รายการอ้างอิง

- C.R. Hendrick and V.W.R. Amarakoon, Processing of Manganese-Zine Ferrites for High frequency Switch-Mode Power.
- H. Shoj, T. Mochizuki, M. Sato and T. Maeda, A New Power Ferrite

 for High Frequency Switching Power Supplies. Preceeding of
 the international conference, 1992, sapan, P 275-279.
- O. Inoue, N. Matsutani, and K. Kugimiya, Eddy Current loss of Mn-Zn

 Ferrites. Preceeding of the international conference, 1992,

 Japan, P 1155-1158.
- S. Otobe and T. Mochizuki, Microstructure of Mn-Zn Ferrites for

 Power Application. Preceeding of the international conference,

 1982, Japan, P 301-305.
- Takeshi Mochizuki, Relations Between Microstruture and Core loss in

 Mn-Zn Ferrites for Power Applications. Preeding of the
 international conference, 1992, Japan, P 53-59.
- T. Akashi et. al, Low Loss and Hight Stability Mn-Zn Ferrite.

 Preceeding of the international conference, 1990, Japan, P 565-572.
- T.G.W. Stijnjes et. al, Effects of Various Substitutions in Manganese

 Zinc Ferrites. Am. Ceram. Soc. bull, 1990, P 493-500.
- _____ and, J.J.Rolofsma, Low Loss Power Ferrites for Frequencies up to 500 kHZ. Am. Ceram. Bull, 1990, P 493-500.
- You Song Kim and S.S. Kwon, <u>New Powder Characteristics of Soft</u>

 Ferrites for Switch Mode Power Supplies. Preceeding of the international conference, 1992, sapan, P 13-18.
- Y. Tsunekawa, <u>Preparation of Soft Ferrite</u>. Am. Ceram. Soc. Bull, 1991, P 123-128.

Y. Yamamoto, T. Kuriyama and A. Makino, <u>Magnetic Properties of Mn-Zn</u>

<u>Ferrite with Fine Grain Sizes for Magnetic Heads.</u> Ferrite:

Preceedign of the international conference, 1992, Japan, P 195-204.

สารบัญภาคผนวก

ภาคผ	มนากที่	หน้า
1	Standard Test Method for Apparent Density	
•	of Free-Flowing Metal Powder	.60
2	Standard Test Method for Top density of Powder	
	of Refractory Metal and Conpounds by Tap-pak Volumeter	.62
3	Standard Test Method for Water Absorption, Bulk Density	
	Apparent Porosity and Apparent Specific Gravity of Fired	
	Whiteware Products	.64 *
4	ไฟล์นัมเบอร์เอ็กชเรย์ ดิฟแฟคชัน ของ สารเคมี	. 66

Standard Test Method for Apparent Density of Free-Flowing Metal Powders

This standard is issued under the fixed designation B 212; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (a) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method describes a procedure for determining the apparent density of free-flowing metal powders and is suitable for only those powders that will flow unaided through the specified Hall slowmeter sunnel.

1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

B 213 Test Method for Flow Rate of Metal Powders²

B 215 Practices for Sampling Finished Lots of Metals Powders²

B 243 Terminology of Powder Metallurgy²

3. Summary of Test Method

3.1 A volume of powder is permitted to flow into a container of definite volume under controlled conditions. The weight of powder per unit volume is determined and reported as apparent density.

4. Significance and Use

4.1 This test method provides a guide for evaluation of the apparent density physical characteristic of powders. The density measured bears some relationship to the weight of powder that will fill a fixed volume press cavity when parts are being made. The degree of correlation between the results of this test and the quality of powders in use will vary with each particular application.

5. Apparatus

5. Powder Flowmeter Funnel3—A standard Hall flowmeter funnel (Fig. 1) having a calibrated orifice.

5.2 Density Cup3—A cylindrical cup (Fig. 1) having a capacity of 25 ± 0.05 cm³.

5.3 Stand³—A stand (Fig. 1) to support the powder flowmeter concentric with the density cup so that the bottom of the powder flowmeter orifice is 1 in. (25 mm) above the top of the density cup when the apparatus is assembled as shown in Fig. 1.

5.4 Base-A level, vibration-free base to support the powder flowmeter.

5.5 Balance, having a capacity of at least 200 g and a sensitivity of 0.1 g.

6. Test Specimen

6.1 The test specimen shall consist of a volume of approximately 30 to 40 cm³ of metal powder.

6.2 The test specimen shall be tested as sampled. Note, however, that moisture, oils, stearic acid, stearates, waxes, etc., may alter the characteristics of the powder.

7. Procedure

7.1 Carefully load the test specimen into the flowmeter funnel and permit it to run into the density cup through the discharge orifice. Take care not to move the density cup.

7.2 When the powder completely fills and overflows the periphery of the density cup, rotate the funnel approximately 90° in a horizontal plane so that the remaining powder falls away from the cup.

7.3 Using a nonmagnetic spatula with the blade held perpendicular to the top of the cup, level off the powder flush with the top of the density cup. Take care to avoid jarring the apparatus at any time.

7.4 After the leveling operation, tap the density cup lightly on the side to settle the powder to avoid spilling in transfer.

7.5 Transfer the powder to the balance and weigh to the nearest 0.1 g.

8. Calculation

8.1 Calculate the apparent density as follows: Apparent density, g/cm^3 = weight in grams × 0.04

9. Report

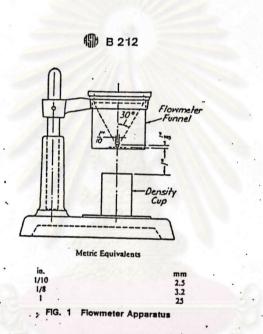
9.1 Results shall be reported as apparent density to the nearest 0.01 g/cm3.

10. Precision and Bias

10.1 The following criteria should be used to judge acceptability of the results at the 95 % confidence level.

10.1.1 Repeatability-Duplicate results by the same operator should be considered suspect if they differ by more than 0.9 %.

10.1.2 Reproducibility-The results submitted by each of two laboratories should not be considered suspect unless they differ by more than 6.0 %.


¹ This test method is under the jurisdiction of ASTM Committee B-9 on Metal Powder and Metal Powder Products and is the direct responsibility of Subcommittee B09.02 on Base Metal Powders.

Current edition approved Jan. 27, 1989. Published March 1989. Originally published as B 212 – 46 T. Last previous edition B 212 – 82.

¹ Annual Book of ASTM Standards. Vol 02.05.

³ The flowmeter funnel, density cup. and standards available for a standards.

³ The flowmeter funel, density cup, and stand are available from Alcan Powder and Pigments, Division of Alcan Aluminum Corp., 901 Lehigh Ave., Union, NJ 07083-7632.

The American Society for Tasting and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly edvised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 1916 Race St., Philadelphia, PA 19103.

Standard Test Method for Tap Density of Powders of Refractory Metals and Compounds by Tap-Pak Volumeter¹

This standard is issued under the fixed designation B 527; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reappropriate epsilon (e) indicates an editorial change since the last revision or reapproval.

" NOTE-The Keywords section was added editorially, and other editorial changes made, in August 1991.

1. Scope

1.1 This test method covers determination of the tap density (packed density) of refractory metal powders and compounds by means of the Tap-Pak Volumeter.2

1.2 This standard does not purport to address the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Significance and Use

2.1 This test method covers the evaluation of the tapped density physical characteristic of powders. The degree of correlation between the results of this test and the quality of powders in use will vary with each particular application and has not been fully determined.

3. Apparatus

- 3.1 Graduated Cylinder,3 calibrated to contain 25 mL at 20°C, internal diameter 15 mm, height 180 mm and weight approximately 60 g.
- 3.2 Holder—A cylinder holder weighing 1 lb (454 g).
- 3.3 Tapping Device, consisting of a baseplate with singlephase a-c condenser motor, with worm drive, reduction ratio 15 to 1, cam shaft speed 250 r/min, tapping stroke travel 3.2
- 3.4 Counter-A four-digit adjustable counter, which can be preset to deliver numbers of taps between 1 and 9999.
- 3.5 Balance, having a capacity of at least 100 g and a sensitivity of 0.1 g.

¹ This test method is under the jurisdiction of ASTM Committee B-9 on Metal Powders and Metal Powder Products and is the direct responsibility of Subcommittee B09.03 on Refractory Metal Powders.

Current edition approved Aug. 30, 1985. Published December 1985. Originally published as B 527 – 70. Last previous edition B 527 – 81.

² Tap-Pak Volumeter Model No. JEL ST2 manufactured by J. Engelsmann A.G. of Ludwigshafen a. Rh. West Germany. Available through Shandon Southern Instruments Inc., 171 Industry Drive. Pittsburgh. PA 13275.

³ Corning, No. 3046, Pyrex Brand, has been found satisfactory for this purpose.

4. Test Specimen

4.1 The test specimen shall be 50 g except as noted in 4.2. 4.2 For refractory metal and compound powders too voluminous to fit into the 25-mL graduated cylinder, reduce sample size to 20 g or 10 g, as necessary, and follow the standard procedure.

5. Procedure

- 5.1 Weigh 50 g of the test specimen to an accuracy of ±0.1 g.
- 5.2 Pour the test specimen carefully into the graduated cylinder, using a funnel. To ensure proper level, rotate the funnel while pouring the test specimen.
 - 5.3 Preset the counter for 3000 taps.
 - 5.4 Start tapping device.
- 5.5 Read the tapped volume, V, in millilitres, by calculating the mean value between the highest and the lowest point at the tapped volume.

6. Calculation and Report

6.1 Calculate tap density in grams per cubic centimetre, to the nearest tenth by dividing 50 g (10 or 20 g for samples as noted in 4.2) by the tapped volume, V, read in millilitres, as follows:

Tap density, $g/cm^3 = 50 g/V$

7. Precision and Bias

7.1 Precision has been determined from round-robin testing performed prior to the approval of this test method. Those results which have been re-verified show a precision of from ± 1 to 2 % of the value determined as the 2 σ limits. The variation depends upon the tap density of the powder being determined which can vary between 2.0 and 8.0 g/cm³.

7.2 Bias cannot be stated since there is no universally accepted standard instrument, nor are instruments sold as certified standards.

8. Keywords

8.1 molybdenum; packed density; powder(s); refractory metals; rhenium; tantalum; tap density; Tap-Pak Volumeter; tungsten; tungsten carbide

∰ B 527.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of intringement of such rights, are entirally their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquerters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments heve not received a fair hearing you should make your views known to the ASTM Committee on Standards, 1916 Race St., Philadelphia, PA 19103.

.

์ศูนย์วิทยทรัพยากร าหาลงกรณ์มหาวิทยาลัย

Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products¹

This standard is issued under the fixed designation C 373; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (a) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers procedures for determining water absorption, bulk density, apparent porosity, and apparent specific gravity of fired unglazed whiteware products.

1.2 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Significance and Use

2.1 Measurement of density, porosity, and specific gravity is a tool for determining the degree of materation of a ceramic body, or for determining structural properties that may be required for a given application.

3. Apparatus and Materials

3.1 Balance, of adequate capacity, suitable to weigh accurately to 0.01 g.

3.2 Oven, capable of maintaining a temperature of 150 \pm 5°C (302 \pm 9°F).

3.3 Wire Loop, Halter, or Basket, capable of supporting specimens under water for making suspended mass measurements.

3.4 Container—A glass beaker or similar container of such size and shape that the sample, when suspended from the balance by the wire loop, specified in 3.3, is completely immersed in water with the sample and the wire loop being completely free of contact with any part of the container.

3.5 Pan, in which the specimens may be boiled.

3.6 Distilled Water.

4. Test Specimens

4.1 At least five representative test specimens shall be selected. The specimens shall be unglazed and shall have as much of the surface freshly fractured as is practical. Sharp edges or corners shall be removed. The specimens shall contain no cracks. The individual test specimens shall weigh at least 50 g.

5. Procedure

5.1 Dry the test specimens to constant mass (Note) by

heating in an oven at 150°C (302°F), followed by cooling in a desiccator. Determine the dry mass, D, to the nearest 0.01 g.

NOTE—The drying of the specimens to constant mass and the determination of their masses may be done either before or after the specimens have been impregnated with water. Usually the dry mass is determined before impregnation. However, if the specimens are friable or evidence indicates that particles have broken loose during the impregnation, the specimens shall be dried and weighed after the suspended mass and the saturated mass have been determined, in accordance with 5.3 and 5.4 In this case, the second dry mass shall be used in all appropriate calculations.

5.2 Place the specimens in a pan of distilled water and boil for 5 h, taking care that the specimens are covered with water at all times. Use setter pins or some similar device to separate the specimens from the bottom and sides of the pan and from each other. After the 5-h boil, allow the specimens to soak for an additional 24 h.

5.3 After impregnation of the test specimens, determine to the nearest 0.01 g the mass, S, of each specimen while suspended in water. Perform the weighing by placing the specimen in a wire loop, halter, or basket that is suspended from one arm of the balance. Before actually weighing, counterbalance the scale with the loop, halter, or basket in place and immerse in water to the same depth as is used when the specimens are in place. If it is desired to determine only the percentage of water absorption, omit the suspended mass operation.

5.4 After the determination of the suspended mass or after impregnation, if the suspended mass is not determined, blot each specimen lightly with a moistened, lint-free linen or cotton cloth to remove all excess water from the surface, and determine the saturated mass, M, to the nearest 0.01 g. Perform the blotting operation by rolling the specimen lightly on the wet cloth, which shall previously have been saturated with water and then pressed only enough to remove such water as will drip from the cloth. Excessive blotting will introduce error by withdrawing water from the pores of the specimen. Make the weighing immediately after blotting, the whole operation being completed as quickly as possible to minimize errors due to evaporation of water from the specimen.

6. Calculation

6.1 In the following calculations, the assumption is made that 1 cm³ of water weighs 1 g. This is true within about 3 parts in 1000 for water at room temperature.

6.1.1 Calculate the exterior volume, V, in cubic centimetres, as follows:

This test method is under the jurisdiction of ASTM Committee C-21 on Ceramic Whitewares and Related Products and is the direct responsibility of Subcommittee C21.03 on Fundamental Properties.

Current edition approved Sept. 30, 1988. Published November 1988. Originally published as C 373 - 55 T. Last previous edition C 373 - 72 (1982).

6.1.2 Calculate the volumes of open pores V_{OP} and impervious portions V_{IP} in cubic centimetres as follows:

$$V_{\rm OP} = M - D$$
$$V_{\rm IP} = D - S$$

6.1.3 The apparent porosity, P. expresses, as a percent, the relationship of the volume of the open pores of the specimen to its exterior volume. Calculate the apparent porosity as follows:

$$P = [(M-D)/V] \times 100$$

6.1.4 The water absorption, A, expresses as a percent, the relationship of the mass of water absorbed to the mass of the dry specimen. Calculate the water absorption as follows:

$$A = \{(M-D)/D\} \times 100$$

6.1.5 Calculate the apparent specific gravity, T. of that portion of the test specimen that is impervious to water, as follows:

$$T = D/(D - S)$$

6.1.6 The bulk density, B, in grams per cubic centimetre, of a specimen is the quotient of its dry mass divided by the exterior volume, including pores. Calculate the bulk density as follows:

$$B = D/V$$

7. Report

7.1 For each property, report the average of the values obtained with at least five specimens, and also the individual values. Where there are pronounced differences among the individual values, test another lot of five specimens and, in addition to individual values, report the average of all ten determinations.

8. Precision and Bias

8.1 This test method is accurate to ± 0.2 % water absorption in interlaboratory testing when the average value recorded by all laboratories is assumed to be the true water absorption. The precision is approximately \pm 0.1 % water absorption on measurements made by a single experienced operator.

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection with any flam mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend, if you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, 1916 Race St., Philadelphia, PA 19103.

ไฟล์นัมเบอร์(File No.)ฆองสารเคมี

7-4	164										
•	2.53	2.96	1.48	4.84	HgFegOs (10	temper	sture				162
1/1,	100	.40	35	4	Hagnesium Ir	on Oxide		(Magn	estoferri	te. 1	اس
Rad. (Cuka 'A		Filter			4 7	1/1,	bki	I d Å	1/1,	bbl
ReL)	l.C. Alle	n. School	of Cersa . (1965)	ics, Rucg	ers Univ.,	4.54 2.96 2.525	100	111 220 311	.810	:	951,77
	J75 b		S.G.	FdSm (2.418 2.094	. 25	122			
leL I	b1d.	•	T	Z 1	Dz 4.522	1.709	14	422 511,333			
		n=# 2.35	(calc)!		Sign	1.324	35	620 . 531			
v eL II	bid. D	•			led to brown	1.208	2	444			
				of P10,	fe,0,in sir	1.090	17 6	731,553			
trest	oferrice	eaufith	rated as			.967		822,660 751,555			
			have cell			.936	4	840 664 931			
-						.855	10	844			

4	2.54	1.98	1.49	4.87	ZnFe ₂ O ₄						4
1/11	100	35	. 35	7	line from Ox	ide .			(Franki)	inite)	
Cut of Ref. 1	1	1/1. DIf	Filter Ho fractomet Standards	er 1/1.	tor.=3.8 15, Sec. 9	d A 4.87 2.984 2.543	1/1 ₁ 35 100	bk i 111 220 311	d A .9684 .9439 .3999	1/11	662 840
ef. 1	. 411 bo	ର ୧	S.G.	Fd3m (2 A Z 8	Dx 5.324	2.436 2.109 1.937 1.723 1:624	6 17 1 12 30	222 400 331 422 511	.8848 .8616 .8277 .8159 .8122	S 8 . 4 . 6 2	931 844 1020 951 1022
ef. I	. D		о тр . «у	Color	Sign	1.491 1.4270 1.3348 1.2572 1.2721 1.2184	35	531 620 533 622		8	
drox	mie vas	prepared b	y co-pred	ipatatio	n of the . or 17 hours	1.2182 1.1820 1.1280 1.0990 1.0553 0.9949	1 5 11 4 2	444 711 642 · 731 800 622 751	18		

•	2.37	4.77	1.79	4.77	n-: (CH) 5						. 10
ru,	100	90	55	90	NACHESIM HA	301100			(anuci 1	()	
	Ka, a 1		Filter N			1 d A	1/1.	NU	141	V.	l M
Rel. 1	BS CIACUL	AM 529, 1	Juliur 6	(1356)		1.77 2.725 2.365	9C 6 100	100	0.7001 .8974 .8723	1 2 2	105 204 301
Sye. Ho es J. 10 e Ref. 10	17 6.	TRIGONIC)		D3 ₀ - P3u A Z:		1.794 1.573 1.494 1.373	35 18 16	102 110 111 103	.8/A] .8156 .7865		213 115 220
1 a 1 . 5 1V Ref. 1 a	D	n = 6 1.58 2.39 m 5 Stateu	p	Color C	Sign +	1.363 1.310 1.192 1.183 1.118	12 12 10 2	201 004 202 113		•	
MD 20	,000 PSI 1	TOR 3 DAT	S: SPECT.	ANAL FALS	HELD AT 50777	1.032	6 2	104 203 410			
A, Cu	Col 2 3	IRUCTURE	TE. SI.	SA, II; <	0.501 % 0 2,	1.0057 0.3543 .9503	2 6	211 005 114			
	III I		100			.9455 .9085	0	212		100	

24-72						CALCU		ATTERN - 81 See 24-724	20 10 10 CO	•	U 14-778
. 1.:0	2.57	1.70	100	70	16	d A	1/10	h 1 1	. 4 4	1/1,	
Fe ₂ O ₃ Iron Ox	lde .			lle	oot ite	1.4543 1.3514 1.3133 1.3078 1.2595	21 2 7 4	300 208 1010 119 220			
Ref. Salt Com	h et al. ittee on	. Annual R	eport to the	tandar	1, (1973)	1.7285	3 3	306.036 128.312 0210			
Sys. Hexa 29 S.O3 2 Ref. 31ak	4	6,	۶اد (۱۸۶) ۱ <u>۱۱</u> ۱23 (۱	ca 1:	Control of the Contro	1.1416 1.1047 1.0571 0.9611 .3596	** **.	134 226 2110 224			
	tor (Int		tensities)			.9521 .9020	2 2 2	12/0 12/0 110 01/4			
. 4 Y	1/1,	h 1 1	d A	1/1,	111	.3448	1	1211.021-			
3.686 2.703 2.519 2.295 2.205	33 100 70 2 17	017 104 110 006 113	7.080 1.8478 1.6766 1.6013 1.4873	2 31 36 8 22	202 024 116 918.122 214		:				
DAN CP	 -										

6-1	54			10			Ŧ.	1000			
1/1,	2.49	2.77	1.54	4.94	Manginese Oxi	Ide			Mo.Mn 2		i
Cut off Ref. E		1/1, Vis	Filler usl erry 4 Th	A STATE OF THE PARTY OF THE PAR	S7. Jan S7. Jan Seol. Soc. Amer.	4 Å 1.94 3.09 2.39	1/1, 30 50	013 112 020	1.280 1.246 1.233	1/1. 40 10 20	143 242 044
· s.	etragonal 76 b. minoff, I.	rrist,	2 7.44	7 1	C 1.549	2.17 2.49 2.36 2.04 1.825	100	013 121 004 220	1.134 1.130 1.133 1.125 1.101	10 10 10	127,136 008 244 145 157
Ref. D	IS (LI) D A	i. M mi	nerslaey,	Color 5		1.795 1.706 1.642 1.579	30 30 30 50	015 132 033 231	1.083 1.064 1.03n 1.019	40 20 40 50	053,343 251,046 237,336 154
(Fand					Same pattern lifetd, three, Geol. Congress	1.544 1.468 1.445 1.423 1.382 1.350 1.306 1.292	\$0 \$0 \$0 \$30 \$10	224 116 134,040 233 141,026 035 332 240			

	2.48	2.92	2.60		ZwO .			4		-
d :	2.70	2.72	2.00	2.816	280					翰
1/1,	100 .	71	56	71	ZING OXIDE			(ZINCITE)		
Red. C	CKa,	1.5405		Futer Nt	1 4 7	L/I,	bkt	1 4 4	L/I,	PFI
Die.		Cut off		Coll	2.516	71	100	0.9069	12	213
1/1, 0	. C. Dirr	MACTOUETE	A d	corr. sbe.?	2.602	56	002	.8826	6	302
Rel. 3	TANSON AN	D FUTAT,	MBS CINCI	JLAN 539, V	01.2 2.476	100	101	.8675	1	006
		774				29	102	.8369	6	205
	EZAGONAL			ev - P6,00		40	110	.8290	2	106
a, 3.2	149 b.	c, 5.	. 205 A	C 1.	50 1.477	35	103	.8237	. 2	214
4 .			Z :		1.407	6	200	.8125	5	220
Ref.	.15.				1.379	28	112	1 1		
						14	201	1 1		
14		208	1 T	Sign	1.301	,	004			
2V	Dx5.68	Отр	Color		1.238	5	202	1 1		
Ref. 1	. ID				1.1812	3	104	1 1		
					1.0929	10	203	1. 1		
SAMPLE	FROM NEW	JERGEY A	ING Co.		1.0632	.1	210			Sec 1158
SPECT.	PIETTANA			H or Ma. S	1.0422	10	211	1 1		
DHA	CA.				1.0128	3	114			1 120
YAR-X	PATTERN A	1 26°C.			0.9848	1	105	1		
					.9764	1	102			
					. 9555	•	204	1		

4-0777	2.41	1.70	2.78	2.778	CAO						*
1/1,	100	45	34	34	CALC	OX ID	•			(LIM)	
Red, Qu	Kaı	A 1.5405 Cut off 50		Filter Nt		d Å	I/I,	111	d A	VI.	ppd
Ref. in	812 CS 5,	G 7	S.G.	C Sign		2.405 1.701 1.451 1.390 1.203 1.1036 1.0755 0.7819 .3258	45 10 5 4 4 4 9	200 220 311 222 400 331 420 422 511			
AMB MO	(125 (1313 5 (1314 1)	PCTS AGOU			94,	.8504 .8131 .8018	5 6	440 531 600			

ď	3.34	1.25	1.82	4.26	510,		w				. *
VI.	. 100	35	17	35	SIL	CON CA I	DC		5		
Red Cu		1 1.5405		Filter No		4 1	1/1,	hki	1 4 4	1/14	I ski
Die.	C. Direc	Cut off		Coll		4.26	35	100	1.228	2	220
P-4 6-	C. DIFFR	MATCHETEN	d	torr. sbe.1		3.343	100:	101	1.1997	5	213
WET OF	MA MOENA	PUTAT,	ES CINCUL	AM 539.70	L. III	2.458	. 12 :	110	1.1973	2	221
						2.282	. 12	102	1.1838	4	114
	ZAGONAL		S.O. D	- P3,2	1	2.237	6	111	1.1802	4	110
4.9	13 b.	c, 5.	405 A	Ci.	10	2.128	,	200	1.1530	2	311
		. 7	Z 1			1.980		201	1.1403	41	204
Ref. 18	ID.				1	1.817	- 17	112	1.114	<1	303
				•		1.801	<1	003	1.0916	1	312
14			44 T 1.55	3 Sign		1.672	. 7.	202	1.0636	1	400
27	Dx2.64	7 mm	Color	2 21EH	.	1.659	3	103	1.0477	,	
Red le	ID.		Culor			1.608	(1	210	1.0437	2	105
						1.541	15.	211	1.0346	2	401
SAMPL	E FROM LA	RE TOXADA	Y. N.C.	SPECT. AN		1.453	1	113	1.0149	2	214
-0.0	***** < C	-CUIS CA.	Cu.Fr.Ma.	AM		1.418	41	300	0.3896		223
-RAT	PATTERN A	T 25°C.				1.382	;	212	.9872		402,115
						1.375	ii l	203	.9872	2	313
					1		**			<1	304
				-0427, 3-4 -0471, 3-4	[1.288	1	301 104	.9762	1	304

ประวัติผู้เขียน

นายมนตรี บุญสิทธิ์ เกิดวันที่ 27 ธันวาคม พ.ศ. 2501 ที่ อ.ร่อนพิบูลย์ จ.นครศุรี ธรรมราช สำเร็จการศึกษาระดับปริญญาตรีตรีครุศาสตร์อุตสาหกรรมบัณฑิต สาขาวิศวกรรม อุตสาหการ คณะวิศวกรรมเทคโนโลยี สถาบันเทคโนโลยีราชมงคล ในปีการศึกษา 2525 ต่อมาสำเร็จการศึกษาระดับ ประกาศนียบัตรบัณฑิต สาขาวิศวกรรมโลหการ คณะวิศวกรรม ศาสตร์ จุนีาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2530 และเข้าศึกษาต่อในหลักสูตร สาขา วัสดุศาสตร์ คณะวิทยาศาสตร์ จุนีาลงกรณ์มหาวิทยาลัย เมื่อ พ.ศ. 2533 ภาคปลาย ปัจจุบัน รับราชการที่สถาบันเทคโนโลยีราชมงคล วิทยาเขตนนทบุรี อำเภอเมือง จ.นนทบุรี

. 48.

ิศูนยวทยทรพยากร พาลงกรณ์มหาวิทยาลัย