CHAPTER 1II
Monte Carlo Method

The Monte Carlo method was developed by von Neumann, Ulam, and
Metropolis at the end of Second World War to study the diffusion of neutrons in
fissionable material. The name 'Monte Carlo’, chosen because of the extensive use of

random numbers in the calculations, was coined by Metropolis in 1947 and used in

Vy # Los Alamos.(24)
A common goal 0 all ' ’&pputer simulations is to study the
microscopic properties o?w ; iog - ictural and energetical properties,
based on the knowled of petoniis fur | study, how a solute influences

the solvent structure ozHiovya 8 lgte-i8 solv: te sovent molecules in the solution.

In this chapter ip! arlo algorithms (Metropolis,

Periodic Boundary » ¥ convention, Spherical Cutoff,
T

Long-range Interactions ) wﬁi;pg together with some review of Monte

=

Carlo simulations of:ilectmlﬁﬁ" @YM

3.1 Principles of Moiﬁe arlo ]
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unplementmg e assumption thag only two b dy forces are to, be considered, i.e.

inear R %ﬂ@ﬂ%&%ﬂr’ﬁoﬁ Sadeed. o) f the sysiem can

be written thus as a sum of pairwise interaction energies between the individual

particles E(v) of the system.

E(v) = ZZX E;(v)
P

(3.1
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where v is a configurational coordinate of the particles in a system.
In order to calculate the properties of the system, a canonical ensemble with
N particles in a volume V at a constant temperature T must be considered, and to
eliminate surface effects, periodic boudary conditions are required. The average of

any quantity of interest <F> can be written as

<F> = I k V) exp(-E(v)/ kT) dv
-B(v)/ kT ) dv
3.2)

phase space. If the starting

where dv is a volume
configuration is gene nal space, integration over
d exp(-E(v)/kT), shown in

y onte Carlo method,which is

-many orders of magni
€g.(3.2). This is the

however, not practicable.

3.2 Algorithms

3.2.1 Metropt

The above w opolis et al. m 1953 (24). In this method,

the N configurations are’ fandoml w m ith respect to their
probability, P(o?f:uiﬂ ﬂ r taking a quite large
number of space pomts 2 cinbe a ﬁroxﬂa ﬁ gldﬁfg El

S PR EF(D)P(D)exp( E(V) / kT)
i=1

R
Z P (v)exp(-E(v)/kT)
i=1

(3.3)
The probability P(v) in this Metropolis Monte Carlo method is given by a



Boltzmann factor :

P(v) = exp(-E(v) / kT)

(3.4)

Then eq.(3.3) can be reduced to a simple form of

The problem of JVetcome by implementing periodic

boundary conditions. The caibic s ica d oughout space to form an infinite

Ty ‘
"lattice". In the simulation,as a}‘% .in the original box, its periodic image
o e s
in each of the nci.ggbanrhl'g boxe&.,_,_ i the same way. Thus, as a
molecule leaves the ig: b% 1€ » * enter through the opposite

face. There are no wa.a at the boundary of the central X, and no surface molecules.

This box simply forms & cénvenient axi m neasuring the coordinates of the
N molecules. ﬁﬁuﬂn om ﬂﬁ C ﬂmtem is shown in figure
3.1 . The duphcate boxes are labelled A, B oves through a
boundaa ﬁaaaq ﬂlj mu q l%ﬂpﬁﬁ whxch box the
image hes) move across their corresponding boundaries. The number density in the
central box (and hence in the entire system) is conserved. It is not necessary to store
the coordinates of all the images in a simulation (an infinite number), just that of the
molecules in the central box. When a molecule leaves the box by crossing a boundary,

attention may be switched to the image just entering. It is sometimes useful to picture

the basic simulation box (in the two dimensional example) as being rolled up to form
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the surface of a three-dimensional torus or doughnut, when there is no need to
consider an infinite number of replicas of the system nor any image particles. This

correctly represents the topology of the system, if not the geometry. A similar analogy
exist for a three-dimensional periodic system .
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3.2.3 Minimal Image Convention

The heart of Monte Carlo programs involves the calculation of the potential
energy of a particular configuration. To calculate contributions to the potential energy

involving molecule 1, one assume pairwise additivity. The interactions between
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molecule 1 and every other molecule i in the simulation box must be included. There
are N-1 terms in this sum. However, in principle the interactions between molecule 1
and images i, ip, etc. lying in the surrounding boxes must be included as well. This is
an infinite number of terms, and of course it is impossible to calculate in practice. For
a short-range potential energy function, an approximation may be used to restrict this
summation. Consider molecule 1 to rest at the centre of a region which has the same

size and shape as the basic simulation box (figure 3.2). Molecule 1 interacts with all
ithin ngon, that is with the closest periodic
i %he ’minimal image conventlon for
c@eoules 2, 3g, 4g and 5¢. This

riodic boundary condition, was

the molecules whose centres liq-:,_

images of the other N-1 mo

example, in figure 3.2 W :

technique, which is a

In the minim he calculation of the potential

energy due to pairwise- addltlvb..nﬁcr' ons it I 7 N(N-1) terms. This may still
R 4 2

be a very substax::j)ilal calcu a"t"iéfr B - stern 1000 particles. A further

approximation signifscantly-imp situation: Tie largest contribution to the
potential comes fromﬁlgh ours 10 eculﬂ)f interest, and for short-range
interactions, a sphencakc toff can be applie lied. This means setting the pair potential

(D) to zero fcﬂ uﬂv@ qn &%ﬂ?f%%j ’]'ﬂ;@shed circle in figure 3.2

represents this yxtoff and in this case molecules 2 and 4g contr@te to the interaction
win A P S A Y8 OGN ma 5 o
contribute. In a cubic simulation box of side L, the number of neighbours explicitly
considered is reduced by a factor of approximately 411:r3c/3L3 , and this may be a
substantial saving. The introduction of a spherical cutoff could be a perturbation, and
the cutoff distance should be sufficiently large to ensure that this perturbatiori is very

small.

The cutoff distance must be no greater than ;L for consistency with the
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minimal image convention, and it is applicable only to rapidly decreasing potential

terms, e.g. 1/r° or exponential terms.

ion in a two-dimensional

system.
3.2.5 Long-range ions, <
FHEIRENINGINT
A iu e interactio £ i i —f tial interaction
falls ofaoﬁftiaau I ' im ﬂ.mim € sﬂtaem. In another

meaning, long-rang interaction is one in which all the particles lying outside the

cutoff sphere of a given particle. The charge-charge, charge-dipole, dipole-dipole and
charge-quadrupole interactions are the examples of such interaction. Long-range
interactions are a serious problem for the computer simulator, since their range is
greater than half the box length. So far, there have been two widely used methods

which can be employed to handle the problem of long-range interaction. The two



29

- methods will be shown as following :

The Ewald sum , (25)

The Ewald sum procedure is the oldest one which is perfectly consistent with
periodic boundary conditions. This procedure is a technique for efficiently summing

the interaction between a particle 2

its periodic images. Due to the periodic

Nz 3.6)
aﬁa molecular pairs (i,j) within the

. . Ef.l Fl ! lfff \ ' :
simulation box , and the ¢éll c'?dgsn extend to the nfinite lattice.
3

In this technique the; ‘g‘u-u ati -*__ 7 0 ation (3.6) is actually attempted by

where the summation

thinking every charge as made u 3 ; _' n distribution. The summation is then

()

split into two parts ;-One from the tail of 2 Gaussian di listzibution, the other from the
R \

rest. The former rést B ﬁ inction erfc(x), whereas the

latter is carried out in rec1proca1 lattice space (Four k space).

°F1g‘ifﬂg?‘iffﬂw%‘r‘ﬁ T
WW RRING excrme

k#O is i
3.7)

where o is a splitting parameter.

The reaction field method , (26)
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The reaction field method was introduced without the assumption of the
periodicity. The basic physics behind this method is to treat all molecules beyond the
cutoff sphere of radius R from a center charge q; as forming a continuum with a given
dielectric constant eg. Any charge q; lying inside the cutoff sphere will polarize the
continuum and create a reaction field at the center. From electrostatic theory, that

reaction field can be shown to be

-‘:_~_7‘

(3.8)
where r; is the position v
3.3 Calculating Proeé
Consider a syst i : of N icles’in a basic cube of side length L
with infinite cube periodicify. Al'sumit ary o cdure are the followings :
First, an initial con.ﬁ.gm-tﬂ!dﬁ x§ ! ‘by. which the positions of the particles
are selected randonily 2 ' ______ -0t 4 solid state structure. The

computer then calc

(3.1).

i§' configuration from equation

Seco ﬁ ﬂ% %J W%ﬁﬁm‘ from 1 to N ; this

determines the Mbel of the partlcle which it will attempt to move A trial move for

this P@ﬁlﬂ ? Eﬁom Bnd z directions,
each of which may vary I -A to +A . If the trial move carried the

particle outside the basic cube, it is brought back to the other side according to the
boundary condition. The parameter A may be chosen on the basis of previous
experience so as to improve the quality of the results, or in order to garuntee a desired

acceptance rate.

Third, the computer decides whether to accept the trial move. This is done on
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the basis of a specified set of transition probabilities which depend on the energy
difference A E between the new and old configuration devided by kT, (A EKAT). In
the common way, the trial move always accepte if it lowers the energy. The trial
move is accepted with probability respect to the exp(-A E/kT) if it raises the energy
by A E. If the move is rejected, the old configuration is counted as having occured

again in the computation averages.

ctrolyte Solutions

Numerous studics based on!'Mq sLarlo simulations for solutions have
already been published, vIG SUch st ave concemed about electrolyte or

aqueous solutions due

3.4 Review of Monte Carlo Simt

insolution chemistry and biochemical

processes. The discussi n ."e%;guctural properties conceming
the first hydration shell s olecules (water molecules) arrange
themselves around the megal K aswater .ater potential function (27) has
been constructed by , O. M: &fﬁ d M. Yoshimine (known as MCY
potential function), which raplagégéi; 5 _dles of aqueous solution using Monte
Carlo. In the early sjige the s‘fuﬂfég 3; netal ionin water concerned mostly about

ions such as Mg?* , Ca}j (31 y studie{jm the simple monovalent and

divalent metal ions assumed pairwise additive of potential functions, and they gave
results in agreﬂ w ’gp% %fé w E}ng nlims occured when such
studies were perﬂmned on aqueous solutions of some divalent ogtransition metal ions
as BCZ@W@@’@ ﬂﬁ(wagd Wq@3m g% &irwise additive
interactioh only was not enough to describe correctly the structure of the hydrated
metal ions, thus the at least 3-body terms (non-additive term) had to be included in the
potentail functions to improve the quality of the simulations. Among the N-body
terms, the first, i.e. the three-body terms were the most widely used in simulations ,
whereas the other terms was rarely used due to the enormous computer effort needed

for the construction of such potential function and in the simulation.
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