CHAPTER II

ARCHITECTURE OF THE SHARED-MEMORY MULTIPLE-MICROPROCESSOR SYSTEMS

This chapter presents a design technique for implementing the
shared-memory multlple-mlcroprocd;i : system. The proposed system
uses the common bus interconneeﬁiz;(network. This requires

—

arbitration to ensure;that onlyJone microprocessor at any time can put

‘-—___— o
information into FEE’an

Arbiters ma

id shared memory.

‘realized in either software or hardware.

Software arbiters' n

y Tequire many clock cycles to resolve an
access request wherea hardwafJ arbiter can be designed to operate
in a few clock cyc 'Therefoqg',‘a flexible arbiter proposed in

[22] which employs simple hardware%géjpreQented.

LT T o
§—_— ol ,f

it A 2 '-. _;
In additifn to the arbit de ign tﬁ;s chapter also presents

—
am}croprocessor systems

Y

two examples |

implemented from tﬂe proposed system.

r T

2.1 Arbiter SystémCorfigurdtibn [22]5

The proposed arbiter can coordinate the
multiple-microprocessor Systémiby using & Z-80 microproecessors, or any
other microprocessor that has a WAIT input and a FETCH state indicator
output. Shared random access memory (RAM) is used as a data mailbox.
The priority scheme being used is on a Round Robin scheme but can be
modified to any sophisticated priority scheme. The arbiter is divided

into two main parts,the scanner and the controller,as shown in Fig.2.1.

T e e e el e e s o e
! CPU. clock signal ;
gy _ . ENABLE 61 !
oy G2 |

l b
' soANNER | SATE 63
L ——— ol _ r— Ll T J
M1 :
WAIT | - — s i
MICRO ! \ -E
PROCESSOR | "t Ak , poer = 3 E
v £ FIR y | GRANT z ;
F | f; : i}

REQUEST B : chUP e g !
SIGNAL ! — !
; * J.;: :
] L |
: fi: Tclock ;
! CONT S e H
-—— - . o o o o . - - g - - -

(TN ;;'md

g l memory

enape
INTERFACE | >

AULINENTNYINS
“ARRI SR a Y

14

The scanner schedules the shared memory accessing for each
microprocessor by issuing only one active scanning signal (Si) at a
given time. The microprocessor scanned will be allowed to access

shared memory.

Each scanning signal is derived from the output of a ring
counter for the Round Robin priority rule. If another priority rule
is required, the ring counter shouid,bg replaced by some other pattern
generator. The ring counter is dri;ﬁﬁ’by the CPU clock through an
ENABLE gate. The ENéPLE\gate Q{ll disable the clock drive when any of

the microprocessog§affs»”grantgd access to the shared memory and
reenable the c%gg&’ff;ive i£¥ediate1y after the microprocessor

completes the share %ﬁ%ry operation. Only one scanner is required.

Each mi régifc?ssop i-e.f'L assigned one controller. Each

"11 p

controller will recf e?a REQUEST ﬁ}gnal (Ri) and issue a GRANT signal

(Gi) or a WAIT signél hack to tﬁﬁwfplcroprocessor according to a

command from the scanner. il
S -

-

: A ¥,

o
| S -l

Whenevenjﬁa microprocessor requires:iﬁe use of the shared
memory, it sendsj% request to the Request f{ép-flop (Fig.2.2). The
Request flip-flop ig set by the REQUEST signal (Ri) and then, returns
a WAIT signal to|the microprocessor. The microprocessor, after having
detected the WAIT signal, enters the WAIT state. The GRANT signal
will be geéneratad when thesGraft) £¥ip=flop(is (clocked, by the scanning
signal, The interface between the local microprocessor bus and the
shared memory bus is enabled by a GRANT signal. At the same time,'the
GRANT signal is sent to the ENABLE gate in the scanner, which disables
the ring counter. This will prevent other microprocessors from
accessing the shared memory. After one clock delay to allow memory
address setting, the microprocessor is enabled and starts its access

to the shared memory.

15

FETCH CYCLE MEMORY READ/WRITE CYCLE FETCH NEXT
INSTRUCTION

| S o G I S

1
- CLOCK 1

" REQUEST S|
(Ri)

WAIT

MICrop ,

goes Into wwvaf

state. '
SCANNING \
SIGNAL (Si)

enables SCANNER

GRANT SIGNAL

(Gi)

ﬂuzﬁ??r
2 MRy

M1

FETCH STATE -
INDICATOR M1 clears Gi

mCQSSOI" i
aft%?p 1clodk delay

' Fig.2.2 Arbiter timing diagram.

015419

s

16

After the microprocessor has completed its to the
shared memory and begins to fetch the next instruction, it will issue
a FETCH state indicator signal (Ml). The Ml signal will terminate the
GRANT signal by clearing the Grant flip-flop and returning to the
initial state. The ENABLE gate then becomes active and emits the
clock drive to the ring counter. The next microprocessor will be
allowed to access the shared m\r'

The proposed. . red with other previous

techniques in Fig. 2. transfer rate is lower than

some other techni ique still has its own

advantageous featu

other microproces

3) System requiring only a simple
hardware. SF
4) Data transfe-r} e 1 ate, e.g., in a system of &
e ﬂ..

microprocessors 'working at a
it 2=

f-MHz M§ 1, the average data
transfer rate is 8 e j
5) Sincegllmuco

microprocessor seeg .t he shared m emory as logical extensions of its

private menﬁ y{corngs ’} ?(]DE}-,S‘{}%QN ? fintetproressor communication

is virtual lquhmmated .

o/
ﬁloc@ ﬂgﬂam‘§Mhe sharI]-memory multal E-r]nicroprocessor

system implemented from the proposed arbiter is shown in Fig. 2.4 .

solve@j by hardware and each

2.2 Examples of Multiple-Microprocessor System with Shared

Memory.

Two multiple-microprocessor systems implemented from the

proposed arbiter are presented. The first system uses the

Remark

- for small amount of data transfer and .

ensive.

very difficult to implement and cannot be used

-+ with sophisticated priority.

sed only with specific microprocessor

® L 4
No of uP Average data
Method : S
using transfer ra
shared memory (Bytes/se
DMA Unlimit more than
1 MByt
TWO-PORT RAM 2 142.8 KBy
PETRIU 4 86 KBytes
POLCZYNSKI 8 125 KBytes
7
LOEWER 2 91 KByte£] _
HOJBERG TTL

The proposed
method

= m—

6 90 KBytes ! jh 7
: AL D9,
U

H state equal to EXECUTE state.
ot
can& used only with two 2Z-80.

ires 2 external high speed clocks.

reggL
w Eln ﬂjd with any uP that has FETCH state

‘gndicator aqg;WAIT state.

AN |

Fig 2.3 1 Comparison between vario

¢
AWMIA A]19]198
d V'l

ALa el
| 0 L

shared memory methods.

(The average data transfer rate is calculated from normal

operation

condition while

the calculation in [22] is

based on heavy traffic condition.)

LT

®
SCANNER
w
e 1.63 63 Gu
52 l JRRSS Sk
co i L. 1 /CON Ri CON R
TROL JZ'Mi" @R 18 A TROL [¥i uP TROL i uP
LER A" I J 4 \\E " LER/" M
F J 22,
LOCAL LOGAL].|~ ==, LOCAL m
EMORY, Ry | '__Z“ MM EMORY
110 Z—rto — 110 110 |
SHARED
MEMORY G, G; Gj
BUS
INTERFACE
CIRCUIT
' Fig 2.4

The shared memory multiple-microprocessor

diagram. -

system block

8T

19

multiple-microprocessor system as front-end communication subsystem
for host computer. The Tri-modular redundant multiprocessor for

real-time application is presented as the second example.

2.2.1 The Multiple-Microprocessor Based Front-End

Communication Subsystem [23].

To exemplify an appllcatn§F>9f the system, the shared memory
multiple-microprocessor system is usedfas the front-end communication

subsystem for the host gbmputeff The front end subsystem consists of

g——

3 microprocessors;’?,wﬁo

icrogrocessors are assigned as the REMOTE
LINK UNIT (RLU) ma g"g‘data,}ommunication between the front end

subsystem and be datad acquisition terminals. Another

microprocessor issassigned

as“th HOST INTERFACE UNIT (HIU) managing
communication with ?i

t cqmpd_pr (Bigs 235).
. h ¥ "d"

of - the srgg}e microprocessor 1is small when

J'.-.- ira; 4
’ 5

compared to the malnframe h@§t comﬁgtér. The communication task must,

‘The throughp

\s l..,_

7o
therefore, be d1stributed to various ﬂzcroprocessors. The

interprocessor iyﬁﬁﬁﬁiéifion is done‘tﬁf6ﬁ§h'Jthe shared memory by
using the proposed technique. This eliminates communication software
between each migioprocessor and simplifi;; programming as each
microprocessSor(l sees /thel shared memory| las 1ogical~ extensions of its

local memorys

Each remote terminal®is™ assigned to'collect analog data from
64 sensors installed at each site. Each analog data is converted to
8 bits digital data by high speed analog to digital converter. \ The
remote terminals send the data collected to the RLU through multiple
serial data transmission lines via SDLC protocol. One RLU manages
data communication with 16 remote terminals, i.e., RLU-1 collects
data from terminal 1-16 and RLU-2 collects data from the terminal

17-32. The RLU sequentially polls each terminal, checkes the

20

HOST
COMPUTER

MODEM |++4~| 16 MODEM

P INHUNINENNT
, ok Sl

I3k

REMOTE TERMINAL REMOTE TERMINAL REMOTE TERMINAL REMOTE TERMINAL
1 16 13 2

Fig 2.5 The shared memory multiple-microprocessor system as a

front-end communication subsystem.

21

validity of the data received, and then stores the data in the shared

memory.

The HIU groups the data from 32 terminals, stores in the
shared memory, and sends the data block to the host computer upon
requested. Data transmission between HIU and host computer is done

through a high-speed parallel bus,

The technique then becomes ‘@ pos€ible inexpensive solution to

the real-time control»problem, éépecially for a system that requires a

v“ﬁ‘
faster response time.

-~ "

'E_

'duler-Red@ndant Multiprocessor [24].

,f

2.2.2 The Tri

The fault e ant “és } t1me systems involve redundant
components so as to t le}Zte ‘a fau;t By reconfiguring, for masking the
faulty element . rl-module }1processor system provides the

necessary features for faultrtolerance [25]. Such a system is capable

“ha
of identifying -a faulty element (Ey softyare/hardware voting),
-

segregating it Byfrecvﬁftgufatlon, and opéfitigg in a degraded mode

with the remalnlng elements v "

This sécttion priesents the development of a
multiprocessor-based TMR fault tolerant controller used to control a
mobile trolley. The fault tolerance is ‘achieved employing identical,
modular| software running‘on thriee identicall processo¥s. ~The system is
fully reconfigurable and is degradable to a two-processor state in the
event of occurrence of a permanent fault. Transient faults are
tolerated employing a retry mechanism. This is possible irrespective
of the system being in a three-processor or a two-processor
configuration. In a three-processor configuration, the system is
fault tolerant and in two-processor configuration it is fault

detecting. The process of removal of a faulty processor and its

22

reinstallation after repairs does not need any reinitialization of the
system and these changes remain transparent to the application.

The system has been built using three 2-80 microcomputer
boards communicating with one another through a shared global memory
(GM). A time efficient bus arbiter of the type proposed in this
chapter allocates the GM to each microcomputer on a Round Robin basis.
The complex hardware-like microcomputer board and the associated
circuitry are implemented usingif,cgmmercial components and are
triplicated. The hardware of GM, busfﬁfﬁiter, and multiplexing logic
are implemented usiﬂg,compone;ks with high reliability, tested as
‘ion, land are “mot triplicated to keep

required during #fppéy

implementation simpl

the p;Lsent work.

The éﬁ6y iégimplemented using three Z-80 based
microcomputer ;ach-mlcﬁocomputer board has a programmable
peripheral interfac df%ZSS) Lyélversal synchronous/asynchronous
receiver/transmitter (51), a prog;aq@able interval timer (8253), 16K

bytes of RAM, and 8 K bytes of ROM-"-Ihese microcomputers communicate

'-i

with one another through a common GM. A timqfeff1c1ent bus arbiter

"'_—r

scheme has;ﬁﬁeen utilized for this purp_Je. A microcomputer

generates a request to the bus arbiter whenever it needs to read/write
a data in GM. The bus arbiter ,allocates the GM to one of the
requesting microcomputers on.a round robin basis. The system has both

analog and digital data I/O channels for interfacing.

The system has been used to control the motion of a
three-wheeled trolley that incorporates two step motors, one for the
drive and the other for steering purposes, and employs a feedback loop
with optical sensors (Fig. 2.6). The control commands of driving
sequences for these motors are provided by all three microcomputer
boards. The control commands issued by one of the healthy

microcomputers are chosen using 3:1 multiplexing logic.

23

e ST L
s]
: |oPTicaL sensonﬂ-é-ﬁ»—- TOABC,

| 2|
: | AcTuaTOR
—
AF 2 ’ A
AF 1 o
c z
CF1 S
" ERE Y) B
1 (SR3}
s22ad T TN Ny
[KBcTi/aev8 1. 0 ADCI1/0 BUS
®z. EQUEST| " /| ~7-80) REQ [©,g0 reauest
BUFFERED BU = BUFFERED BUS
GRANT A 7 GRANT C 1]
- - »
%

AULINININYINT
AR TRl e Y

	Chapter 2 Architecture of the Shared-Memory Multiple-Microprocessor Systems
	Arbiter System Configuration
	Examples of the Shared Memory Multiple-Microprocessor System

