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CHAPTER I
INTRODUCTION

Green’s relations are five equivalence relations that characterize the elements
of a semigroup in terms of the principal ideals they generate. These fundamen-
tal equivalence relations, definable in any semigroup, were first introduced and
studied by Green [7]. The concept of Green’s relations is a crucial notion in
semigroup theory. It has shed a great deal of light on the structure of semi-
groups in general. It is interesting to see that we can consider left [right] regu-
larity in terms of the Green’s relation £[R]. Recall that an element z of a
semigroup S is called a left [right] reqular element of S if x = yx?*[x = 2%y
for some y € S, that is, xLx? [tRx?]. Denote by LReg(S)[RReg(S)] the set
of all left [right] regular elements of S. Note that if S is commutative, then
LReg(S) = RReg(S) = Reg(S) where Reg(.S) is the set of all regular elements of
S, that is, Reg(S) = {z € S | x = zyx for some y € S}. We have generally that
LReg(S) N RReg(S) € Reg(S). As we know, regularity is an important notion
and it is very extensively studied in semigroup theory.

Left [Right] regularity of semigroups has long been studied. In 1954, Clifford
[4] proved that S is a band of groups if and only if S is both left and right regular
and Syzr = Syz? and zyS = x?yS for all z,y € S. Kiss [12] generalized left [right]
regular elements of semigroups in 1972. It was shown by Anjaneyulu [1] in 1981
that in a duo semigroup S, the set of all left regular elements and the set of all
right regular elements coincide. In 1998, left regular partially ordered semigroups
and left regular partially ordered I'-semigroups were studied by Lee and Jung [14]
and by Kwon and Lee [13], respectively. In 2005, Mitrovié¢ [18] gave a characteri-
zation determining when every regular element of a semigroup S is left regular,
that is, he characterized when Reg(S) C LReg(.S) holds.

Variants of abstract semigroups were studied by Hickey [8] in 1983 and he also



provided many results relating to variants of semigroups in many papers.

Semigroups of transformations play an important role in studying semigroups.
It is well-known that any semigroup can be realized as a semigroup of transfor-
mations, analogous to the Cayley’s theorem. This is reasonable to consider those
semigroups and their variants and connect them with left and right regularity in
which we are interested.

The purpose of this research is to characterize the left regular and right regular
elements of some semigroups of transformations of sets and linear transformations
and their variants. This research is organized into five chapters as follows:

Chapter II provides basic definitions and known results for later usage in this
research.

In Chapter III, we give characterizations of the left regular and right regular

elements of the following semigroups of transformations of an infinite set X:
M(X)={aeT(X)|ais 1-1},

M(X)NG(X) (={aeT(X) | ais 1-1 but not onto}),

(X)
(X)
E(X) ={a € T(X) | a is onto},
E(X)~\ G(X) (={a € T(X) | o is onto but not 1-1}),
(X)

BL(X,q) ={a € T(X) | ais 1-1 and |X \rana| = ¢}

where ¢ is the cardinal number greater than or equal to N,

DBL(X,q) ={a € T(X) | a is onto and |ra ™| = ¢ for all x € X},
N(X,q) ={a e T(X) | ais 1-1 and | X \rana| > ¢},
Trf(X)={a € T(X)|rana is finite},
Prf(X)={a € P(X) | rana is finite},
Irf(X) ={a € I(X) | rana is finite}

where T'(X), P(X), I(X) and G(X) are the full transformation semigroup, the
partial transformation semigroup, the symmetric inverse semigroup (the 1-1 par-
tial transformation semigroup) and the symmetric group on X, respectively. Note

that BL(X,q) is called the Baer-Levi semigroup of type (|X|, q), which was con-



structed in [2] and DBL(X,q) is called the dual Baer-Levi semigroup of type
(|X], q), which was given in [3].

Let Lrp(V) be the semigroup under composition of all linear transformations
from a vector space V over a field F into itself. In Chapter IV, we consider the

following subsemigroups of Lz(V') analogous to those in Chapter III:

Mp(V)={a € Lp(V) | ais 1-1},

Mp(V)NGp(V) (={a € Lp(V) | ais 1-1 but not onto}),

V)
(V)
Er(V)={a € Lp(V) | a is onto},
Er(V)NGp(V) (={a € Lp(V) | a is onto but not 1-1}),
V)

BLp(V,q) ={a € Lp(V) | ais 1-1 and dimp(V/rana) = ¢}
where q is the cardinal number greater than or equal to Ny,
DBLp(V,q) ={a€ Lp(V) | @is onto and dimpgker o = ¢},
KNp(V,q) ={a € Lp(V) | ais 1-1 and dimg(V/rana) > ¢},
Lrfp(V)={a € Lp(V) | dimpran« is finite}.

In [16], BLr(V,q) is called the linear Baer-Levi semigroup on V' of type q. To be
analogous to DBL(X, q), we may refer to DBLy(V,q) as the dual linear Baer-
Levi semigroup on V' of type q. The results for the left regular and right regular
elements of these semigroups are obtained accordingly to those in Chapter III.

In Chapter V, the left regular and right regular elements of the variants of the
full transformation semigroup 7'(X), the partial transformation semigroup P(X)
and the symmetric inverse semigroup 7(X) on a nonempty set X are determined.
In addition, the variants of those semigroups in Chapter III are studied in the
same manner.

The variants of the semigroup Lg(V') are considered in Chapter VI. Their
left regular and right regular elements are determined. Moreover, the left regular
and right regular elements of the variants of those semigroups in Chapter IV
are characterized. The results are obtained suitably to those of the variants of

semigroups given in Chapter V.



CHAPTER I1
PRELIMINARIES

In this chapter, we review some basic materials which will be used in our later
discussion.

The cardinality of a set X is denoted by |X|. The value of a mapping « at z
in the domain of « shall be written as xa. The notation U stands for a disjoint
union.

If a semigroup S has an identity, set S* = S. If S does not have an identity, let
S! be the semigroup S with an identity adjoined, usually denoted by the symbol 1.
An element x of a semigroup S with identity 1 is called a unit of S'if xy = yzr =1
for some y € S. We have that such y is unique and it is denoted by z~!. Then
the set of all units of S forms a subgroup of S and it is the greatest subgroup of
S containing 1. It is usually called the group of units of S.

The Green’s relations £ and R on a semigroup S are the equivalence relations

on S defined by

Ly < Slz=.5
or equivalently, x = sy and y = tx
for some s,t € S,

Ry < 25" =ys?
or equivalently, x = ys and y = «xt

for some s,t € St

From these definitions, we have that £ and R are right and left compatible,
respectively, i.e., for all z,y, z, if xLy then xzLyz and if xRy then zxRzy.
An element x of a semigroup S is called an idempotent of S if 2% = .

We call an element z of a semigroup S regular if x = xyx for some y € S.



An element z of a semigroup S is called left [right] reqular if x = yx? [x = x?y] for
some y € S. Then an idempotent of S is regular, left regular and right regular.
It is clear that if S has an identity, then every unit of S is regular, left regular
and right regular. If x = zyx, then xy, yr are idempotents. Thus we have that if
S contains a regular element, then S contains an idempotent. If x = zyz, then
x = xz(yxy)z, so it implies that every ideal of a regular semigroup is regular. We
can see that in a commutative semigroup .S, the regular elements, the left regular
elements and the right regular elements of S are identical. In terms of the Green’s

relations £ and R on S, we have that

(1) z is a left regular element of S if and only if xLx?;

(2) x is a right regular element of S if and only if 2Rz

A semigroup S is called a reqular semigroup if every element of S is regular.
Left [Right| regqular semigroups are defined similarly. For regularity, left regularity
and right regularity of semigroups, one does not imply the others. Some examples
can be seen later. However, if a semigroup S is both left and right regular, then S
is regular. More generally, if an element x of S is both left and right regular, then
x is regular. To show this, we first introduce some notations relating to Green’s
relations. For any x € S, we let L, be the equivalence class of £ containing x
and R, the equivalence class of R containing x. It follows from Theorem 2.16 of
[5] that if there are a,b € L, N R, such that ab € L, N R,, then L, N R, is a
subgroup of S, i.e., L, N R, is a subsemigroup of S which forms a group under
the operation on S. We assume that « € S is both left and right regular. Then
xLx? and xRz?. This implies that 22 € L, N R,. From the above fact, L, N R, is
a subgroup of S. Then L, N R, is a regular subsemigroup of S. But z € L, N R,,
so x is a regular element of S.

For a semigroup S, let LReg(S) and RReg(S) denote the set of all left regular
elements of S and the set of all right regular elements of S, respectively. From
the previous mention, LReg(S) N RReg(S) C Reg(S) where Reg(S) is the set of
all regular elements of S.

A nonempty subset A of a semigroup S is called a left [right] ideal of S if



SA C A[AS C A]. We call S left [right] simple if S is the only left [right] ideal
of S. Characterizations of left simple semigroups and right simple semigroups are

given as follows:

Theorem 2.1 ([19], p. 7). For a semigroup S, the following statements hold.
(i) S is left simple if and only if Sx =S for all z € S.
(i) S is right simple if and only if xS = S for all x € S.

If S is a semigroup and a € S, then the semigroup (S, *) defined by z*y = xay
for all z,y € S is called the variant of S induced by a and let (S, *) be denoted
by (S, a).

For a nonempty set A, let 1,4 be the identity mapping on A.

Let X be a nonempty set. The full transformation semigroup, the partial
transformation semigroup and the symmetric inverse semigroup (the 1-1 partial
transformation semigroup) on X are denoted by 7'(X), P(X) and I(X), respec-
tively. Notice that T'(X) and I(X) are subsemigroups of P(X). Let G(X) be the
symmetric group on X. We have that G(X) is the group of units of P(X), T'(X)
and I(X). The domain and the range (image) of a in P(X) are denoted by dom «
and ran «, respectively. Recall that for a, 8 € P(X),

dom (af) = (ranaNdom B)a~' C dom«,
ran (o) = (rana Ndom B)F Cran 5 and

for x € X,z € dom (aff) & = € doma and za € dom 3.

It is well-known that P(X), T(X) and I(X) are regular semigroups, and moreover,
I(X) is an inverse semigroup ([9], p.4). Recall that a semigroup S is called an

inverse semigroup if for each x € S, there exists a unique x=! € S such that

r=xz 'rand z7' =z~ 'zz~'. We have that the inverse function ™! of o € I(X)

1 1

is the unique element of I(X) such that a = aa™'a and a™! = ataa™t. Note
that 1x is the identity of P(X), T(X) and I(X). The empty transformation 0 is

the zero of P(X) and I(X). For each a € P(X), the equivalence relation 7, on
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dom « defined by 7, = a oo™ is called the partition of dom« corresponding to

a (see [5], p.51). Then

To = {(z,y) € doma x dom« | zaw = yar}.

Note that for «, § € P(X), if m, = 13, then dom a = dom f3.
Next, let M (X) and E(X) be the subsemigroups of T'(X) defined as follows:

M(X)={aeT(X)|ais 1-1},

E(X)={aeT(X)|«aisonto}.

We have that G(X) is the group of units of both M(X) and F(X) and M(X) =
G(X)[E(X) = G(X)] if and only if X is finite. If X is an infinite set, then
M(X)NG(X) # @ and E(X)\G(X) # @. It is not difficult to see M (X)\G(X)
and F(X) \ G(X) are ideals of M(X) and F(X), respectively.

The other important semigroups of transformations of sets are the Baer-Lev
semigroups and their duals. They were respectively defined by Baer and Levi [2]
and Chen [3] as follows:

BL(X,q) ={a € T(X) | ais 1-1 and |X N rana| = ¢},

DBL(X,q) = {a € T(X) | ais onto and |za ™ !| = ¢ for all z € X}

where |X| > g > Xy. These semigroups have the following properties.

Theorem 2.2 ([6], p.82). If | X| > q > N, then BL(X,q) is a right simple and

right cancellative semigroup without idempotents.

Theorem 2.3 ([3]). If | X| > ¢ > N, then DBL(X,q) is a left simple and left

cancellative semigroup without idempotents.

For convenience, we use a bracket notation to represent a mapping. For in-

stance,



a

c d

stands for the mapping « with dom o = {a, b}, ran o = {¢, d},

ac = ¢ and ba = d,

Az

/
reXNA

stands for the mapping 4 with dom g = X,
a

a if x € A,
ran = {a}U {2z’ |z € X N\ A} and 2 =

 if xe X A

xo

By a bracket notation, a mapping « can be written as a =

x
TrEran o

Let V be a vector space over a field F'. The semigroup under composition
of all linear transformations a : V. — V' is denoted by Lg(V). We define the

subsemigroups Mp (V') and Er(V) similarly as follows:

Me(V) = {a € Lp(V) | a is 1-1}
(={a€Lp(V)|kera={0}}),

Er(V) = {a € Lp(V) | a is onto}
(={a€Lp(V)|rana = V}).

Let Gr(V) be the set of all isomorphisms from V' onto itself. We also have
that Gp(V) is the group of units of Lp(V), Mp(V) and Ep(V) and Mp(V) =
Gr(V) [Er(V) = Gp(V)] if and only if V is finite-dimensional. If V' is infinite-
dimensional, then Mp(V) N Gp(V) # @ and Ep(V) \ Gp(V) # @, and they are
ideals of Mp(V) and Ep(V), respectively.

The Green’s relations £ and R on T(X), P(X) and Lp(V) are well-known as

follows:

Theorem 2.4 ([5], p. 52). In T'(X),



(i) aLp if and only if ran o = ran [3;
(ii) RS if and only if 7o = 7ps.

Theorem 2.5 ([10], p. 63). In P(X),
(i) aLp if and only if ran o = ran [3;
(ii) @RS if and only if 7o = 7ps.

Theorem 2.6 ([5], p. 57 and [10], p. 63). In Lp(V),
(i) aLp if and only if ran o = ran [3;
(ii) aRpB if and only if ker o« = ker 3.

Observe that for o € I(X), aoa™! = {(z,z) | r € dom a}. It follows that for
a,f € 1(X), g = mg if and only if dom o = dom 3. From this fact together with
Theorem 2.5 and its proof, we obtain the following theorem for I(X).

Theorem 2.7. In I(X),
(i) aLp if and only if ran o = ran [3;
(il) aRpB if and only if doma = dom f3.

For any vector space V' over a field F' with dimgp V' > g > N, we let

BLp(V,q) ={a € Lp(V) | ais 1-1 and dimg(V/rana) = q}.

It was shown in [15] that for any «, 8 € Mp(V),

dimp(V/ranaf) = dimp(V/ran a) + dimpg(V/ ran 3).

Then BLE(V, q) is a semigroup which is called the linear Baer-Levi semigroup on
V' of type q ([16]). We define the dual linear Baer-Levi semigroup DBLp(V, q)
on V of type q similarly to the dual Baer-Levi semigroup DBL(X,q) defined

previously as follows:

DBLrp(V,q) ={a € Lp(V) | o is onto and dimp ker v = ¢}.
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Note that |[va™| = |keral for all @« € Lp(V) and v € rana. We have that
DBLE(V,q) is a semigroup by the fact that for any o, € Ep(V),

dimpg ker af = dimpg ker a 4+ dimpg ker 3,

which can be seen by the following proof. Let o, 8 € Ep(V). We will show that
(ker aff)a = ker 5. If v € ker a3, then (va)B = vafl =0, so va € ker . Next, let
v € ker 3. Since « is onto, v = wa for some w € V. Thus waf = (wa)f = v =0,
so w € kerafi. Hence v = wa € (keraff)a. This proves that (keraf)a =
ker 3. Then «_ , : keraf — ker( is an onto linear transformation. Thus
dimp ker o = dimp ker (a|kemﬂ) + dimp ker 3. We can see that ker (v, ,) =
ker . Consequently, dimg ker a3 = dimp ker o + dimp ker 3, as required.

In [16], the authors gave the next theorem for BLp(V,q) which has the same
result as BL(X, q).

Theorem 2.8 ([16]). If dimp V > ¢ > RN, then BLr(V,q) is a right simple and

right cancellative semigroup without idempotents.

Mendes-Gangalves [15] introduced the following semigroup.
KNp(V,q) ={a € Lp(V) | ais 1-1 and dimp(V/rana) > ¢}
where dimp V' > ¢ > Ny. This semigroup generalizes the semigroup
{a € Lp(V) | ais 1-1 and dimp(V/ran«) is infinite}

which was introduced by Kemprasit and Namnak [11]. Notice that this semigroup
is KNp(V,Ry). In [15], the authors proved that the prime ideals of Mp(V') are
exactly the semigroups K Ng(V,q). Note that a proper ideal I of a semigroup S
is called prime in [15] if for all a,b in S, ab € I implies that a € I or b € I. To be
analogous with K Ng(V, q), we define K N(X,q) as follows:
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KN(X,q) ={aeT(X)|ais1-1 and |X \rana| > ¢}

where | X| > ¢ > RXy. Since ranaf C ran for all o, f € T'(X), it follows that

KN(X,q) is a semigroup.

Finally, we define the following semigroups:

Trf(X)={ae€T(X) |rana is finite},

):

Prf(X)={a € P(X) | rana is finite},

Irf(X) ={a € I(X) | ran« is finite},
)

Lrfp(V)={a € Lp(V) | dimpran« is finite}.

Notice if X is finite, then Tr f(X) = T'(X), Prf(X) = P(X) and ITf(X) = [(X).
We also have that if V' is finite-dimensional, then Lrfr(V) = Lg(V).

We give some basic knowledge of linear algebra in the following remark. Their

proofs are omitted.

Remark 2.9. Let V be a vector space.

(1)

If Ay, As are disjoint subsets of V' such that A; U A, is a linearly independent
subset of V, then (A;) N (Ay) = {0}.

If A; and A, are (disjoint) linearly independent subsets of V' such that (A;)N
(Ay) = {0}, then A; U A; is a linearly independent subset of V.

If W is a subspace of V, then dimp V = dimg(V/W) + dimp W.

For all subspaces U and W of V with W C U, we have
(V/W)/(U/W)=V/U.

If U is a subspace of V', B; is a basis of U and B is a basis of V' containing

By, then vy + U # vy + U for all distinct vy, v, € B\ By and the set {v+ U |
v € B~ By} is a basis of the quotient space V/U (= {v+U | v € V}). Hence
dimp(V/U) = |B \ By|.

Next, let V'’ be a vector space and « : V' — V' a linear transformation.



12

(6) If Ais a linearly independent subset of V' and « is 1-1, then A« is a linearly
independent subset of V’. In particular, if B is a basis of V' and « is 1-1, then

Ba is a basis of ran a.

(7) If Bisabasisof V, A C B, Aa = {0}, oq,_, is 1-1 and (B~ A)a is a linearly
independent subset of V', then ker a = (A).

(8) If Bis a basis of V, Ais a linearly independent subset of V' and o, : B — A
is a bijection, then « is a 1-1 linear transformation from V" into V’. In parti-

cular, if A is also a basis of V', then a is an isomorphism from V onto V".

(9) Let By be a basis of ker & and B a basis of V' containing B;. Then for all
u,v € B~ By, if u # v then ua # va and (B \ Bj)a is a basis of ran a.

Hence dimprana = |(B \ By)a| = |B \ By|.

(10) If By is a basis of ker o, By is a basis of ran a and for each v € By, choose
v' € va~ !, then

va~l =v' + kera for all v € B,
and
By U{v' | v € By} is a basis of V.

(1) Ifa: V — V'is 1-1 and W is a subspace of V, then we have that the mapping
v+ Wi va + Wa is an isomorphism from V/W onto Va/Wa. Hence
dimp(V/W) = dimp(Va/Wa).



CHAPTER III
SEMIGROUPS OF TRANSFORMATIONS OF SETS

This chapter gives characterizations of the left regular and right regular ele-

ments of the following semigroups of transformations of X where X is infinite:

M(X), M(X)\ G(X),E(X), B(X) N\ G(X),
BL(X,q), DBL(X,q), KN(X,q) where | X| > q¢ > X,

Trf(X),Prf(X) and Irf(X).

First of all, we show that the left regular elements and the units of M (X)) are

identical. We shall introduce the Green’s relation £ on M (X) as a lemma.

Lemma 3.1. For any o, 5 € M(X),

alpB in M(X) & rana =ranf.

Proof. Assume that o, 5 € M(X) and oL in M(X). Then a = 73 and § = A\«
for some v, A\ € M(X). It follows that rana = ran~( C ran § = ran Aa C ran
so ran a = ran f3.

Conversely, assume that ran a = ran 3. Note that o' : rana (= ran ) — X
and 7! : ran (= rana) — X are bijections. Then oS~ Ba™t : X — X
are bijections, i.e., 37!, Ba™! € G(X) C M(X). Since (a8 13 = a(8718) =
Aliang = Aliane = @ and (Ba™Ha = B(a™a) = Blinae = Blians = B, it follows
that oL in M(X). O

Theorem 3.2. LReg(M (X)) = G(X).
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Proof. Since G(X) is the group of units of M (X), we have G(X) C LReg(M(X)).
For the reverse inclusion, let a € LReg(M(X)). Then ala? in M(X). By
Lemma 3.1, rana = rana?. Thus Xa = (Xa)a. Since a is 1-1, it follows that

X = Xa, which implies that a € G(X). Hence the result follows. O

Next to determine RReg(M (X)), we first provide the Green’s relation R on
M(X).

Lemma 3.3. For any o, € M(X),

aRp in M(X) < | X Nrana| = | X \ranf|.

Proof. Let o, € M(X) and assume that aRf in M(X). Then o« = p~v and
B = a for some v, A € M(X). Consequently, (ran )y = rana and (rana)\ =
ran 3. Since v and A are 1-1, we have that (X ~\ ranf)y C X \ rana and
(X ~rana)A € X ~ranf. These imply that |X \ ranf| < |X \ rana| and
| X Nranal < |X \ranf|. Hence | X N\ rana| = | X \ ran .

For the converse, assume that | X \rana| = |X ~\ranf|. Let ¢ : X \ran§ —

X N rana be a bijection. Define v, A : X — X by

x To
v = by and A\ = Y

—1
T yp zeX 'Iﬁ Yy zeX
yeX ~ran 3 yeX ~\ran o

Since a and [ are 1-1, we have that v and A are well-defined and 1-1. It follows
that v, A € G(X), fy = a and a\ = 3. Hence R in M(X), as desired. ]

Note that Lemma 3.3 is found later that it is a special case of Lemma 4.1 in

120].

Theorem 3.4. RReg(M (X))={a € M(X)|rana = X or X~\ran« is infinite}.
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Proof. Since RReg(M (X)) = {a € M(X) | aRa? in M(X)}, by Lemma 3.3, we
have

RReg(M (X)) ={a € M(X) | |X ~rana| = | X \rana’|}.

Let @ € M(X) be such that |X \ rana| = |X \ rana?| and assume that
X \ranc is finite. Since rana? C rana, we have X \ rana C X \ ranca?.
Consequently, X \ ran o = X \ ran o?, which implies that ran o = ran o®>. Hence
Xa = (Xa)a. But since a is 1-1, X = Xa, ie., rana = X.

For the reverse inclusion, let a € M (X) be such that rana = X or X \rana
is infinite. If rana = X, then rana? = X, so |X ~rana| = 0 = | X \ rana?|.
Next, suppose that X ~ ranc is infinite. Since rana? C rana and «a is 1-1, it

follows that

|X N rana?| = |X N ranal + |rana \ ran o?|
= |X \ranal + |[Xa \ Xo?|
= |X Nrana| + [(X N\ Xa)of
= |X ~rana| + | X \ Xqf
= 2|X \ranq|

= |X \rana|.

The theorem is thereby proved. O]

The following result is a consequence of Theorem 3.2, Lemma 3.3 and Theo-

rem 3.4.

Corollary 3.5.
(i) LReg(M(X)N\G(X)) =o.
(i) RReg(M(X)NG(X)) ={a e M(X) | X \rana« is infinite}.

Proof. (i) We will prove that LReg(M (X) \
LReg(M(X)~ G(X)). Thus a € LReg(M(X)). But since LReg(M (X)) = G(X)
by Theorem 3.2, it follows that a € G(X), which is a contradiction.

G(X)) = @, suppose not. Let a €
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(ii) Let a € RReg(M(X) N\ G(X)). Then o € RReg(M(X)). By Theorem 3.4,
rana = X or X N\ rana is infinite. But @ € M(X) N G(X), so X \rana is
infinite.

For the converse, let a € M (X) be such that X \ran « is infinite. By Theorem
3.4, a € RReg(M (X)), so a = o3 for some € M(X). We also have that
| X N\ rana| = |X \rana?| by Lemma 3.3. Let a € X \ ran« be fixed. It follows
that | X \ (ranaU{a})| = | X ~rana| = | X \ran a?|. Thus there exists a bijection

A X Nrana? — X \ (rana U {a}). Define the mapping v on X by

r oy
l’ﬁ y>\ xreran o?

y€X ~ran o

Note that (ran a?)8 = Xa?3 = Xa = rana and (X ~ran a?)\ = X\ (ran aU{a}).
It follows that (rana?)3 N (X N rana?)\ = @. But 8 and A are 1-1, so we have
v € M(X). Since a = o*B, by the definition of v, we have for any z € X,
z(a?y) = (za?)y = (za?)3 = z(a?B) = za. This means that a = a?y. It follows
that
X7 = (rana®)y U (X \ rana?)y

= ran oy U (X \ ran a®)\

=rana U (X \ (rana U {a}))

=X ~{a}.
Thus ~ is not onto, so v € M(X) \ G(X). Hence o € RReg(M(X) \ G(X)).

Therefore the proof is completed. O

Next, the left regular and right regular elements of E(X) are considered. The
following lemma is needed. Note that it is found later that it is a special case of
Lemma 5.1 in [20].

Lemma 3.6. For any o, § € E(X),

alfB in BE(X) & |zva™| = |28 for all v € X.



17

Proof. Let o, f € E(X) be such that «Lf in F(X). Then o« = v and § = A
for some v, A € E(X). Thus for all x € X and for all y € zaa™, yy8 = ya = xa,

so yy € (xa)B~t. This proves that (zaa™)y C (za)B™! for all z € X. But
a is onto, so (za~t)y C xB7! for all z € X. Since X = U:vofl = Uxﬁ_l
reX reX

and 7y is onto, it follows that (zra™1')y = 37! for all x € X. This implies that
|lza~!| > |z~ for all z € X. By the assumption that 8 = A, we can prove
similarly that |87t > |za™!| for all z € X. Hence |xa™!| = [z~ for all x € X.

Conversely, assume that |[ra™t| = |z37!| for all z € X. For each z € X, let

ve s xa~t — 287! be a bijection. Define v : X — X by

Y
’y:
YV rxeX

yExa !

Since X = U ra Tt = U x3!, we have that + is onto. To show that v3 = a, let
rzeX zeX

y € X. Then y € za~! for some x € X, so yy = yv, € 4~L. This implies that

yvB = v = ya. We can show similarly that Ao = 3 where A\, : 237! — za™!is a

bijection for all z € X and

e
YAz | wex
yeaf"
Hence aLf in E(X).
This completes the proof of the lemma. n

The following theorem is an immediate consequence of Lemma 3.6.

Theorem 3.7. LReg(E(X)) = {a € E(X) | |[za™!| = |z(a®)7!| for all x € X}.

Theorem 3.8. RReg(E(X)) = G(X).

Proof. Since G(X) is the group of units of F(X), we have G(X) C RReg(F(X)).
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For the reverse inclusion, let &« € RReg(E(X)). That is, Ra? in E(X). Then
a = o?f for some 3 € E(X). Hence 1x = af since « is onto. Thus « is 1-1, so

a € G(X). O

Theorem 3.7 and Theorem 3.8 yield the following two corollaries, respectively.

Corollary 3.9. For any o € E(X)\G(X), a € LReg(E(X)\G(X)) if and only
if a satisfies the following two properties:
(i) |za™| = |z(a®)7Y for al z € X;

(ii) |ya™!] is infinite for some y € X.

Proof. Let a € LReg(E(X) ~ G(X)). Then a € LReg(E(X)). By Theorem 3.7,
we have |[ra™!| = |z(a?)7!| for all z € X. Suppose that for all y € X, [ya™!| is
finite. Let y € X. Since y(a?)™' = (ya™)a™! = U za~ !, it follows that

zeya~—1

o | = g(e® M =| |J 207 = ¥ Jza7.

zeya~t zeya~1

Since « is onto, za™! # & for all z € ya~!'. This shows that [za™!| = 1 for all

z € ya~t and for ally € X. But X = Uyofl, so [za”!] =1 for all z € X.
yeX
Hence « is 1-1. Thus o € G(X), a contradiction.

For the converse, we assume that a € E(X) such that |[za™!| = |z(a?)™}| for all
r € X and |ya™!| is infinite for some y € X. Let a € ya~! be given. Then
1| =

lya~ '\ A{a}| = |ya~ ly(a?)~1|. Thus there exists a bijection ¢ from ya~'\ {a}

onto y(a?)~!. Fix b € y(a?)~! and let v, : ya=! — y(a?)~! be defined by

ceya—1~{a}

Since ay, = b = cp = ¢, for some ¢ € ya~! \ {a}, we have that v, is not 1-1.
For each z € X \ {y}, let v, : za™! — x(a?)~! be a bijection. Define v: X — X
by
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Since X = Ua:ofl = Ux(aQ)_l, we have that v is onto. If v € X and
reX zeX

-1

z € za™!) then 2y = 27, € z(a?)7!, so z(ya?) = (27)a* = z = za. Since

X = U ra~ ', it follows that va? = a. Since X = U ra ! = U z(a?)™" and v,

zeX zeX zeX
is not 1-1, it follows that v is not 1-1. Thus v € E(X) ~ G(X). This proves that

a € LReg(E(X) N G(X)), as desired.
Therefore the proof is completed. O

Corollary 3.10. RReg(E(X) N\ G(X)) = @.

Proof. If o € RReg(F(X) \ G(X)), then a € RReg(E(X)), so a € G(X) by
Theorem 3.8. This is impossible. Hence RReg(E(X) N\ G(X)) = 2. O

We recall the Baer-Levi semigroup of type (|.X|, ¢) on the set X and its dual

as follows:

BL(X,q) ={a € T(X) | ais 1-1 and |X \ranal| = ¢},

DBL(X,q) = {a € T(X) | ais onto and |za~!| = g for all z € X}

where | X| > g > N,.

Theorem 3.11.
(i) LReg(BL(X,q)) = @.
(ii) RReg(BL(X,q)) = BL(X,q).

Proof. (i) Suppose LReg(BL(X,q)) # @. Let a € LReg(BL(X,q)) be given.
Then o = Ba? for some 3 € BL(X,q). Since a is 1-1, 1x = fBa. This implies
that « is onto, contradicting the definition of BL(X, q).
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(ii)) We have that BL(X,q) is right simple from Theorem 2.2. By Theorem
2.1(ii), BL(X,q) = a®?BL(X,q) for all « € BL(X,q). Let a € BL(X,q). Then
a = o?f for some 8 € BL(X,q). Thus o € RReg(BL(X, q)). O

The following dual version of Theorem 3.11 can be shown in a similar manner.

Theorem 3.12.
(i) LReg(DBL(X,q)) = DBL(X,q).
(ii) RReg(DBL(X,q)) = @.

Remark 3.13. Since BL(X,q) and DBL(X,q) do not contain idempotents by
Theorem 2.2 and Theorem 2.3, respectively, we have that all elements of BL(X, q)
and DBL(X,q) are not regular.

Theorem 3.11 shows that every element of BL(X,q) is right regular but not
left regular. Therefore every element of BL(X,q) is right regular but neither
regular nor left regular.

From Theorem 3.12, we have that every element of DBL(X,q) is left regular
but not right regular. Then every element of DBL(X, q) is left regular but neither

regular nor right regular.
The another semigroup which has the same results as BL(X, q) is KN(X, q).
Recall that
KN(X,q) ={aeT(X)|ais1-1 and |X \rana| > ¢}
where | X| > ¢ > N,.
Theorem 3.14.

(i) LReg(KN(X,q)) = 2.
(ii) RReg(KN(X,q)) = KN(X,q).
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Proof. (i) Suppose LReg(KN(X,q)) # @. Let a € LReg(KN(X,q)) be given.
Then a = [a? for some 3 € KN(X,q). Since « is 1-1, 1x = Ba. Thus « is onto,
which is contrary to | X \ ranal| > q.

(ii) Let @« € KN(X,q). Then |X \rana| > ¢, so X \ ran« is an infinite set.
By Theorem 3.4, a € RReg(M(X)). That is, aRa? in M(X). By Lemma 3.3,
| X \rana| = |X \rana?|. Since X \ran« is infinite, there are A, B C X \rana
such that X N\ rana = AU B and |A| = |B] = |X ~ranal. Then we have
| X N rana?| = |A|. Let ¢ : X \ rana? — A be a bijection. Define v € T(X) by

ra? gy

¥ =
T YP [ zex

y€X ~ran o?

For 1,29 € X, 2102 = 2502 if and only if 2700 = 290 since a is 1-1. This shows
that ~ is well-defined and the mapping za? — za (r € X) is 1-1. But since ¢
is 1-1 and XaN A =rananN A = @, it follows that v € M(X). We have that

a = o’y and

rany = X~
= (rana’ U (X < rana?))y
= (rano®)y U (X N\ rana®)y
=rana U (X \rana?)p

=rana U A.

Then X \rany = B, so |X \rany| = |B| = |X \rana| > ¢. This implies that
v € KN(X,q). Hence o € RReg(KN(X,q)), and the desired result follows. [

For the remainder of this chapter, we will consider the left regular and right

regular elements of Trf(X), Prf(X) and Irf(X). We recall that

Trf(X)={a € T(X) |rana is finite},
Prf(X)={a € P(X) | ran« is finite},

Irf(X)={a € I(X) | ran« is finite}.
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We use the following lemma to prove our desired results for the left regular

elements of Trf(X), Prf(X) and Irf(X).

Lemma 3.15. Let S(X) be Trf(X), Prf(X) or Irf(X). Then for a, € S(X),

alB in S(X) < rana = ran .

Proof. Let o, 5 € S(X). Assume that oL in S(X). Then a = vf and 8 = A« for
some v, A € S(X)!. Tt follows that rana = ran(y3) C ran 8 = ran(\a) C rana,
so ran a = ran f3.

To show the converse, we assume that rana = ran (3. For each x € rana,

choose d, € x3~!. Then d,3 = z for all x € ran . Define v: doma — X by

reran «

Thus v € P(X), domvy = doma, rany C domf and |rany| = [{d, | = €
rana}| = |ranal. If a € Trf(X), then v € Trf(X). If a € Prf(X), then
v € Prf(X). If @ € Irf(X), then v € Irf(X) since |za™| = 1 for all z €
rana. Hence v € S(X). We also have that dom(y3) = (rany N dom B)y~! =
(ranv)y~! = dom~y = doma. For z € doma, z € (va)a™', so 278 = d,o3 = za.
Hence o = 7. We can show similarly that 5 = Ao for some A € S(X). This
proves that aLg in S(X), as desired. m

The proof of the next lemma is slightly different from that of Theorem 2.4(ii)
given in [5], p. 52. It is needed to determine the right regular elements of T'r f (X).

Lemma 3.16. For any o, 5 € Trf(X),

aRp inTrf(X) & m, = ms.

Proof. Let a, B € Trf(X) be such that RS in Trf(X). Then aR3 in T(X), so
by Theorem 2.4(ii), 7, = ms.
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Conversely, let a, 8 € Trf(X) be such that 7, = m3. Let a € X be fixed.
Define v : X — X by

By
’y:
o a zeX
yeX ~ran

Since w5 C 7, v is well-defined. We also have that o = v and rany = ran aU{a}

which is finite. By using 7, C w3, we obtain similarly that 8 = a\ for some

A€ Trf(X). Therefore aRfG in T'rf(X). O

The following lemma enables us to give the result that LReg(Trf(X)) =
RReg(Trf(X)). Moreover, we make use of this lemma to show the result of

Prf(X).

Lemma 3.17. For any o € Prf(X) and 3 € P(X),
rana = ran afa & T, = Taga-
In particular, for any a € Prf(X),

rana = ran a’ < m, = T,e.

Proof. Let a € Prf(X) and f € P(X). Assume that rana = ranafa. Then
rana = (ran o Ndom fa)Ba, so [ranal < |rana N dom Sal. But ran a N dom Sa
Crana, |rana| > |rana N dom Bal. It follows that |ran «| = |rana N dom Bal.
Since ran « is finite, we have that rana = rana N dom Ba. Thus (rana)fa =
s rana — rana is onto.

(rana N dom fa)fa = ranafa = rana, so (fa)

Hence (Ba)

|ran o
ana 15 1-1 since ran o is finite.

Next, we will prove that m, = m,3,. Since ran o N dom o = ran a, it follows
that domafa = (rana N dom fa)a™t = (rana)a™! = doma. If (z,y) € 7a,
then za = ya, so zafa = yafa. Let (z,y) € Tapa. Then zafa = yafa. Since

(BA)|ana is 1-1, we have that za = ya, ie., (2,y) € To. Hence mq = Taga.

To prove necessity, we assume that m, = m,3,. This implies that
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| ran a| = the number of the equivalence classes of 7,
= the number of the equivalence classes of T,g4

= |ran afal.

Since ran afa C ran o and ran « is finite, it follows that ran a = ran afa. O

From the previous series of lemmas, we have the following theorem for 7 f(X).

Theorem 3.18. LReg(Trf(X)) = {a € Trf(X) | o,.n € G(rana)}
= RReg(Trf(X)).

Proof. By Lemma 3.15, LReg(Trf(X)) = {a € Trf(X) | rana = rana?}. By
Lemma 3.16, RReg(Trf(X)) = {a € Trf(X) | 7o = ma2}. By Lemma 3.17,
LReg(Trf(X)) = RReg(Trf(X)).

Next, to prove that LReg(Trf(X)) = {a € Trf(X) | ... € G(rana)}, let
a € Trf(X). Assume that o € LReg(Trf(X)). Then ran @ = rana? = (ran a)a.
But since ran « is finite, it follows that o € G(rana). Conversely, if o, €
G(rana), then rana? = (rana)a = rana, so a € LReg(Trf(X)).

Hence the result follows. O

We already have the lemma for determining the left regular elements of
Prf(X). To obtain the theorem for Prf(X) which is similar to that of T'r f(X),

we first give the Green’s relation R on Prf(X) as a lemma.

Lemma 3.19. For any «, 3 € Prf(X),
aRp in Prf(X) < m, = ms.

Proof. Let a, 8 € Prf(X) be such that RS in Prf(X). Then aRf in P(X).
By Theorem 2.5(ii), 7, = m3.

For the converse, let o, 3 € Prf(X) be such that 7, = 7. Then doma =
dom (3. We define v : ran 3 — X by
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3

ro
redom

If 2,y € dom 3 (= doma) are such that =3 = yf, then (z,y) € ms, so (z,y) €
7o and hence xaw = ya. Thus 7 is well-defined. Since ranvy = (dom ()a =
(dom a)ov = ran« which is finite, v € Prf(X). We also have that dom(8v) =
(ran 3 Ndom~v)3~! = (ranB)3~! = domf3 = doma. If z € doma (= dom f3),
then xa = x(~. It follows that a = 7. It can be shown analogously that § = a
where A : ran o — X is defined by

XL
0

r€dom a

Therefore the lemma is obtained. O

Theorem 3.20. LReg(Prf(X)) = {0} U{a € Prf(X)| @ #rana C dom«
and oy, € G(rana)}
= RReg(Prf(X)).

Proof. By Lemma 3.15, Lemma 3.19 and Lemma 3.17, we have respectively that

LReg(Prf(X)) ={a € Prf(X)|rana = rana’},
RReg(Prf(X)) ={a € Prf(X) | mq = maz},
LReg(Prf(X)) = RReg(Prf(X)).

Next, we will show that LReg(Prf(X)) = {0} U{a € Prf(X) | @ # rana C
doma and «,,,, € G(rana)}. Let o € LReg(Prf(X)) ~ {0}. Since rana® =

ran «, it follows that

|rana N dom | > |(ran o N dom )«
= |ran o

= |ran o

> |ran o N dom o,
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so [ranaNdoma| = |rana|. Since rana is finite, rana Ndoma = rana. It
follows that @ # rana C doma and (rana)a = (rana N doma)a = rana? =
ranc. This means that o, ., : rana — rana is onto. Since rana is finite,
Apana € G(rana).

The element 0 clearly belongs to LReg(Pr f(X)). We assume that o € Prf(X)
such that @ # rana C doma and «,,, € G(rana). Then rana C doma

and (rana)a = rana. Thus rana = (rana)a =(rana N doma)a = rana?, so

rana = rana?. Hence a € LReg(Prf(X)), and the theorem holds. O

The next two theorems show that the set of all left regular elements and
the set of all right regular elements of Irf(X) coincide. However, to determine

RReg(Irf(X)), the Green’s relation R on Irf(X) is first provided.

Theorem 3.21. LReg(I7f(X)) = {a € Irf(X) | doma = rana}.

Proof. Let a € LReg(Irf(X)). Then aLa? in Irf(X). By Lemma 3.15, rana =
rana?. Thus (doma)a = rana = rana? = (rana N doma)a. Since « is 1-1,
dom a = ranaNdom a. This means that dom o C rana. Since |dom | = |ran ¢
and ran « is finite, we have that dom o = ran a.

For the reverse inclusion, let a € Ir f(X) be such that doma = rana. Then

rana = (doma)a = (rana N dom a)a = rano?. Using Lemma 3.15, we obtain

ala? in Irf(X). Therefore a € LReg(Irf(X)), as required. O

Lemma 3.22. For any o, 5 € Irf(X),

aRp in Irf(X) < doma = dom 3.

Proof. If aRf in Irf(X), then R in I(X), so by Theorem 2.7(ii), doma =
dom 3. Assume that a, 3 € Irf(X) and doma = dom 3. Let v = 3 'a. Then
v € I(X) and rany C ran «a which is finite. Therefore we have that v € Irf(X)

and @ = lgoma® = lgompa = B a = By. If A = o™, then we also have that
A€ Irf(X) and § = a\. Hence aRf3 in Irf(X). O
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Theorem 3.23. RReg(I7f(X)) ={a € Irf(X) | doma = rana}.

Proof. Let a € Irf(X) be such that aRa? in Irf(X). By Lemma 3.22, dom o =

1 1

doma?, i.e., (rana)a™! = (rana Ndoma)a~t. Since o is 1-1, rana = rana N
dom «v, so rana C domav. Since «v is 1-1, [dom | = |ran«|. Thus dom o = ran «
since ran « is finite.

For the reverse inclusion, assume that dom @ = ran . Then dom o? = (ran an
doma)a™'= (rana)a™ = doma. By Lemma 3.22, aRa? in Irf(X), ie., a €

RReg(Irf(X)). O

Remark 3.24. We have that for any «a, f € I(X),

ran(af) Cran 3 and ran(af) = (ranaNdom 3)0.

It follows that for all a, 8 € 1(X),

|ran(af)| < |ran |
and
|ran(af)| = |(rana N dom f)F| = |ran @ N dom f| < |ranaf.

Consequently, Irf(X) is an ideal of I(X). Since I(X) is a regular semigroup,
Irf(X) is a regular semigroup.
It is evident from Theorem 3.21 and Theorem 3.23 that an element of Ir f(X)

need be neither left regular nor right regular.



CHAPTER IV
SEMIGROUPS OF LINEAR TRANSFORMATIONS

In this chapter, V is assumed to be an infinite-dimensional vector space over
a field F'. We consider the left regular and right regular elements of the following
semigroups:
Mp(V),Mp(V)~ Gp(V), Ep(V), Er(V) N Gp(V),
BLp(V.q), DBLp(V.q), KNp(V,q) and Lr fp(V')

where dimp V' > ¢ > N,.

Comparing with the results in Chapter III, the sets of left regular elements
and the sets of right regular elements of the semigroups Mg(V), Mp(V)\Gr(V),
Er(V), Ep(V)NGr(V), BLr(V,q), DBLr(V,q), KNp(V,q) and Lrfr(V') are ob-
tained accordingly in this chapter. However, each of the theorems for LReg(Er(V))
and LReg(FEr(V) ~ Gr(V)) is obtained in a better form. In addition, some more

lemmas are required.

Lemma 4.1. For any o, 5 € Mp(V),

alfB in Mp(V) < rana = ran f3.

Proof. Note that if « € Mp(V), then a™! : rana — V is linear. It can be seen

from the proof of Lemma 3.1 that the lemma holds. O]

Theorem 4.2. LReg(Mp(V)) = Gp(V).

Proof. From Lemma 4.1 and the proof of Theorem 3.2, we can see that the theorem

holds. O
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Lemma 4.3. For any o, 5 € Mp(V),

aRp in Mp(V) < dimp(V/rana) = dimp(V/ran 3).

Proof. Let o, € Mp(V) be arbitrary. First, assume that aRfS in Mgp(V).
Then a« = fy and § = aA for some v,\ € Mp(V). Thus (ranf)y = rana
and (rana)A = ranf. It follows that dimp(V/ranpg) = dimp(V/VF) =
dimp(Vy/(VB)y) = dimp(rany/(ran §)7y) since v is a 1-1 linear transformation.
Consequently,

dimp(V/ran ) = dimp(rany/(ran 5)7)
= dimp(rany/ran «)

< dimp(V/ran o).

We obtain similarly from § = a that dimg(V/rana) < dimg(V/ran ). Hence
dimp(V/rana) = dimp(V/ ran g).

Conversely, assume that dimp(V/rana) = dimp(V/ran3). Let B be a basis
of V. Since a and ( are 1-1 linear transformations, we have that Ba and Bf
are bases of ran « and ran (3, respectively. Let B’ be a basis of V' containing Bf
and B” a basis of V' containing Ba. Since dimp(V/ran () = dimp(V/rana),
dimp(V/ran ) = |B’ ~ Bf| and dimp(V/rana) = |B” \ Ba/, it follows that
|B'\ Bf| = |B” \x Ba|. Let ¢ : B~ B — B” \. Ba be a bijection. Define
v, A€ Lp(V) on B and B”, respectively by

vl u va u
v = b and A=

v up | oep vB ue™ ) ep
u€B'~\Bj u€B" \Bo
We have that v and A\ are well-defined and 1-1 since o and § are 1-1. Since
Y, : B — B" and A, : B” — B’ are bijections, we have that v,A € Gg(V).
Hence the equalities v = a and a\ = ( hold since vy = va and vaA = v for
all v € B. Therefore aR3 in Mp(V), as required. O
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Theorem 4.4.

RReg(Mp(V)) ={a € Mp(V) |rana =V or dimp(V/rana) is infinite}.

Proof. By Lemma 4.3, we have that

RReg(Mp(V)) = {a € Mp(V) | dimp(V/rana) = dimp(V/ran o?)}.
It suffices to show that for & € Mp(V), dimp(V/ran o) = dimp(V/ran o?) if and
only if rana =V or dimp(V/ran «) is infinite.

First, let « € Mp(V) be such that dimp(V/rana) = dimp(V/rana?) and
assume that dimy(V/ran ) is finite. Note that rana® C rana C V. Let B be a
basis of ran o, B, a basis of ran« containing B; and B a basis of V' containing
By. Since dimp(V/rana) = dimp(V/rano?), dimp(V/rana) = |B \ Bs| and
dimp(V/rana?) = |B \ By|, we have that |B \ Bs| = |B \ B;|. We also have
that B \ By is finite since dimg(V/ran o) is finite. But B \ By C B \ By, so we
have B \. B, = B~ B; and hence B; = B,. It follows that rano? = rana;, i.e.,
(Va)a = Va. This implies that Va = V since « is 1-1. Thus rana = V.

For the converse, let @ € Mp(V') be such that rana =V or dimp(V/rana) is
infinite. Ifrana =V, thenrana? =V, so dimp(V/rana) = 0 = dimp(V/ ran o?).
Next, we assume that dimp(V//rana) is infinite. Since rana? C rana C V, we

have that ran a/ rana? is a subspace of V/ran o?, so

dimp(V/rana®) = dimp ((V/ranao?)/(ran o/ rano?)) + dimp(ran o/ ran o)
= dimp(V/ran «) + dimp(ran o/ ran o?)
= dimp(V/rana) + dimp(V/ ran o) (since a € Mp(V))
= 2dimp(V/ran )

= dimp(V/ran «).
Therefore the theorem is proved. O
Corollary 4.5.

(i) LReg(Mp(V) N Gp(V)) = 2.
(ii)) RReg(Mp(V) N Gp(V)) ={a € Mp(V) | dimp(V/ran«a) is infinite}.
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Proof. (i) The proof can be obtained in the same way as that of Corollary 3.5(i)
by using Theorem 4.2 instead of Theorem 3.2.

(ii) Let a € RReg(Mp(V) ~ Gp(V)). Then a € RReg(Mp(V)). By Theorem
4.4, rana =V or dimp(V/rana) is infinite. Since v ¢ Gr(V), dimp(V/ran «) is
infinite.

For the reverse inclusion, let o € Mp(V) be such that dimg(V/rana) is
infinite. Again by Theorem 4.4, & € RReg(Mp(V)). That is, a = o3 for some
B € Mp(V). Let By be a basis of ran a?, By a basis of ran « containing By and B
a basis of V' containing By. Then dimp(V/rana?) = |B~\ B;| and dimg(V/ ran o)
= |B \ By|. Since aRa? in My(V), by Lemma 4.3, |B \ By| = |B \ By|. Note
that | B \ Bs| is infinite by assumption. Fix z € B\ By. Then |B\ (ByU{z})| =
|B \ By| = |B ~\ Bi|. Thus there is a bijection A : B\ By — B~ (By U {z}).
Define v € Lrp(V) on B by

u (%

uB VA

u€e By
vEB\B1

We claim that v € Mp(V). Since f € Mp(V), we have that Bf is linearly
independent. Since o = o?3 and Bj is a basis of ran a?, it follows that B;3 C
ran o = ran «, so (B13) C (B,). We also have that (B~ B))\ = B~ (ByU{z})
and (By) N (B~ (B U{z})) = {0}. Consequently, (B15) N {((B~ By)A) = {0}.
This implies that By U (B ~\ Bj)A is linearly independent (Remark 2.9(2)). It
follows that 7|, is 1-1, and hence v € Mp(V) (Remark 2.9(8)). Next, we claim
that va?y = va?f for allv € V. Let v € V. Then va? € ran a?. Thus va? can be

written as a finite sum of the form Z a,u where a, € F and u € By. Hence
u€e By

e (S )

ueEBy

= Z ay (uy)

u€ By

= Z GU(U6>

u€ By
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we have that v is not onto. Therefore v € Mp(V) ~\ Gr(V). This shows that
a € RReg(Mp(V) N Gp(V)).
The proof is thereby completed. O]

Lemma 4.6. For any o € Er(V), ker a?/ ker a = ker av.

Proof. First, we note that kera is a subspace of kera®. We will show that
(kera?)a = kera. If v € kera?, then (va)a = va? = 0, so va € kera. Let
v € ker . Since « is onto, wa = v for some w € V. Thus wa? = (wa)a = va = 0,

2. Hence v = wa € (kera?)a. Therefore (ker a?)a = ker o, so we

so w € kera
have oy, : ker a? — kera is an onto linear transformation. Consequently,
kero?/ker(a) ,) = kera. It is easily seen that ker(oy_ ,) = kera. Hence

ker o/ ker o = ker av. O

Lemma 4.7. For any o, 5 € Ep(V),

alB in Ep(V) < dimp ker a = dimp ker (3.
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Proof. Let a, 8 € Er(V) be arbitrary. Assume that LS in Er(V). Then a = (3
and f = Aa for some v, A € Ep(V). If v € kera, then vy = va = 0, which
implies that vy € ker 5. It follows that (kera)y C ker 8. If v € V \ ker «, then
vyB = va # 0, so vy ¢ ker 5. This shows that (V' ~ kera)y C V' ~\ ker 3. Since 7
is onto, (ker a)y = ker 3. This means that 7|, : ker v — ker # is an onto linear
transformation, so dimg ker a« > dimpg ker 5. Similarly, dimg ker 3 > dimpg ker «
by the fact that G = \a.

Conversely, we assume that dimgpkera = dimgpker3. Let B; and B, be
bases of kera and ker 3, respectively. By assumption, there exists a bijection
¢ : By — By. Let B be a basis of V. Since a and [ are onto, for each v € B,
we can choose v € va~! and v” € v3~!. Then v'a = v = V"3 for all v € B.
Note that |B| = |[{v' | v € B}| = |{v" | v € B}|. We have B, U{v' | v € B} and
By U{v" | v € B} are bases of V. Define v € Lp(V) on B; U{v' | v € B} by

u€ By
veB

Since By = By which is disjoint to {v” | v € B}, we have that the restriction of
v to ByU{v' | v € B} is 1-1. Moreover, (B; U{v' | v € B})y = (Byy) U ({v' |
v € B}y) = BoU{v" | v € B}. These imply that v € Gp(V). If v € By, then
vy = vl = 0 = va since vp € By Cker. If v € B, then v'v8 =1"g =v =
v'a. These show that 3 = a. Then v 'a = 3. Hence oL in Ep(V). O

Theorem 4.8.

LReg(Er(V)) ={a € Ep(V) | kera = {0} or dimpker « is infinite}.

Proof. Let a € LReg(Er(V)). Then aLa? in Ep(V). By Lemma 4.7, dimy ker o =
dimg ker a?. Suppose dimp ker o is finite. Since ker @ C ker o2, ker o = ker o,

Since ker = 0a~! and ker o® = 0(a?)™! = (0a™Ha™! = (kera)a™t = U ra!

zeker a

= U ra~ ' | U0a™!, it follows that
z€ker a~{0}
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ker o = ker o? = U rza ' | Uba™! = U za t ] U kera.
z€ker a~{0} z€ker a~{0}

This implies that ker a = {0}.
For the converse, let o € Ep(V) be such that kera = {0} or dimpgkera
is infinite. If keraw = {0}, then @ € Gp(V) C LReg(Er(V)). Assume that

dimp ker v is infinite. We have dimp(ker o?/ker @) = dimg ker @ by Lemma 4.6.

Thus

dimp ker o® = dimp(ker a®/ ker a) + dimp ker o
= dimpg ker o + dimp ker o

= dimp ker a.

By Lemma 4.7, aLa? in Er(V). Hence a € LReg(Er(V)). O

Theorem 4.9. RReg(Er(V)) = Gp(V).

Proof. Using the same argument as the proof of Theorem 3.8, we obtain the

desired result. O

Corollary 4.10. LReg(Er(V)NGp(V)) = {a € Ep(V) | dimp ker « is infinite}.

Proof. Let aw € LReg(Er(V) ~ Gr(V)). Then o € LReg(Er(V)) and « is not
1-1. By Theorem 4.8, ker & = {0} or dimp ker o is infinite. But « is not 1-1, so
dimp ker «v is infinite.

Conversely, let a € Ep(V) be such that dimp ker o is infinite. By Theorem
4.8, a € LReg(Er(V)). Then dimpker @ = dimgker a? by Lemma 4.7. Let B
be a basis of ker & and B, a basis of ker a? containing B;. Then B; and B, are
infinite and |B;| = |Bs|. Fix w € B;. We have |B; \ {w}| = |Bi| = |B2|. This
implies that there exists a bijection ¢ from By \ {w} onto Bs. Let B be a basis of
V. For each v € B, we choose v' € va™! and v" € v(a?)~'. Then ByU{v' | v € B}
and By U {v” | v € B} are bases of V. Define § € Lp(V) on BiU{v' | v € B} by
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w u v

1/
0 up v u€B1~{w}
veB

Next, we will show that @ = fa? on By U {v' | v € B}. If u € By \ {w},
then up € By C kera?, so ufa? = (up)a? = 0 = ua. We also have that
(wh)a? = 0a* = 0 = wa and for any v € B, v'a = v = v"a? = (v/)a?. It follows
that o = Ba?. Since (ByU{v' | v € B})S = {wB} U (B; ~ {w})BU ({v | v €
B}B={0}UBU{v" |veE B} D ByU{v" | v € B}, we have that

V3 ={((BiU{v' | ve B})B)
2 (B U{v" |veB})
+5
so (3 is onto. Since 0 # w € ker 3, # is not 1-1. Consequently, § € Er(V)NGgr(V)

and a = fa?. Hence o € LReg(Ep(V) N Gr(V)).
This completes the proof of the corollary. n

Corollary 4.11. RReg(Er(V) N Gp(V)) = 2.

Proof. This can be proved in the same way as the proof of Corollary 3.10 by using
Theorem 4.9 instead of Theorem 3.8. O

Next, recall that

BLp(V,q) ={a € Lp(V) | ais 1-1 and dimg(V/rana) = g},

DBLp(V,q) ={a € Lp(V) | a is onto and dimg ker o = ¢}

where dimp V > ¢ > N,.

Theorem 4.12.

(i) LReg(BLr(V,q)) = @.
(ii) RReg(BLr(V,q)) = BLr(V,q).
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Proof. (i) The proof can be given in the same way as that of Theorem 3.11(i).
(ii) From Theorem 2.8, the proof can be given in the same way as that of

Theorem 3.11(ii). O

Lemma 4.13. DBLg(V,q) is a left simple semigroup.

Proof. Let o« € DBLp(V,q). We will show that DBLp(V,q) € DBLgp(V,q)a.
Let 5 € DBLE(V,q). Then dimgker § = ¢ = dimp ker . Let B; be a basis of
ker § and By a basis of ker . Thus B; and B, are infinite and |B;| = |Bs|. Let
C, D be disjoint subsets of By such that B; = C'U D and |C| = |D| = |B;| = q.
Thus |D| = |Bs|, so there exists a bijection ¢ : D — Bsy. Let B be a basis of V.
For each v € B, we choose v € v37! and v" € va~!. Then B; U {v' | v € B} and
By U{v" | v € B} are bases of V. Define v € Lp(V) on ByU{v' |v € B} by

ueD
vEB

Then we have that

Vy=(B1U{v' |ve B})y
= ((CyU (DU |ve B}y)
= {0} U B, U{v" |v e B})
a

and hence v is onto. By the definition of ~, is a 1-1 linear transfor-

Vb o v/ jven)
mation and (DU {v' | v € B})y = B, U {v" | v € B}, so kery = (C) (Remark
2.9(7)). Since C C By, C is a basis of kery. Hence dimgkery = |C] = ¢, so
v € DBLE(V,q). Next, we claim that § = ya on By U{v' | v € B}. If u € C,
then u € By, so uf = 0 = 0 = (uy)a = wya. If w € D, then u € By, so
uf =0 = (up)a = (uy)a = uya. If v € B, then v/ = v =v"a = (V7)a = v'ya.
These show that 3 = ya on By U {v' | v € B}, so 3 = ya. This implies
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that DBLp(V,q) € DBLp(V,q)a. Thus DBLp(V,q)a = DBLE(V,q) for all
a € DBLr(V,q). By Theorem 2.1(i), DBLg(V,q) is left simple, as desired. [

Theorem 4.14.

(i) LReg(DBLp(V,q)) = DBLgp(V,q).
(i) RReg(DBL#(V.q)) = 2.

Proof. (i) Let « € DBLp(V,q). By Lemma 4.13, DBLg(V,q) is left simple.
By Theorem 2.1(i), DBLg(V,q) = DBLg(V,q)a?. Then a = Ba? for some
B € DBLp(V,q). Thus o € LReg(DBLr(V,q)).

(ii) Suppose that RReg(DBLr(V,q)) # @. Let a € RReg(DBLr(V,q)).
Then o = o3 for some 3 € DBLy(V, q). Since « is onto, we have 1y, = a3. This

implies that « is 1-1, which is contrary to that dimg ker a = q. O

The definition of K Ng(V,q) is recalled as follows:

KNp(V,q) ={a € Lp(V) | ais 1-1 and dimp(V/rana) > ¢}

where dimp V > ¢ > N,.

Theorem 4.15.
(i) LReg(KNp(V,q)) = 2.
(ii) RReg(K'Nr (V. q)) = KNp(V,q).

Proof. (i) The proof of Theorem 3.14(i) shows that (i) holds.

(ii) Let « € KNp(V,q). Then dimp(V/rana) > ¢, so dimp(V/rana) is
infinite. Since a € Mp(V), we have that dimg(V/rana?) = dimp(V/rana) +
dimp(V/ran ) (see p.9), so dimp(V/ran a?) = dimp(V/ran ). Let B be a basis
of V. Since « is a 1-1 linear transformation, we have that Ba and Ba? are bases
of rana and ran o2, respectively. Let B’ and B” be bases of V containing Bo

and Ba?, respectively. Then |B’ \ Ba| = dimp(V/rana) = dimp(V/rana?) =
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|B” \. Ba?|. Since B’ \ Ba is infinite, B’ Ba = C'U D for some C, D C B’ \ Ba
such that |C] = |D| = |B’\ Ba|. But |B”\ Ba?| = |B’'\ Ba|, we have a bijection
¢ from B” \. Ba? onto C. Define 8 € Lp(V) on B” by

ua? v

=
I

ux vy weB
vEB"~Ba?

Since « is 1-1, we have that 3 is well-defined. Note that Ba U C is linearly
independent and B”3 = Ba U C. It follows that 8 € Mp(V) (Remark 2.9(8)).
By the definition of 3, a = %8 on B, so &« = o?8 on V. Since 3 is a 1-1 linear
transformation, we have B”f is a basis of ran 3. Since B”3 = Ba U C, we have
Ba U C'is a basis of ran §. It follows that dimp(V/ran ) = |B’ \ (BaUC)| =
|D| = |B’ \ Ba| = dimp(V/rana) > ¢. This means that § € KNp(V,q) and
a = a?f3. Therefore a € RReg(KNr(V,q)), as desired. O

Finally, recall that

Lrfr(V)={a € Lp(V) | dimpran« is finite}.

Lemma 4.16. For any o, 3 € Lr fr(V),

alB in Lrfr(V) < rana = ran §.

Proof. For any «, 3 € Lrfp(V), if aLfB in Lrfr(V), then we also have aLf in
Lp(V). By Theorem 2.6(i), ran o = ran f3.

Next, we will prove the converse by using the proof of Lemma 2 in [17]. Let
a,B € Lrfr(V), By a basis of kera and B a basis of V containing B;. Then
{va | v € B\ By} is a basis of rana (= ran 3). For each v € B ~\ By, we choose

v' € (va)p~t. Define v € Lp(V) on B by
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If w € By, then ua = 0 = (uy)B. If v € B\ By, then vy = v/ = va. This
shows that a = 7 on B. Moreover, we will prove {¢v' | v € B\ By} is a basis of

ran+y. To verify that {v' | v € B~ By} is linearly independent, let Z a,v' =0

vEB~\B1
where a, € F for all v € B~ B;. Then Z a,(va) = Z a,(v'B) =
veEB~\B vEBN\B;

< Z avv') 6 =0,s0a, =0 for all v € BN\ B;. By the definition of v, we have

vEB\B1
that {v' | v € BN\ By} is a basis of ran . Note that [{v' | v € BN\ B} = |B\ By|.

Since (B~ Bj)a is a basis of rana and |B \ Bi| = [(B \ By)a| (Remark 2.9(9)),
it follows that {v' | v € B ~ By} is finite. Therefore v € Lrfr(V) and o = /3, as

required. A similar argument implies that 5 = Aa for some A € Lr fr(V'). Hence

alBin Lrfr(V). O

Lemma 4.17. For any o, 3 € Lr fr(V),

aRp in Lr fr(V) < ker v = ker 3.

Proof. Let o, f € Lrfp(V) be such that @RS in Lrfr(V). Then aRf5 in Lp(V).
By Theorem 2.6(ii), ker aw = ker f3.

We will prove the converse by using the proof of Lemma 3 in [17]. Let B; be
a basis of ker (= ker ), B a basis of V' containing B;. We know that (B \ By)«
and (B~ B;)f are bases of ran « and ran 3, respectively and dimprana = |[(B ~\
By)a| = |B N\ By| = |(B \ B)3| = dimpran . Let B’ and B” be bases of V
containing (B \ Bj)a and (B \ By)(, respectively. Define v € Lg(V) on B” and
A€ Lp(V) on B’ by

v u v u
v = b and A=

va 0/ ,epup vB 0/ vepn
u€B"'\((B~B1)B) u€B’'\((B\B1)a)

Since kera = ker 3, v and A are well-defined. We also have that o = v and
B =aXon B. Then a = fy and = a) on V. Since o, 8 € Lrfr(V), (B \ By)«
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and (B \ Bjp)f are finite. But rany = ((B \ By)«) and ran A = ((B \ B;)f),
so we have that dimprany = |(B \ B;)a| and dimpran A = [(B \ B;)f|. Hence
v, A € Lrfrp(V). This proves that RS in Lr fr(V). O

Lemma 4.18. For any o € Lrfp(V) and 8 € Lp(V),
ran o« = ran afa < ker a = ker afBa.
In particular, for any o € Lr fr(V'),

ran o« = ran o’ < ker a = ker o/,

Proof. Let a € Lrfp(V) and B € Lp(V). We assume that ran o = ranafa. Let
B be a basis of ker a, By a basis of ker affar containing B; and B a basis of V
containing Bs. Then (B \ Bj)a is a basis of rana, |(B \ By)a| = |B \ By,
(B \ By)afa is a basis of ran afa and |(B ~\ By)afa| = |B N\ By|. Since rana =

ran afa, it follows that

|B \ Bs| = |(B~ Bs2)afa
={(B~ Buyal

= |B N BQ| M |B2 AN Bl|

But dimp ran « is finite, so B\ By is a finite set. This implies that |Bs . Bi| = 0.
Thus By = B,y. Consequently, ker a = (B;) = (Bs) = ker afa.

To show the converse, assume that ker a = ker aBa. Let By be a basis of ker «
(= ker affa). Then (BN By)a is a basis of ran «, (B~ By)afa is a basis of ran affa
and |(B \ By)a| = |B\ By| = |[(B \ By)afa|. Thus dimp ran a = dimp ran afao.
Since dimprana is finite and ranafa is a subspace of ranc, it follows that
ran a = ran afa.

Therefore the lemma is proved. ]
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Theorem 4.19. LReg(Lrfr(V)) ={a € Lrfr(V) | .o € Gr(rana)}
— RReg(Lr f(V)).

Proof. By Lemma 4.16, LReg(Lr fr(V)) = {a € Lrfr(V) | rana = rana?}. By
Lemma 4.17, RReg(Lrfr(V)) = {a € Lrfr(V) | kera = kera?}. By Lemma
4.18, LReg(Lr fr(V)) = RReg(Lr fr(V)).

Next, we will show that LReg(Lr fr(V))={a € Lrfr(V)|a|,... € Gr(rana)}.
If ... € Gr(rana), then rana = (rana)a = rana?, so a € LReg(Lr fp(V)).
Let o € LReg(Lrfr(V)). Then ran o = rana?. Thus (rana)a = rano? = ran «,
ie., a,, . :rana — rana is onto. Let B be a basis of rana. Then (B) =rana =
rana? = (rana)a = (B)a = (Ba). Since (Ba) = rana?, we have that there
exists a basis C' of rana? contained in Ba. Then |B| = |C| < |Bal| < |B|, so
|B| = |C| = |Bal|. Since B is finite and C' C Ba, it follows that Ba = C' which
is a finite basis of ran o®. Then B is linearly independent and va # wa for all
distinct v, w € B. Thus ), : B — Ba is a bijection. This implies that «/,, . is a
1-1 linear transformation from ran« onto (Ba). But rana = rana? = (Ba), so
Qe TAD @ — ran« is an isomorphism. Hence o, € Gr(rana).

The proof is thereby completed. O



CHAPTER V

VARIANTS OF SEMIGROUPS OF
TRANSFORMATIONS OF SETS

In this chapter, the left regular and right regular elements of the variants of
the well-known transformation semigroups 7'(X), P(X) and I(X) on a nonempty

set X and those semigroups in Chapter III are determined.

Assume that X is a nonempty set. We first determine LReg(S(X),6) and
RReg(S(X),0) where S(X) is T(X), P(X) or I(X) and § € S(X).
Theorem 5.1. For any 0 € T(X),

(i) LReg(T(X),0) = {a € T(X) | rana = ran afa};
(ii) RReg(T'(X),0) = {a € T(X) | 7o = Taba}-

Proof. Let 0 € T(X).
(i) Let aw € LReg(T(X),0). Then oo = B0(abcx) for some § € T'(X), so aLaba
in T(X). By Theorem 2.4(i), ran & = ran afa.

For the converse, assume a € T'(X) such that
ran o = ran afa.
Since ran o = ran afa C ran O C ran «, we have that ran o = ran fa. Thus
ran afa = (ran a)fa = (ran fa)fa = ran faba.

It follows that ran o = ranfaba, so aLOaba in T(X) by Theorem 2.4(i). Then
a = fhaba for some B € T(X). This means that o € LReg(7T(X),6).
(ii) If « € RReg(T'(X),0), then a = (aba)05 for some ( € T(X). By Theorem

2.4(i1), To = Taga-
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Conversely, let @ € T(X) be such that 7, = 7Tag9a. By Theorem 2.4(ii),
aRaba in T(X). But R is left compatible,(af)aR(af)aba in T(X), so aRababa
in T(X). Thus a = afabaf for some § € T(X). This implies that o €
RReg(T(X),0). O

Theorem 5.2. For any 0 € P(X),
(i) LReg(P(X),0) ={a € P(X) | rana = ran afa};
(ii) RReg(P(X),0) ={a € P(X) | 7o = Taba}-

Proof. Let 0 € P(X).
(i) Let a € LReg(P(X),0). Then there is § € P(X) such that o = g0(aba).
Thus aLafa in P(X). By Theorem 2.5(i), ran o = ran afa.

For the reverse inclusion, assume a € P(X) such that
ran o« = ran afa.
Then ran o = ran afa C ran fa C ran «, so ran a = ran 6. Thus
ran afa = (ran a N dom fa)fa = (ran o N dom Oar)for = ran fabor.

It follows that ran o = ran fafa. Again by Theorem 2.5(i), aLOafa in P(X), so
there is § € P(X) such that o = f0afa. This implies that o € LReg(P(X),0),
so the result follows.

(ii) It can be proved in the same way as the proof of Theorem 5.1(ii) by using

Theorem 2.5(ii) instead of Theorem 2.4(ii). O

Theorem 5.3. For any 0 € 1(X),
(i) LReg(I(X),0) ={a € I(X) | rana = ranafa};
(ii) RReg(I(X),0) = {a € I(X) | dom a = dom afa}.

Proof. Let 0 € I(X).
(i) By using Theorem 2.7(i) instead of Theorem 2.5(i), the proof is given in
the same way as that of Theorem 5.2(i).
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(ii) If @ € RReg(1(X),0), then a € RReg(P(X),0), so by Theorem 5.2(ii),
Ty = Taga, and hence dom a = dom afa.

For the converse, assume that dom o = dom afa. By Theorem 2.7(ii), aRafa
in I(X). Then (af)aR(af)abo in I(X). These imply that aRafaba in I(X).
Thus a = afabaf for some B € I(X). This means that o € RReg(/(X),0). O

In the remainder, assume that X is infinite. We shall determine LReg(S(X), 0)
and RReg(S(X),0) where S(X) = M(X). M(X)\ G(X), E(X), E(X) \ G(X),
BL(X,q),DBL(X,q), KN(X,q), Trf(X), Prf(X) and Irf(X) where | X| > ¢ >
Ny and 6 € S(X).

Theorem 5.4. The following statements hold for 6 € M(X).

(i) If 0 € G(X), then LReg(M(X),0) = LReg(M(X)).

(ii) If 0 ¢ G(X), then LReg(M(X),0) = @

(iii) If 0 € G(X), then RReg(M(X),0) = RReg(M(X)).

(iv) If 0 ¢ G(X), then RReg(M(X),0)={aeM(X) | | X ~rana|= | X ~ran afa|}.

Proof. Let 0 € M(X).

(i) Assume that § € G(X). Let o« € LReg(M(X),0). Then a = [6(abc) for
some 3 € M(X). Thus 1x = f0af since a is 1-1, so 30a = 6=! € G(X). This
implies that « is onto. Hence av € G(X), so a € LReg(M (X)).

Conversely, let o € LReg(M(X)). By Theorem 3.2, o € G(X), so (faf)~! €
G(X) C M(X). Since a = (6af)'0(aba), we have that o € LReg(M(X),0).

(ii) Assume 0 ¢ G(X). Then 6 is not onto. Suppose that LReg(M(X),0) # @.
Let a € LReg(M(X),0). Then o = 0(abc) for some 3 € M(X), so 1x = 0ab
since « is 1-1. Thus 6 is onto, a contradiction.

(iii) By Theorem 3.4, we have that RReg(M (X)) = {a € M(X) | rana =
X or X N\ ran« is infinite}. Assume § € G(X). Let a € RReg(M(X),6). Then
a = (aba)0p for some f € M(X). Since 658 € M(X), aRaba in M(X). Then
OaROaba in M(X) and thus o € RReg(M(X)). This means that ranfa = X

or X \ ranf« is infinite. Since 6 is onto, ran #a = ran . Therefore rana = X or
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X N rana is infinite. That is, o € RReg(M (X)).

For the reverse inclusion, let @ € RReg(M(X)). Since 6 is onto, ranfa =
ranca. Thus | X N ranfa| = |X \ranal, so aRf« in M(X) by Lemma 3.3. Then
a*Rafa in M(X). Since aRa? in M(X), we have aRafa in M(X). Hence
there exists 3 € M(X) such that a = afaB. Then a = afad(§~13). Since
-5 € M(X), a € RReg(M(X),0).

(iv) Assume 6 ¢ G(X). Then 6 is not onto. Let o € RReg(M(X),#). Then
there exists § € M(X) such that & = (afa)05. Thus aRaba in M (X). That is,
| X N rana| = |X \ranafa| by Lemma 3.3.

Conversely, let o € M(X) be such that | X \ rana| = |X \ ranafal. Then
aRaba in M(X). Thus (ad)aR(af)aba in M(X). It follows that aRabfabo
in M(X). Hence a = afabfap for some § € M(X). Since aff € M(X), a €
RReg(M(X),0). O

Lemma 5.5. For0 € M(X), if 0 ¢ G(X), then RReg(M(X),8) C RReg(M (X)).

Proof. Let 0 € M(X) \ G(X) and @ € RReg(M(X),0). By Theorem 5.4(iv),
|X N rana| = |X N ranafal. We have that ranafa = Xaba C Xba C Xa =
ran « since 6 is not onto and « is 1-1. Then X N\ rana € X \ ranafa. But

| X N rana| = | X \ ran afa|, so we have X ~\ ran« is infinite. By Theorem 3.4,

a € RReg(M(X)). This proves that RReg(M(X),0) C RReg(M(X)). O

Corollary 5.6. For any 0 € M(X) ~ G(X),
(i) LRea(M(X) ~ G(X),0) = &
(ii) RReg(M(X) N G(X),0) ={a € M(X) | X \rana is infinite and

| X N rana| > | X \ranf|}.

Proof. Let 0 € M(X) ~\ G(X).

(i) Since LReg(M(X) \ G(X),0) C LReg(M(X),0), by Theorem 5.4(ii),
LReg(M(X) N\ G(X),0) = 2.

(ii)) Let o € RReg(M(X) ~ G(X),60). Since RReg(M(X) \ G(X),0) C
RReg(M(X),60), « € RReg(M(X),0). By Theorem 5.4(iv), | X ~rana| = | X ~
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ran afa|. We also have that « € RReg(M (X)) by Lemma 5.5. But ran o # X, by
Theorem 3.4, X \ ran « is infinite. Since ran afa C ranfa C rana, X \rana C
X Nranfa C X N ranafa. It follows that | X \ranal = |X \ ranfa|. Conse-

quently,

|X N ranal = |X \ ranfq|
= |X \rano| + |ran o \ ran 6o
= |X \rano| + | Xa ~ X0
=|X Nrana| + |(X ~ X0)q| (since a is 1-1)
= | X Nrana| + | X \ X6)| (since av is 1-1)

= |X Nrano| + | X \ranf|,

which implies that | X ~\ rana| > | X \ ranf)|.

For the reverse inclusion, let a € M(X) be such that X \ rana is infinite
and | X N rana| > |X N ranf|. Since X N rana C X \ ranfa, we have that
X N\ ranfa is also infinite. By Corollary 3.5, o € RReg(M(X) \ G(X)), i.e.,
faR(0a)? in M(X)NG(X), so BaR(fa)? in M(X). By Lemma 3.3, | X \ran fa| =
| X N ran(6a)?| = | X \ ranfafa|. Since ranfafa C ran afa C ranfa, we have
| X Nranfa| < | X Nranafa| < |X \ranfaba| = | X < ranfa|. This implies that
| X \ranfa| = | X \ran afal. Since X \ran « is infinite, | X \ranf| < | X \ran ¢

and « is 1-1, it follows that

|X N ranfa| = |X \rana|+ |rana \ ran fa|
=|X Nrana| + | Xa \ X0o|
= |X Nrano| + [(X \ X6)a|
= |X \rana| + | X \ X0)|
= |X ~Nrana| + | X \ranf|

= |X \rana|.

Hence |X N\ rana| = |X N ranfa| = |X \ranafa|. By Theorem 5.4(iv), o €

RReg(M(X),0). Thus a = (afa)dp for some § € M(X). It follows that o =
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ababff = ab(abab ()05 = (aba)d(ab[05). Since a € M(X)NG(X) and M(X)~
G(X) is an ideal of M(X), we have that o805 € M(X) ~ G(X). Therefore
a € RReg(M(X) N\ G(X),0), as required. O

Theorem 5.7. For any 0 € E(X),

LReg(E(X),0) = {a € E(X) | |va™!| = |z(aba)™| for all v € X}.

Proof. Let 6 € E(X) and a = 6(aba) for some § € E(X). Since 80 € E(X),
alaba in E(X). By Lemma 3.6, |[za™!| = |z(afa) ! for all z € X.

For the converse, we assume that o € E(X) and |za™!| = |z(afa)™!| for all
x € X. By Lemma 3.6, we have aLafa in E(X). Since L is right compatible,
a(fa)Laba(fa) in F(X). Then alLababa in E(X), so a = fababa for some
G € E(X). This means that o € LReg(FE(X), ). O

9

Theorem 5.8. The following statements hold for 6 € E(X).
(i) If 0 € G(X), then RReg(E£(X),0) = RReg(E(X)).
(i) If 0 ¢ G(X), then RReg(E(X),0) = @.

Proof. Let 0 € E(X).

(i) Assume that 0 € G(X). Let a € RReg(F(X), ). Then a = (afa)0j for
some 3 € E(X). Thus 1x = 0aff3 since « is onto. This implies that aff = 67! €
G(X). It follows that a is 1-1, which implies that « € G(X). Consequently,
a € RReg(F(X)).

Conversely, if o € RReg(E(X)), then by Theorem 3.8, a € G(X), so fab €
G(X). Hence (faf)™' € G(X) C E(X) and a = afaf(faf)~!. This means that
a € RReg(E(X),0).

(ii) Assume that a € RReg(E£(X), ). Then oo = (afr)0f for some [ € E(X).
Since « is onto, 1x = 6aff. This implies that 6 is 1-1, so § € G(X). This proves
that if 6 ¢ G(X), then RReg(E(X),0) = @. O
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Corollary 5.9. For any 6 € E(X) \ G(X),

(i) LReg(E(X) N\ G(X),0) = {a€eE(X)\G(X) | |za™!|=|x(aba)™}|
for allz € X}

(ii) RReg(E(X) N G(X),0) = 2.

Proof. Let 0 € E(X) N\ G(X).

(i) Let a € LReg(E(X) \ G(X),0). Then o € LReg(F(X),0). By Theorem
5.7, |lra~ = |z(aba)™t| for all z € X.

For the reverse inclusion, let a € E(X) \ G(X) be such that |za™!| =
|z(afa)!| for all z € X. By Theorem 5.7, a € LReg(E(X),0). Then a =
B0(aba) for some € E(X), so o = fhaba = [0(S0aba)fa = (050a)baba.
Since a € E(X) N\ G(X) and E(X) \ G(X) is an ideal of E(X), we have that
B060a € E(X)~ G(X). This implies that o € LReg(E(X) ~ G(X), ).

(i) Since RReg(E(X) \ G(X),0) € RReg(E£(X),0), by Theorem 5.8(ii), the

result follows. 0

Theorem 5.10. For any 0 € BL(X, q),
(i) LReg(BL(X,q),0) = @;
(ii) RReg(BL(X,q),0) = BL(X,q).

Proof. Let 0 € BL(X,q). Then | X \ranf| =g > X,.

(i) Suppose that there exists o € LReg(BL(X,q),0). Then a = 0(abfa) for
some 3 € BL(X,q). Since ais 1-1, 1x = $0af. Hence 6 is onto, which is contrary
to |X \ranf| = ¢ > Ry. Consequently, LReg(BL(X,q),0) = @.

(ii) Let « € BL(X,q). We know that BL(X,q) is right simple from Theo-
rem 2.2. By Theorem 2.1(ii), BL(X,q) = (afaf)BL(X,q). Then a = ababdf
for some § € BL(X,q). This means that « € RReg(BL(X,q),0). Therefore
RReg(BL(X, q),0) = BL(X,q). O

A dual version of the previous theorem can be shown in a similar manner.
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Theorem 5.11. For any 0 € DBL(X,q),
(i) LReg(DBL(X,q),0) = DBL(X,q);
(ii) RReg(DBL(X,q),0) = @.

Theorem 5.12. For any § € KN (X, q),
() LReg(KN(X,q),0) = &;
(ii)) RReg(KN(X,q),0) ={a € KN(X,q) | |X ~rana| > | X \ranf|}.

Proof. Let § € KN(X,q). Then | X \ranf| > ¢ > ,.

(i) If @« € LReg(KN(X,q),0), then a = p0(aba) for some € KN(X,q),
thus 1x = (0a# since « is 1-1 and hence 6 is onto, a contradiction. Therefore
LReg(KN(X,q),0) = 2.

(ii) Let o € RReg(KN(X,q),0). Since KN(X,q) C M(X) N\ G(X), a €
RReg(M(X) \ G(X),0). By Corollary 5.6(ii), | X \rana| > | X \ran#)|.

For the converse, let @ € KN(X,q) such that |X \ rana| > |X \ ran)|.
By Corollary 5.6(ii), & € RReg(M(X) ~ G(X),0). Then a = (afa)dj for some
B e MX)NGX), soa=alalf = afd(ababp)ip = abdald(abdpif). We will
consider | X \ ran af365|. Since ran af05 C ran 0305, we have that

X~ ran afB08| = |X ~ ran 0805| + | ran 636 ~ ran ad300|
— | X ~ ran0303| + | X0865 ~ Xabpo3|
— | X ~ran0B808] + |(X ~ Xa)0B08| (since 368 is 1-1)
= |X ~ran0B368] + |X ~ Xa| (since 63608 is 1-1)
> X~ Xa|

= |X \rana| > q.

From this, we obtain adp03 € KN(X,q) such that a = afabf(abp05). This
means that @ € RReg(K N (X, q),0), as required. ]

Theorem 5.13. For any 0 € Trf(X),
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LReg(Trf(X),0) ={a e Trf(X)| (fa) € G(ranfa) and

‘ran (2o

ran fo = ran o}

= RReg(Trf(X),0).

Proof. Let 0 € Trf(X) and a € LReg(Trf(X),0). Then a = p6(aba) for
some $ € Trf(X). This means that aLOafa in Trf(X). By Lemma 3.15,
rana = ranfafa. Since a = B0aba, we have fa = 0B0aba = 05(0a)?, so

fa € LReg(Trf(X)). By Theorem 3.18, (f«) € G(ranfa), which implies

‘ran [1e%

that ran fafa = ran . Hence ran Qo = ran a.

Conversely, let a € Trf(X) be such that () € G(ranfa) and ranfa =

lran 6o
ran . Then ranfafa = (ran o)l = ran o = rana. By Lemma 3.15, we have
alBabo in Trf(X), so a = flaba for some § € Trf(X). This means that
a € LReg(Trf(X),0).

Next, we will show that LReg(Trf(X),0) = RReg(Trf(X),0).

Let a« € LReg(Trf(X),0). Then there exists f € Trf(X) such that o =
B0(afa). Thus alaba in Trf(X). By Lemma 3.15, rana = ran afa. Hence
Ta = Tapa by Lemma 3.17. By Lemma 3.16, aRafa in Trf(X), so a = (afa)y
for some v € Trf(X). Therefore & = afay = abf(abay)y = abdab(ayy). This
implies that & € RReg(Tr f(X),0).

For the reverse inclusion, let @ € RReg(Trf(X),0). Then a = (afa)ff for
some 3 € Trf(X), so aRaba in Trf(X). By Lemma 3.16, 7, = Ta9. By Lemma
3.17, rana = ran afa. Thus we have that aLafa in Trf(X) by Lemma 3.15, so
a = yaba for some v € Trf(X). Hence a = yaba = y(yaba)fa = (yya)bfabo.
This means that o € LReg(Trf(X),0).

This completes the proof of the theorem. n

Theorem 5.14. For any 6 € Prf(X),

LReg(Prf(X),0) ={0}U{a € Prf(X) | @ # rana = ran o C dom fv

and (Aa) € G(ranfa)}

‘ran O

= RReg(Prf(X),0).
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Proof. Let 0 € Prf(X). We assume that a € LReg(Prf(X),6). Then there is
B € Prf(X) such that a = p6(aba), so allaba in Prf(X). Thus rana =
ranfafa by Lemma 3.15. Since fa = 080aba, O € LReg(Prf(X)), ie.,
faL(fa)? in Prf(X). By Lemma 3.15, ranfa = ranfafa and hence ran o =
ran . By Theorem 3.20, fov = 0 or @ # ran o = ran fae C dom v and (O«) €

G(ranfa). If 8o = 0, then o = Bfaba = 0.

‘ran O

For the converse, if @ = 0, then we are done. Assume that o € Prf(X) and

@ # rana = ranfa C domfo and (Aa) € G(ranfa). By Theorem 3.20,

Iran 0o
O € LReg(Prf(X)). By Lemma 3.15, ran fafla = ran fa. Since ranfa = ran o,
we have that ranfafa = ran . By Lemma 3.15, aLlafa in Prf(X), so a =
Bhaba for some B € Prf(X). This means that a € LReg(Prf(X),6).

The proof of that LReg(Prf(X),0) = RReg(Prf(X),0) is given in the same
way as the proof of that LReg(Trf(X),6) = RReg(Trf(X),0) by using Lemma
3.19 instead of Lemma 3.16.

Therefore the theorem is obtained. O

Theorem 5.15. For any 0 € Irf(X),
(i) LReg(Irf(X),0) = {a € Irf(X) | domfa = ran o = ran a};
(ii)) RReg(Irf(X),0) ={a € Irf(X) | dom o = dom af = ran ab}.

Proof. Let 6 € Ir f(X).

(i) Let @ € LReg(Irf(X),0). Then a = p0(aba) where 5 € Irf(X), so
alfaba in Irf(X). By Lemma 3.15, rana = ranfafa. Since fa = 650aba,
OaLOaba in Irf(X), so ranfa = ranfaba. Moreover, o € LReg(Irf(X)). By
Theorem 3.21, dom fa = ran fa. It follows that dom fa = ran 6 = ran faba =
ran a.

For the reverse inclusion, let o € Irf(X) be such that domfa = ranfa =
ran . By Theorem 3.21, v € LReg(Irf(X)), i.e., OaLOaba in Irf(X). We also
have that aLf« in Irf(X) by Lemma 3.15. Then aL0afa in Irf(X). Therefore
a = ffaba for some [ € Irf(X). This implies that o € LReg(Irf(X),0).

(i) Let a = ababd3 where 5 € Irf(X). Then aRafaf in Irf(X). By Lemma
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3.22, doma = domafall. We also have that af = afafB0. This implies that
afl € RReg(Irf(X)). By Lemma 3.22 and Theorem 3.23, we have respectively
that

dom af = dom abaf and dom af = ran .

It follows that dom a = dom afaf) = dom af) = ran af.

For the converse, let a € Irf(X) be such that doma = domaf = ranad.
By Lemma 3.22 and Theorem 3.23, a/Raf) and adRabfab in Irf(X), respectively.
Then aRafal in Irf(X). Thus a = afalf for some 5 € Irf(X). This means
that o € RReg(Irf(X),0). O



CHAPTER VI

VARIANTS OF SEMIGROUPS OF LINEAR
TRANSFORMATIONS

In the last chapter, the left regular and right regular elements of the variants
of the semigroup Lg(V) and those semigroups in Chapter IV are characterized.
Comparing with the results in Chapter V, we obtain the results in this chapter

accordingly.

Throughout this chapter, let V' be a vector space over a field F.

Theorem 6.1. For any 6 € Lp(V),
(i) LReg(Lp(V),0) = {a € Lp(V) | rana = ran afa};
(ii)) RReg(Lp(V),0) = {a € Lp(V) | ker e = ker afla}.

Proof. Let 0 € Lp(V).

(i) Let @ € LReg(Lp(V),0). Then a = p(aba) for some § € Lr(V). Thus
alaoba in Lr(V). By Theorem 2.6(i), ran oo = ran afa.

For the converse, let a« € Lp(V) be such that rana = ranafa. By Theo-
rem 2.6(i), aLaba in Lp(V). Then a(fa)Laba(fa) in Lp(V), so alababa in
Lp(V). Therefore & = fabfaba for some § € Lp(V). This means that a €
LReg(Lr(V),0).

(ii) Let a € RReg(Lp(V),0). Then a = (aba)0 for some 5 € Lp(V). Thus
aRaba in Lp(V). By Theorem 2.6(ii), ker v = ker afav.

Conversely, let @ € Lp(V') be such that ker « = ker afa. By Theorem 2.6(ii),
aRaba in Lp(V). Thus (af)aR(af)aba in Lp(V). Then aRababa in Lp(V),
so a = afabaf for some § € Lr(V). This implies that « € RReg(Lr(V),0). O
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From now on, we assume that V' is infinite-dimensional. We will characterize
LReg(Sr(V),0) and RReg(Sr(V),0) where Sp(V) = Mp(V), Mp(V) ~ Gp(V),
Ep(V), Ep(V)\NGr(V), BLr(V,q), DBLr(V,q), KNr(V,q) and Lr fr(V') where
dimpV > ¢ >R and 0 € Sp(V).

Theorem 6.2. The following statements hold for 6 € Mp(V).

(i) If 0 € Gp(V), then LReg(Mg(V),0) = LReg(Mp(V)).

(i) If 6 ¢ Gp(V), then LReg(Mp(V), ) =

(iii) If 0 € Gp(V), then RReg(Mp(V),0) = RReg(Mp(V)).

(iv) If 0 ¢ Gp(V), then RReg(Mp(V),0) = {a € Mp(V) | dimp(V/rana) =
dimp(V/ranaba)}.

Proof. The proof is given in the same way as that of Theorem 5.4 by using Theo-
rem 4.2, Theorem 4.4 and Lemma 4.3 instead of Theorem 3.2, Theorem 3.4 and

Lemma 3.3, respectively. O

Lemma 6.3. If 0 € Mp(V)~ Gr(V), then RReg(Mp(V),0) C RReg(Mp(V)).

Proof. Let 6 € Mp(V) N~ Gp(V) and o« € RReg(Mp(V),0). By Theorem 6.2(iv),
dimp(V/rana) = dimp(V/ran afa). Since € is not onto and « is 1-1, we have
Vaba C Vla C Va, so ranafa C rana. Suppose that dimg(V/ran«) is finite.
Let By be a basis of ran afa, B, a basis of ran a containing By and B a basis of

V' containing Bs. Then
|B N\ Bs| = dimp(V/rana)
= dimp(V/ran afa)
= |B \ By
= |B~\ By| + |B2 \ By.

Since B N\ By is finite, we have |By \ Bj| = 0, so By = By. This contradicts the

fact that ranafa C rana. Hence dimp(V/ran«) is infinite. By Theorem 4.4,

a € RReg(Mp(V)). O
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Corollary 6.4. For any 6 € Mp(V) \ Gp(V),

(i) LReg(Mp(V) N\ Gr(V),0) = 2;

(ii) RReg(Mp(V) N Gp(V),0) = {a € Mp(V) | dimp(V/ran«) is infinite and
dimp(V/rana) > dimp(V/rané)}.

Proof. Let 0 € Mp(V) N Ggr(V).

(i) Since LReg(Mp(V) ~ Gp(V),0) € LReg(Mp(V),0), by Theorem 6.2(ii),
we have that LReg(Mp(V) N\ Gr(V),0) = @.

(ii) Let & € RReg(Mp(V)NGp(V),0). Then a € RReg(Mp(V), ). By Lemma
6.3, @ € RReg(Mp(V')). Since « is not onto, by Theorem 4.4, dimg(V/ran «)
is infinite. Since a € RReg(Mp(V),0), by Theorem 6.2(iv), dimp(V/rana) =
dimp(V/ran afa). Since a, 0 € Mp(V), it follows that

dimp(V/rana) = dimp(V/ ran afa)

(

= dimp(V/rana) + dimg(V/ ran fa) (see p.9)

= dimp(V/ran o) + dimp(V/ ran6) 4+ dimp(V/ ran «)
(

= dimp(V/ran o) + dimp(V/ran6).

This implies that dimp(V/ranf) < dimg(V/ran ).
For the reverse inclusion, let « € Mp(V') be such that dimp(V/ ran «) is infinite

and dimg(V/ran«) > dimg(V/ran@). Since a, 0 € Mp(V'), we have

dimp(V/ran afa) = dimp(V/rana) + dimp(V/ran ) + dimp(V/ ran «)
= dimp(V/rana) + dimp(V/ ran «)

= dimp(V/rana)

By Theorem 6.2(iv), @ € RReg(Mgr(V),0). Then a = (aba)0f for some [ €
Mp(V). Thus a = abfalp = ab(ababB)i5 = (aba)f(abf05). Since a €
Mp(V) N Gp(V) and Mp(V) N~ Gg(V) is an ideal of Mp(V), we have af305 €
Mp(V) N Gp(V). Hence a € RReg(Mp(V) N Gr(V),0), as desired. O
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Theorem 6.5. For any 0 € Ep(V),
LReg(Er(V),0) = {a € Er(V) | dimp ker a = dimp ker afa}.
In particular, if 6 € Gp(V), then

LReg(Er(V),0) = {a € Er(V) | kerad = {0} or dimp ker af is infinite}.

Proof. Let 0 € Ep(V) and a € LReg(Er(V),0). Then a = B0(aba) for some
B € Ep(V), so alaba in Ep(V). By Lemma 4.7, dimg ker o = dimp ker afa.

Conversely, we assume that a € Fp(V) and dimp ker « = dimp ker afa. Then
alabain Ep(V) by Lemma 4.7, so there exists § € Ep(V) such that a« = faba =
B(Baba)fa = (Bfa)faba. This implies that o € LReg(Er(V),0).

Next, assume that 0 € Gp(V).

Let o € LReg(Er(V),0). By Lemma 4.7, aLaba in Ep(V). Thus adLabab
in Ep(V), i.e., @ € LReg(Er(V)). By Theorem 4.8, ker af = {0} or dimp ker af
is infinite.

For the converse, let o € Ep(V) be such that keraf = {0} or dimp ker af
is infinite. By Theorem 4.8, o € LReg(Er(V)). Thus af = fabab for some
B € Ep(V). Since 6 € Gp(V), a = (a0)0~" = (Babah)f™! = Baba, so a =
Baba = B(Baba)fa = (BBa)faba. This implies that a € LReg(Er(V),0), as
desired.

This completes the proof of the theorem. n

Theorem 6.6. The following statements hold for 6 € Er(V).
(i) If 0 € Gp(V), then RReg(Er(V),0) = RReg(Er(V)).
(ii) If 0 ¢ Gp(V), then RReg(Er(V),0) = @.

Proof. By using Theorem 4.9 instead of Theorem 3.8, we can prove the theorem

in the same way as the proof of Theorem 5.8. m

Corollary 6.7. For any 6 € Er(V) ~ Gpr(V),
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(i) LReg(Er(V) N Gp(V),0) = {a € Er(V) | dimp ker a = dimp ker afa};
(i) RReg(Er(V) ~ Gp(V),0) = 2.

Proof. Let 0 € Ep(V) N Gg(V).

(i) If « € LReg(Er(V)NGr(V),0), then a € LReg(Er(V),0), so dimp ker a =
dimp ker afa by Theorem 6.5.

Conversely, let a € Ep(V) ~ Gg(V) be such that dimp ker & = dimp ker afa.
By Theorem 6.5, a € LReg(Er(V),0). Thus there is § € Ep(V) such that
a = B0(aba), so a = 0(Baba)fa = (50F0a)baba. Since a € Ep(V) \ Gp(V)
and Erp(V) N~ Gp(V) is an ideal of Er(V), we have 50680a € Ep(V) ~ Gp(V).
Therefore the desired result follows.

(ii) Since RReg(Er(V) ~ Gp(V),0) € RReg(Er(V),0) and 6 ¢ Gp(V), by
Theorem 6.6(ii), we have RReg(Er(V) N\ Gr(V),0) = @. O

Theorem 6.8. For any 0 € (BLr(V,q),0),
(i) LReg(BLr(V.q),0) = ;

Proof. We can provide the proof in the same way as that of Theorem 5.10 by
using Theorem 2.8 instead of Theorem 2.2. O]

A dual version of the previous theorem can be shown in a similar manner.

Theorem 6.9. For any 6 € DBLp(V, q),
(i) LReg(DBLr(V.q),0) = DBLp(V,q);
(ii) RReg(DBLgr(V,q),0) = @.

Theorem 6.10. For any 0 € KNp(V,q),
(i) LReg(KNr(V,q),0) = &;
(ii)) RReg(KNp(V,q),0) ={a € KNp(V,q) | dimp(V/ran«) > dimg(V/ran0)}.
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Proof. Let 6 € KNp(V,q).

(i) Since LReg(KNp(V,q),0) C LReg(KN(V,q),0), by Theorem 5.12(i), the
result follows.

(ii) Let @ € RReg(KNg(V,q),0). Since KNp(V,q) € Mp(V)~ Gr(V), by
Corollary 6.4(ii), dimp(V/ran o) > dimp(V/ran6).

Conversely, let &« € KNg(V, ¢) be such that dimp(V/ran«) > dimg(V/ran).
By Corollary 6.4(ii), « € RReg(Mp(V)\Gr(V)) since dimp(V/rana) > ¢q. Then
a = (aba)dp for some € Mp(V)NGp(V). Thus a = afabdf = ab(abab3)05 =
abal(affB03). Since «, 0, € Mp(V'), we have that

dimp(V/ran afp03) = dimp(V/ran ) + dimp(V/ ran 6563)
> dimp(V/ ran «)

> q,

so adplp € KNp(V,q). Hence a € RReg(K Np(V, q),0), as desired.
Therefore the result follows. O]

Theorem 6.11. For any 0 € Lrfp(V),

LReg(Lrfr(V),0) = {a € Lrfr(V) | (6a) € Gp(ranfa) and

|ran ("

ran o = rana}

= RReg(Lrfr(V),0).

Proof. Let 0 € Lrfr(V) and o € LReg(Lrfr(V),0). Then there is 5 € Lrfr(V)
such that a = (6(afa) for some § € Lrfp(V). Thus alaba in Lrfr(V). By
Lemma 4.16, rana = ranafa. Thus rana = ranafla C ranfa C rana, so
ranfa = rana. Since a = B0aba, we have fa = 0B0aba = (06)(0a)?, so
9o € LReg(Lr fr(V')). By Theorem 4.19, (fa),

For the converse, let o € Lr fr(V) be such that (fa),

€ Gp(ranfa).

ran Qo

€ Gp(ranfa) and

ran Qo

ran oo = ran . Then ran fafa = (ranfa)fa = ran fa = ran o. By Lemma 4.16,

alfaba in Lrfp(V). This implies that « € LReg(Lrfr(V),0), as required.
Finally, we will show that LReg(Lr fr(V),0) = RReg(Lrfr(V),0).
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Let a € LReg(Lrfr(V),0). Then a = p0(aba) for some 5 € Lrfp(V).
Thus aLaba in Lrfp(V). By Lemma 4.16, rana = ran afa. By Lemma 4.18,
kera = kerafa. By Lemma 4.17, aRafa in Lrfr(V), so a = aflary for some
v € Lrfr(V). It follows that a = afay = af(abay)y = abab(ayy). This implies
that o € RReg(Lrfr(V),0).

Conversely, let o € RReg(Lrfr(V),0). Then there exists 8 € Lrfr(V) such
that a = (afa)0f, so aRaba in Lrfr(V). By Lemma 4.17, ker @ = ker afa. By
Lemma 4.18, ran @ = ran afa. By Lemma 4.16, aLabf« in Lr fr(V'). Hence there
exists v € Lrfr(V) such that & = yaba. Therefore o = yaba = v(yaba)fa =
(yya)faba. This shows that o € LReg(Lrfr(V),0). Thus LReg(Lrfr(V),0) =
RReg(Lrfr(V),0).

Therefore the theorem is proved. n
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