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where 7 represents the n-dimension vector of the generalized joint torques, I(q)is a manipulator
mass matrix of dimension n X n, h(q,q)is the vector of centripetal and colioris torques or forces
also of n dimension, g(q)is the vector of forces or torques due to gravity and ¢ denotes the
corresponding generalized coordinate vector of n dimension.



This matrix-vector equation represents simplified nonlinear model of a manipulator. Its
derivation does not account for other complicated dynamics except for torque or force due to
. gravitation. we will define it to represent the nominal dynamics of a manipulator that it will also
describe the nominal trajectory when the generalized coordinates in the equation are provided from
the reference trajectory. Rewrite it in close form of the acceleration vector that
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The partial differential terms of Fwith respect to q,q,7 are constant coefficients by known values
of its arguments at the nominal point. The latest equation may be worded that the variational

acceleration at a nominal point can be described by a linear combination of the first order



perturbation of joint coordinates, velocity and the generalized torques. This represents a linearized
perturbed model of a manipulator. In general, we may rewrite it as

If we assign the statex, = dq,

have the model in state-spac® fo i
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and its equivalence in discrete-time domain

Xen = AX +Bu, x, eR™,u, €R" 3.8



The further step i cation process. Since the
model is already linear in p square identification is
(3.9)

and define the followings
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W =Xen,

Then, from (3.9) we obtain

W = Wl

(3.10)
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where the matrix @, of dimension 271 X 1, represents 2n parameter vectors to be simultaneously

identified at time Kk . If we rewrite (3.13) as

(3.14)

At this point we shall drop the't s we now concern with the

problem of recursive identificait by definition claimed from
discrete-time approach, at each § ¢4 The subscript [ used throughout

identification formulation will stas ment times applied within that frozen
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considered. The recursive solution to the problem for simultaneous findings of 2n parameter vectors

is obtained by iterating the following algorithm.

i-u = ¢£ + kLl"‘Jnl (3.17)
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where
Spy = Wi,y _z;r':':' (3.18)
Pz
(3.19)
(3.20)
with [ denotes the number g a‘: o ' choice ¢ %\ be from priori knowledge of

system characteristics or from
3.1.3. Discrete Optimal Reou o _- arized Perturbed Dynamics

At this point the problem left uct a controller to regulate the system
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Xp = Fx, + G“t_ (3.21)

we can derive a linear feedback law by formulating the problem of minimizing the performance

criterion
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J, = "L:Q"m +u,Ru, : (3.22)
This is the so-called one-step-ahead horizon control criterion tending to find the control input as an
argument minimizing the above. Its solution can be derived in form of a linear combination of state

feedbacks as

(3.23)
where K is the feedback

(3.24)
The state feedbacks (3.23) incoggoragés with tie -4 description (3.21) form a closed loop control
system having the objective of zerd sta .‘.{ff‘-‘ o'case is commonly referred as the
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hmnmmuf&ﬂpﬂm:bnddymmcmdd would be no longer valid. As a result, the controller
designed, based upon this model, would loss its potential, in part or whole, to deal with the actual
perturbed dynamics as it would now stay outside a valid region of the controller designed as before.
There is an alternate to deal with this aspect of the problem. The point is to readdress the operating
point more properly. At this time, it is not carried out from the analytical model computation but

current plant information is incorporated to recast the nominal plant model continuously with time
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change. This can be done by using on-line recursive identification technique the same as presented
above but applied to the nominal model of a manipulator and working in parallel with the one of the
linearized perturbed model. This is the main contribution of (6) which we will follow its

methodology for experimental evaluation of adaptive manipulator control on the Chula2 manipulator.

Before we can go on to formul: dminal'identification, the linear parameterized model
of the nominal model for a manipylat forms of this type of models can
be obtained by various simplifi ) (3) they define the augmented

Jjoint coordinate vector as
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where § and q are the vectors | ioctlprann ' velogity fespectively, 1 is a constant scalar,
and q is the vector of extended joifit e defined as follows
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where A(q,q), of corresponding dimension, i.e., for an n-degree-of-freedom manipulator we
obtain Z having dimension of 4n+1, and then A € R™“™*" s the new dynamic operator. The
existence of the expression (3.27) is supported by the proposed theorem (6) which states that for n

degree-of-freedom manipulator having n joints of any combination of rotary or prismatic joints, the



linear operator which maps the augmented joint coordinate vector into the vector of generalized
forces, i.e, at any instant, the generalized torques can always be expressed as a linear combination of
the elements of the augmented joint coordinates, always exists. However, this linear operator does
not offer one-to-one mapping. Yet this model formulation can still be utilized in our case. The

operator A(q,q) isa group of parameter ,. OF 1o rammlivet}r identified, given the information

on the vector T and Z. The resultis ILbe used in the subsequence time to
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compute the nominal torques for given . &m from the reference trajectory.
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Figure 3.1: The certainty equivalence control law of a manipulator.
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