CHAPTER I

Manipulator Mathematical Model

2.1 Introduction
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The basics of the m \J\\ e the investigation of dynamical
behaviors of manipulator mét! \ ¢ study of dynamic equations or

the mathematical model of Manig principles of the classical solid

mechanics. The general m mplexness of a system of
differential equations fea nonlinear dynamical terms. In
the context of modern manipulat ting power, a manipulator
dynamic model has usually been dsed eme to compensate for nonlinearities and
decouple force interference bel ng task to the servo portion of
a controller that is of va b’,{ pes ¢ 7" designer. The utilization

and application nfdynmc&w ge %ﬂnﬁnldﬂﬂignmds}mthﬂm'shd

conducted inspiration and fowﬂums f embedding adaptive mechanism in manipulator control
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should be considered outside the model that we intend to construct. Begin with mathematical
representation of geometrical relation between manipulator linkages, kinematic equations describing
physical motion of a manipulator will be detailed to support dynamic model derivation in the sequel.
Energy approach based on formulation of Lagragian terms is exploited as it will give very systematic

way to the derivation of manipulator dynamics.



We shall state first the basic assumptions underlining the mathematical model derivation

methodology as a platform that will be considered true throughout this treatise.

I. Mechanical manipulators are considered to be serial link mechanism that consist of rigid

links sequentially connected together by actuated joints. Each joint generally exhibits one degree of

G Ggnills caused from link flexibility are
dth andpagiectodin all our
discussion.
ny friction and other internal
nechanical clearance in all joint
composition.
3. The manipulator mg i ‘ effects. This can be apparently
seen that some of them are either n thei random nature such as crashing
with unexpectedly obstacle or hardly - of geometrical complexity of the body

involved such as the end gife
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motion. We will present briefly some kinematics of a robot manipulator in order for having enough
background to support the dynamic model derivation thereafter.



2.2.1 Kinematical Representations

The Homogeneous Transformation is used as the basic data type representing position and

orientation of the manipulator body in working space. The transformation utilizes a combination of a
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The transformati .\\\ on and orieatation of the second
coordinate frame with \' me can be expressed as
(2.1)

The second frame orie: fors/0,a,n which form three axes

of the frame, its mmpunngexp essed in

presented as vector P pointifigsgward from the ofigin of the first coordinate frame to the one of
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where elements in the above matrix represent the position and orientation vectors as in the previous
transformation matrix except that the reference is now the second frame and the described frame is

then the first.

With this homogeneous transformation, we have got a very systematic tool to be applied to

Based on the well-kng J
Roberts (5) and Pieper (6), 2 f//
some general rules to affix a g#0rd

method parametrically charactgfizegfi€ag
joints by four fixed parameters !

d into robotic science by
Str.vmsun (3), we can define
comeesponding joint axis. The
Jationship between two consecutive
f elements of the specific
transformation matrix which we u text of robotic, A matrix.
Figure 2.1 ill gint axis and corresponding
link and definition of link 4: and prismatic joint respectively using
the Denavit-Hatenberg ...... W:ﬂ:ﬂnsdaﬁmhun, the size and shape of links can be described
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normal to thé common normal.

The relative position between links # - / and n at joint # can be measured by the distance
d, bmmtwuuommonnnrmnlintemc:timwiththujuintuisu.ﬁisqmtityiscal]nddujaim
distance and defined to be a fixed parameter whed the joint is revolute or to be a joint variable when

the joint is prismatic.
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Figure 2.1: Afﬁzmgmrd:muﬁ:mm_;mmmmﬁmumuf nk parameters and variable: (a).
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joint type. Its value is measured as an angle between projections of the two common normal onto the
plane normal to the joint axis n.
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The transformation matrix A that represents geometrical relation between manipulator link
n -1 and link # at joint n has its form as Equation 2.1 and 2.2. When applied with this coordinate

frame system, its expression will be as follows.

for link n and joint n of revolute type

a, cosf,
2| a,siné,
A = i
L1 e
for prismatic joint type
A =
(2.4)
_
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the ogy of the homogeneous transformation enable us to express the position and
orientation of the end of the manipulator mechanism in terms of the mechanism base coordinate by
applying recursive matrix multiplication to obtain a coordinate combination description. For an n-
degree-of-freedom manipulator, given A ,A,,...A , A, describes the position and orientation of

the first link, A, describes the position and orientation of the second link with respect to the first
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and so on. Thus the position and orientation of the second link in manipulator base coordinate are

given by the matrix product

T,=AA, (2.5)

Similarly, A, describes the third link i

(2.6)
These matrix products can & of the link n as follows
2.7
These equations are generally callg ilic equatiths of robot manipulators. T matrix notion
. if it is 0 as referred to the base

is conventionally used with the lead ng supers
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transformatioh and the vector. Given a position vector pointing to an object, its expression is written
consisting of x, y, z components in the coordinate n which ,for instance, may be the coordinate
frame of a video camera attached at somewhere in the link mechanism. The position vector is the
information of the relative distance obtained from an image processor equipped with that camera.
We want to register it into the manipulator working space, which configed by the base coordinate

that indeed is used to characterize every object involved in manipulation program. Then we must



14

transform the vector to be described in the base coordinate. This can be done by the following

milSolication

r=T'"r 2.8)
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Manipulator d somg special complexities of very complicated physical
systems. This comes from be ve mechamst that ¢an change configuration of itself during

ms, however, permit us to
develop a systematic way to deri e edih for general manipulators. We will make
use of Lagragian mechanics as this 'Y equations of very complex
r“fie-mertiod-appiying the-classicat mectani¢al energy concepts also
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system in a simple mann

aqtmtmmmwmbaumlyd:p in a symbolic fashion
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In contrast to Newtonian approach that dynamic equations come from the time derivative of

momentum property of all mass in a physical system, it looks for energy content of the overall
system. For a system in motion, We can define, an energy term, the Lagragian L as the different

between the kinetic energy K and the potential energy P of the whole system
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L=K-P 2.9

The terms can be expressed in arbitrary n coordinates for a system of n degrees of freedom based on
the concept of generalized coordinates in analytical mechanics. And the generalized forces

corresponding to selected generalized coordinates can be obtained from the Lagrange’s Equations

thatmdeadmthadymmceqmmuf

=2

el |k d
Qi_ _‘; (2.10)
where (,,q, are the g 3§ \ respectively. If a generalized
coordinate is selected to be'#in ar 1’ #,\\\\\\ ized force will be a

generalized torque. This can # e equations’ dm:lmamns
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Based on the kink(1g “in the g, we must first determine
velocity of any point in a '!- s ot hsn@rdinﬂowhichismnsiduadw
be the inertial frame of the t whole d wullbagmmrhtpoinl

Mnhdhyapmﬂuﬂ nﬂ .f. Its expression in
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r= T r @.11)

Throughout this derivation the zero superscript will be omitted and this implies the base coordinate

as reference. Differentiate (2.11) with respect to time to obtain the vector of velocity of the point

0185092
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i
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P (2.12)
Since the vector is pointing to a fixed point with respect to the coordinate frame i, its expression is
thereby invariant to time. The second term on the right side of (2.12) hence diminishes.

argument. Replace the expression far
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The kinetic energy of a particle of mass dm located on link n at ‘T is
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dimensional space.The elements of the matrix consist of the moment of inertia, cross product of
inmﬁamdtheﬁrstmmtufulinkhudyukmntthumtuofmwiﬂimnpmttothe:,y.mdz
axis of the coordinate frame i that
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(2.20)

(2.21)
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1
[ x*dm (A F L)
1
Iyzm_i(fnﬁfn'hfz)
1
2 = =
|z di= (b Ty 1)
The total kinetic energy of the menipulat of the kinematic energy of each link in the
mechanism structure and of the actu obtain the manipulator kinetic energy
expression
(2.22)
where n specifies a number of linka@es ‘f so equals the number of degrees of

iom. This equation represents the kijetis enery he manipulator structure alone excluding

-::E_N._- dbtion could be easily included

into the kinetic equation ‘.V
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above some zero reference in the gravity field of acceleration g. Consider link
of mass whose center of mass can be specified by vector expressed in the coordinate frame i, the
potential energy evaluated with an arbitrary zero reference described in the base coordinate is

P=-mg'T'T, (2.23)



where 'I" is the vector pointing to the center of mass of link i, the superscript i denotes vector
description with the coordinate of link i. The presence of T}, transformation determines that the
potential energy is derived in terms of the base coordinate, the same as of the kinetic energy with
local link parametric descriptions. And the total potential energy of the manipulator structure up to

link n is
(2.24)
And now we can write the
<P e

1 \ i=1

\ \ (2.25)
Replace this Lagrangian in (2.10) and.z he following steps, then, differentiate
the Lagrangian with respeet 4 the first derivative of the cOOIAaE o~

LVE]

(2.26)
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the trace is invariant to the transpose, then we can write

feaHE
a; " %, A

On the right side, the transpose of the product is the product of the transpose such that

(2.27)
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(2.28)
From (2.20) notice that J, is symmetric. That is

(2.29)
We then obtain

(2.30)
Use this result to change the produdh of thel arasmentlafshe rie in the second term of (2.29) as

(2.34) and since j and k mspecuwly é} ;;:;.-'---_- second term are just dummy indices, we
e

can change simply the i

Pt Bq, ﬁ" (2.31)
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The final expression of —— comes as
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Differentiate (2.36) with respect to time we then obtain

T
i J,ar
g,
(2.33)
The furthier aisp i to déive
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e ‘ second term on the
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At this point we already have all the terms for the Lagrange equation. Replace (2.33) and (2.35) into
the equation, we observe that the right side, third term of (2. 33) and the right side, first term of
(2.35) are indeed identical although the dummy indices are used. Therefore, they are diminish when

substitute in (2. 10). The rest then comes out as



ifae) a < PN
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(2.37)
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colioris and centripetal effects and conservative force due to gravity. The complete equation for an
n-dagruﬂf&mdmmmjpﬂnnrmﬁmﬂnm-hhmdqmﬁmfurrmingutmnmd
may be compactly expressed in matrix-vector form relating the generalized force vector as functions
of the generalized coordinate vector. The complete equation of motion in matrix-vector form comes

out as



7=D(q)q + h(q,q) + g(q) (2.39)
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