CH A PTERII
Intermolecular Potential Functions

2.1 Ab Initio Calculation Method

2.1.1 General

The most commonly used molecular quantum-mechanical methods can be
classified as either ab initio or semiempirical type. Semiempirical methods use a

simpler Hamiltonian and use patameters whose values are adjusted to fit

data other than the value‘ ofthefinda al-pF onstants. A Hartree-Fock SCF

] { one-electron functions that

minimizes [®*H® drt.y i ftie (@ ‘ Abjinitio is Latin for "from the
beginning" and indicate v

The ab initio meghods | i5 Jf n a ity'in recent years because of the
availability of high-speed digigal: ﬂ&;ﬁu 15 and Leé velopment of theoretical and
computational methods. Thefmaig 1€ g the accuracy of an ab initio -
calculation is the size and type of th ; : ed. Several types of basis sets will be

(E Potential) basis sets used

in this work.
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mechanica?.ly if the corresponding Schroedinger equation can be solved.

Y. = 5 o

(2.1)
According to this equation the total energy is obtained by



<¥YIHI¥Y>

m
Il

(2.2)

where W is the normalized total wave function of the system.

The principle of the ab initio approach is based on the three following step:

o 1
!

i) Define an approximate Hamiltoni n oper: e system.
- .

ii)Define one-electron aonsS \G(g;) a eﬁfunctions,which are composed

from basis functions ¢; acco .’-_.- . =D '_ .
iii) Minimize the total energy , (&g Wi ;\ Spe variations of the coefficients
E = Jw( H1692399 ... 0)
IR 08299, 500)
E £ (2.3)
Y Y]
More details of/the above consecutive steps @l be briefly summarized as
the following

AULINENINYING
RN TUURINGINY

The Molecular Hamiltonian Qperator

If we are interested in molecular systems, the total Hamiltonian operator of
the system will be given as sum of all possible Coulombic interactions plus kinetic

energy of the electrons and nuclei.
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_Hcore(i) = -1/22}'Vi2—EZ
i A

b 5
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He! is a one-electronic Hamilton operator, and the total electronic Hamiltonian is

composed of the 1 electron operators for all electrons.

The Hartree-Fock Wave Functions

a.) Independent Electron Mo

The typical app i T the many-electron wave function is
the Independent Parti l
one-electron spin orbit ts of a spatial orbital and a

spin function. The mo ( a trial wave function for a

Y]
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the spm orbitals ; and ; correspond to y(a) and y(B), where o and B denote the
spin functions. '
This approximation automatically leads to a split-up of the Hamiltonian into

a sum of one electron operators (Fock Operator)
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core

‘ 2
H (i) = -1/2XZV; - 2 Z,/1,
X A

He! is a one-electronic Hamilton operator, and the total electronic Hamiltonian is

composed of the 1 electron operators for all electrons.

The Hartree-Fock Wave Functions

a.) Independent Electron Mo

The typical appr many-electron wave function is

the Independent = Parti a factorization of ¥ into
one-electron spin orbit ng them: ts of a spatial orbital and a
spin function. The mo fvghient_ ? Moth! t.a trial wave function for a
2n-electron-closed shell 1 - i‘ : antal wave function, also

‘called a Slater determin q.(2.6), in order to observe the

g @W(Zn ~1) v (2m)]
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the spin orbitals w; and y; correspond to y(c) and y(B), where o and B denote the
spin functions.
This approximation automatically leads to a split-up of the Hamiltonian into

a sum of one electron operators (Fock Operator)
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The ma,tnx of the elements of the core Hamiltonian, H®'®, contains the elements for

the core-electron Hamiltonians, H¢, for electrons moving in the field of nuclei :

H = <¢u(iv)|Hc|¢ (i) >

(2.10)

part. The elements of the density

matrix P, ; and the two-electron egrals, (v d (uo/vr), are given by

ed shell system)

P?\,o =
(2.11)
( LVIAOC) ;(2)¢0(2)d‘=1dT2

(2.12)

and

‘”""”‘ﬁuﬂi’ﬁﬂﬂ%‘%’ﬁﬁﬁﬂ?‘”“ -

@/ (2.13)
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approximation of C can be obtained by solving of the Roothaan equation

FC = SCE

(2.14)
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The matrix of the elements of the core Hamiltonian, H®®, contains the elements for

the core-electron Hamiltonians, HE, for electrons moving in the field of nuclei :

core € :
H, = <RI IS ) >
(2.10)
The second term in eq.(2.9) is part. The elements of the density

(2.11)

| (:2) 0 (2)dr dr,
,

(2.12)
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approxima?.ion of C can be obtained by solving of the Roothaan equation

and

FC = SCE

(2.14)
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2.1.2 Supermolecule approach

The supermolecule method is thé usual quantum chemical approach, used
within the framework of the discrete molecular complex models. The supermolecule
procedure consists of the solution of the Schrodinger equation in the "clamped nuclei”
(Born-Oppenheimer) approximation for the whole molecular complex, e.g. for a
solution containing one solute and a certain number of solvent molecules. In general,

, AE, is defined as the difference

between the total energy of the. ermo ‘ ¢ sum of energies of the isolated

(2.15)
In this work the 100 Ex ill be determined by this expression,

which seems to be quite si difficulties are encountered in

—_——

numerical treatment. The mo@:x HPO! fficulty lies in the fact that the

energy. Therefore, the

determination of the en gy of the system must be accurate (105 Hartree). Another
factor mﬂuenchT the value of the SCF
interaction energmm:gqm ﬁasm mloyed p ?correctly express the
multipol i]yﬁﬁiq:ywtlhllﬂ Erf polarization
functmnQ:H:IQ1 mm

Basis Set Superposition Error (BSSE)

In calculation of the interaction energy for complex systems, the basis set

employed should be sufficiently large and correctly express the multipole moments
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2.1.2 Supermolecule approach

The supermolecule method is the ushal quantum chemical approach, used
within the framework of the discrete molecular complex models. The supermolecule
procedure consists of the solution of the Schrodinger equation in the "clamped nuclei"
(Born-Oppenheimer) approximation for the whole molecular complex, e.g. for a

solution containing one solute and a certain number of solvent molecules. In general,

within this approach, the total i gy, AE, is defined as the difference

between the total energy of upermoled ﬁ sum of energies of the isolated

: <
constituents (one solute ?ﬁ) olecules -

(2.15)

In this work the etermined by this expression,

which seems to be quite difficulties are encountered in

o

numerical treatment. The md‘__ ~iipo diff ulty lies in the fact that the

supersystem energy and the sum of ed constituent molecules
are very large num s=- 08 d oo n energy. Therefore, the
determination of the enérgy of the system must be accurate (10~ Hartree). Another

factor influenci ﬁ%ﬂ E.Jﬁe%’ wﬁe@r Q: E the value of the SCF

interaction energy. general, the basis set employed correctly express the
¢
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functions b ential for this. ‘ it

Basis Set Superposition Error (BSSE)

’

In calculation of the interaction energy for complex systems, the basis set

employed should be sufficiently large and correctly express the multipole moments
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2.1.3 Basis Functions

In all molecular quantum mechanical methods one has to choose in the
begining of the calculation the basis set. The use of an adequate basis set is an
essential requirement for success of the calculation.

There are several types of atomic orbital function (basis set) :

STO
4 b ok 02 )
(2.18)
STOs were originally nodeless approximations of
hydrogen-like atomic oOrbi es They were mostly used for
the calculations of sm Lheir advantage is that only few functions are
needed for a good descriptio bu;;. e in _ ation © igher functions is largely time

N exp( Brz)\’m (0.0)
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is easier and can be performed simply. However, due to the different shape of the
GTO, for the region near the nucleus, a combination of GTOs with different
exponents is required to obtain equivalent results. Contraction is applied to avoid a
too large size of the combined basis set. For example, the symbol STO-3G for a basis
set means that each STO is approximated by a linear combination of three GTOs, the

coefficients being chosen to minimize the difference between the STO and its GTO

018030
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approximation. There are many GTO expansions in current use which have been
optimized for molecular calculations

Gaussian Lobe Orbitals (GLO)(19,20) are the most simple form of basis

functions ;

GLO

x
]

N exp(-Br?2)

SN "l/ ; (2.20)
The angular part h ‘ en omitt ’Os located at different points in

An orbital revie
In general,one g d & nded basis sets or classifies
them according to the lectron type, eg

to chemical binding. j '
2.1.4 ECP (Effec.tlve Core Potent

ﬂ‘iJEJ’mE_W]iWEJ’]ﬂ‘ﬁ

The trefiéndous cost of ab gmtlo calculatlons has motwatﬁ many attempts to

o oG P} ORI P

orbitals aré relatively inert to changes in chemical bonding (the so called "frozen core

approximation"). Another observation is that the effect of core electrons on the
valence electron can be treated through the use of a potential energy term expressed
as the sum of local functions multiplied by projection operators. Based on these two
assumptions effective core potentials (ECP’s) or pseudopotentials, as they are

sometimes called,reduce the computational problems to dealing with valence electron
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only. Most early results obtained from ECP’s compared favorably with results
obtained from all- electron calculations, although there was a tendency to find shorter
bond lengths and somewhat deeper potential energy Mes. However, recently
developed ECP’s (22,23) have solved these problem so that ECP and all-electron
results are now in nearly exact agreement, even with the advantage to include
relativistic corrections for the core orbitals of heavier atoms.

The generation of ECP’s is performed as following :

w the remaining "valence" orbitals are

btamed from self-consistent

1) The "core" orbitals to
defined. ’
2) Numerical
Hartree-Fock calculations, rl ; f where “ general, is one greater than the

highest angular momen

functions. The total poﬁ\u A

ﬂ‘lJEJ’Wl?JLZ}?WEJ’m‘ﬁ ~

U ( r) .
9 RIAINIUARIINYA Elzzn
where
UL,U; .. Gaussian functions
Pi .. projection operators
I .. distance between atom

6) The numerical pseudo-orbitals are also fitted to Gaussian functions to

obtain basis sets for molecular calculations.
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2.2 Potential Functions

The reliability of results obtained from a computer simulation of Monte
Carlo or Molecular Dynamics type depends mainly on the quality of the potential
functions used. A potential function describes the interaction energy among particles

in that system. In general, the total interaction energy of N particles system can be

written as ;
=201(r])+22 ' : 3(ri’|:i’rk)'+---
i - _
(2.22)

where the first term in e ct of an external field(e.g. the
container walls) on the sy, the pair potential, is the most
important one. In practice jual to this term only - known as

the pair-wise additive appro hiereas the remaining terms are often
referred to as nonadditiy corrections.The )3 falled three-body interaction

sometimes becomes . yer; eased systems. In most of

published simulations,a)wever i ‘not includa due to the large computer

time needed. Four-body (andshigher) terms are expected to be small in comparison to

il ﬂ‘lJEJ’WIEJV]‘ﬁWEJ'm‘ﬁ
mmm UANINYINY

The majority of simulations approximate AE simply by the pair potential
term. So far, there have been several types of pair potentials used in computer
simulations. The Lennard-Jones 12-6 pair potential is one of the commonly used

simple pair potentials which has the form
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s di(r) . e o Aetleir) T folr)®)

(2.23)
This potential has an attractive tail of the form -1/15, the term 1/r!2 represents
repulsive interaction, a negative well of depth ¢, and a steeply rising repulsive wall at

distances less thanr ~ G .

The other forms of pair potentialy shich are very simple and convenient to
use in computer simulation aad i nid-sta -2

_

(2.24)
~ b) The square-well poter
\7 Y}
g . O ,r".
vSW r, _eu(glg I <. Oy )
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v$8(r) = e(o/r) = ar- X

(2.26)

where k is a parameter, often chosen to be an integer. Soft-sphere potentials
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contain no attractive part. The illustration of these three potentials are shown in figure
2.1.

SR r
—
c.) A
Figure 2.1 : a). The har » - tential e Square well potential; c). The
soft-sphere potential. i ra
2.2.2 N-body H)rrectibns ; m

‘o O/ _
N—Mdﬂouﬂh?emlﬂmﬁ ;wﬂ:llﬂ\i:F calculations on all
possible configur‘a;lltions of a supernfolecule consisting of N parficles. The resulting
energy afm :;] aﬁtth m&ﬁtﬂlj aeﬂge number of
possible cgnfigurations and the increasing effort for SCF computations of such large
system makes these corrections enormously time-consuming and expensive. For
strongly interacing systems at least 3-body terms become essential, however, and the

simple pair approximation alone is no more sufficient for obtaining correct structural

data in liquid state.
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2.2.3 Analytical Form of Potential Functions

In the energy fitting step, a suitable mathematical function is selected.
Among the many possible analytical forms of potential functions, one needs to
construct the most reliable function in order to use it in Monte Carlo simulation.
Given two molecules M and N, the pair interaction potential V(M,N) might contain

explicitly both angular and radial dependency. In practical way, however, one selects

to use only the radial functions depend
j being atoms belonging to )
flexibility, one would like t6'
longer the series, the large
the number of machin

simulation. In general, th

where A,B,..,F are fittipraraiﬂéiér m 1 and cha.ﬁ q(i) in molecule M and for
atom j and charge q(j) in theltecule N. The parameter F Soften gﬁal to 1) represents an

s cmcﬂ e dndrke o] an 45

molecular wave ctlons of molecules M and Neat infinite sepatation. It is obvious

ot the e e o b e g o an v

onentatlon of M and N. The exponential term formally describes the short- -range

om computation of

inteaction (repulsive interaction).
Once the analytical form of the potential has been chosen, a fitting procedure
then will be carried out. The form of the selected analytical function and the

algorithm used in the fitting procedure are both important.
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