inverse in S. If the semiring S has a zero 0, then a nonzero element $x\in S$ is called a zero divisor of the semiring S if there exists a nonzero element $y\in S$ such that xy=yx=0. Then a semiring S with zero has no zero divisors if and only if for $x,y\in S$, xy=0 implies x=0 or y=0.

If we say that S is a semiring with 0 [with 1], we mean S is a a semiring having 0 [1] as its zero [identity]. If a semiring S has a zero 0 and an identity 1, then 0 = 1 if and only if |S| = 1 where |S| denotes the cardinality of S. If we say that S is a semiring with 0,1 we always mean S is a semiring having 0 and 1 as a zero and an identity, respectively, and $0 \neq 1$.

A semiring (S,+,•) is called a <u>regular semiring</u> if (S,+) and (S,•) are regular semigroups. Also, a semiring (S,+,•) is called a <u>semilattice semiring</u> if (S,+) and (S,•) are semilattices.

A Boolean algebra is a triple (B,+, •) such that

- (i) (B,+) and (B,•) are commutative semigroups,
- (ii) $a \cdot (b+c) = a \cdot b + a \cdot c$ and $a+b \cdot c = (a+b) \cdot (a+c)$ for all $a,b,c \in B$,
- (iii) there exists 2 elements 0 and 1 of B such that $0 \neq 1$, 0+a=a and 1•a=a for every $a \in B$,
- (iv) for every a ϵ B, there exists an element \acute{a} ϵ B such that $a+\acute{a}=1$ and $a•\acute{a}=0$.

Every Boolean algebra is a semilattice semiring with 0,1, A semilattice semiring $(S,+,\cdot)$ with 0,1 is a Boolean algebra if $a+b\cdot c=(a+b)\cdot (a+c)$ for all a,b,c ϵ S and for every element a ϵ S, there exists an element á ϵ S such that $a+\delta=1$ and $a\cdot\delta=0$.

If S is an additively commutative semiring and n is a positive integer, let $M_n(S)$ be the set of all nxn matrices over S, so $M_n(S)$ is a semigroup under matrix multiplication.

Let S be an additively commutative semiring and n a positive integer. If A ϵ M_n(S), then for i,j ϵ {1,2,...,n} the notation A ij denotes the element of the matrix A in the ith row and jth column, and A = (a ij) denotes

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

For $A \in M_n(S)$, A^T denotes the transpose of A. Then, $(A^T)^T = A$ for every $A \in M_n(S)$. And, if S is a commutative semiring, then for $A,B \in M_n(S)$, $(AB)^T = B^TA^T$.

It is known that if R is a ring and n is a positive integer, then the matrix semigroup $M_n(R)$ is regular if and only if R is a regular ring [3, Theorem 24 of Part II.] In particular, any matrix semigroup $M_n(F)$ with F a field and n a positive integer is always regular.

If n is a positive integer such that $n \ge 2$, let \mathcal{Y}_n denote the permutation group (the symmetric group) of degree n, let \mathcal{A}_n denote the alternating group of degree n (that is, $\mathcal{A}_n = \{\sigma \in \mathcal{Y}_n \mid \sigma \text{ is an even permutation}\}$) and let $\mathcal{B}_n = \mathcal{Y}_n \wedge_n$ (that is, $\mathcal{B}_n = \{\sigma \in \mathcal{Y}_n \mid \sigma \text{ is an odd permutation}\}$).

Let S be a commutative semiring and n a positive integer such that $n \geqslant 2$. For A ϵ M_n(S), the <u>positive determinant</u> of A, det⁺A, and the <u>negative determinant</u> of A, det⁻A, are defined by

$$\det^{+} A = \sum_{\sigma \in \mathcal{A}_{n}} A_{1\sigma(1)}^{A_{2\sigma(2)}} \cdots A_{n\sigma(n)}^{A_{n\sigma(n)}}, \det^{-} A = \sum_{\sigma \in \mathcal{A}_{n}} A_{1\sigma(1)}^{A_{2\sigma(2)}} \cdots A_{n\sigma(n)}^{A_{n\sigma(n)}}.$$

Then $\det^+A = \det^+(A^T)$ and $\det^-A = \det^-(A^T)$ for every $A \in M_n(S)$. For convenience, if S is a commutative semiring with 0 and A is a 1x1 matrix over S, let \det^+A be the element of A and $\det^-A = 0$. Therefore, If R is a commutative ring and A is a square matrix over R, then the determinant of A, \det^+A , is $\det^+A - \det^-A$.

Let S be an additively commutative semiring with 0,1 and n a positive integer. Let I_n denote the nxn identity matrix over S. Then I_n is the identity of the matrix semigroup $M_n(S)$. For $A \in M_n(S)$, A is

called a <u>permutation matrix</u> over S if every element of A is either 0 or 1 and every row and every column of A has exactly one element which is 1. For A \in M_n(S), A is called an <u>invertible matrix</u> over S if AB = BA = I_n for some B \in M_n(S).

We know from the theory of matrices over a field that a square matrix A over a field is invertible if and only if detA ≠ 0. The theory of matrices over a ring gives a generalization of this result that a square matrix over a commutative ring with identity is invertible if and only if detA is an invertible element of the ring R [2; Theorem 4 of Chapter 5].

Reutenauer and Straubing proved in [8; Lemma 1] that if S is a commutative semiring with 0,1, n is a positive integer and $n \ge 2$, then for any A,B ϵ M_n(S), there exists an element r ϵ S such that

and then they proved an another important theorem concerning invertible matrices which states that if S is a commutative semiring with 0,1 and n is a positive integer, then for A,B ϵ M_n(S), AB = I_n implies BA = I_n [8; Theorem].

In this thesis, we let \mathbb{N} , \mathbb{Q}^+ and \mathbb{R}^+ denote the set of all natural numbers (the set of all positive integers), the set of all positive rational numbers and the set of all positive real numbers, respectively.