CHAPTER V

Conclusions and Suggestions for Further Improvement
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identify the local linearized model in terms of a set of model parameters. The LQ optimal control
design is then utilized to synthesis a stable regulator tending to regulate the state of the identified
model to zero. This means that the situation is corresponding to force the nominal trajectory to track
the desired trajectory. The process of the linearization and the regulator redesign occurs recursively

with different time scale with the nominal torque computation that is carried out at every trajectory
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point update. The time scale implementation of the linearization and the regulator redesign relies

upon the bandwidth of the closed loop dynamics.

The above concept is somewhat intuitive, inspired from success of the certainty equivalence

control scheme in other area of applications. Theoretical discussion to certify applicability of the
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interest. ed discussion to extract physical insight of dynamical behaviors of a manipulator is

resulting in a very systematicmet
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Theoretical development is presented to increase mathematical validity of the control
scheme. In fact, the extreme theoretical justification should take the complete nonlinear equations of

motion into account directly combining the identifier and the regulator dynamics in stability and



robustness considerations, but, for a manipulator control system the combined dynamics will possess
a huge and complex structure so that with available mathematical tools and techniques at present, the
direct analysis is not yet feasible. Our tack follows the concept of time scale separation between the
RLS identifier dynamics and the combined-state dynamics of the whole control system excluding that
of the RLS identifier to avoid the above problem., By appealing to the generally-known integral
manifold theory on the basis of slow, parametet Ay ith respect to the closed loop dynamics,
we can really draw stability con&hss the wh éﬂtmi system. In our presentation of
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experimental m.rn]ua.um. The manipulatorfepresents a thres-degree-of-freed@y mechanism having
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compose tr:nsmission systems of the first two joints of the manipulator. The third joint is prismatic,
configured to perform vertical translation by through a mechanical combination of a DC motor and a
ball-screw package to convert motor rotation into linear distance. Each joint axis is equipped with a
high resolution optical encoder to accurately sense the angle of the joint, the high-resolution of the
encoders used permits us to refine speed of rotation directly from the encoder pulse train without too

much significance of error. All control electronic is intentionally designed to serve digital control
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needs. The total computing throughput of the complete control system is delivered from the
cooperation of the three computing modules working in parallel to each other. The lowest level
calculation occurs in the SDP, a data acquisition and processing system, its operation is to serve as a
storage of joint position data after the data is interpreted into radian unit from pulse train of the joint

encoders. Apart from this, the velocity capture circuits installed in the SDP function continuously to

measure the encoder pulse period of shaft rotation, when this speed
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mﬂ:mq:ncttoihaPD In conclusion, the adaptive control is proved to outperform

the PD in two aspects. In adaptive case, speed of response exhibits automatic adjustment to match
current situation. This stems from the virtue of the adaptive mechanism that can realize control
situation through the model identification and reflects the realization in the adjustment of the control
parameters. The idea to replace the nonlinear fixed model of the nominal dynamics with the

identified model is proved to offer significant advantages. As it was evident in the experiments with



the loaded system, after the transients originated from perturbing the mass of link 3 had died out,
the adaptive control was able to suppress this disturbance and turn the deteriorated system to
continue to track the desired trajectory leaving less trajectory tracking difference in the final,

whereas a large final error occurred under the PD control.
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varying parameters. The reason for the good noise-rejection property is easy to understand: noise ,
particularly high-frequency noise, is averaged out. The estimator's inability in tracking time-varying
parameters can be inferred from that the least square estimate attempts to fit all the data up to the
current time, while, in reality, the old data is generated by old parameters. To compensate for this
effect, exponential forgetting technique should be used to improve estimation accuracy in tracking

time-varying plant information.



3. Ad-hoc Techniques: In order to improve robustness of the adaptive control system, one
of many existing ad-hoc techniques may be used. The main objective is to reduce sensitivity of the
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need of any adaptive implementation. Hence, with the presence of direct joint torque sensors,

accurate calibration to obtain more correct gains can be possible.

3. Higher Speed Digital Gating: We have found that at some instance, when spike in

velocity occurs during motor intermittent operation, the decoder circuits fails to transmit the decoded



pulses through the velocity measurement system. It is believed that, at that situation, frequency of
the decoded pulses exceeds the specifications of the digital gates used causing an amount of
measurement error in velocity data, hence, without changing the circuit schematic, higher speed

digital logic gates should be used to replace the old gates.
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