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CHAPTER 1

INTRODUCTION

The ultimate goal of communication systems is to transmit information from
the information source to the destination without any errors like noise, bandwidth,
attenuation, limitations, inference etc., which are introduced in the channel. One
of the ways of detecting and correcting these errors over a noisy communication
channel is by applying the art of Error Correcting Codes which were investigated
by R. W. Hamming at Bell Laboratories in 1947.

In the early history of the art of Error Correcting Codes, codes were usually
taken over finite fields. In the last two decades, an interest has been shown in linear
codes over rings and the so-called Gray maps that mapped these codes into codes
over finite fields. In an important work [21], Calderbank, Sloane et al. showed
that the Kerdock codes, the Preparata codes and Delsart-Goethals codes can be
obtained through the Gray images of linear codes over Z,. Later on, algebraic
structures and properties of codes over Fo+ulfy, Z,m , Galois rings and generalized
rings in notion of finite chain rings have been established in [17] [14], [18], [28§],
[34], [35], and [37]. In particular, successful applications of modular lattices using
codes over a finite chain ring F,+ulF, [4] and constructions of good sequences from
polynomial residue class rings [36] have motivated the study of constacyclic codes
over a special family of finite chain rings of the form Fym + uFym + -+ + u*'Fym
(see, for examples, [3], [6], [15], [16], [23] and [30]).

Cyclic codes, negacyclic codes and constacyclic codes form important classes

of linear codes due to their rich algebraic structure. Classically, polynomial rings



over finite fields or over finite rings and their ideals are key to determining the
algebraic structures of these codes (e.g., [22], [26] and [27]). In [7], skew (non-
commutative) polynomial rings have been used to describe the structure of linear
codes closed under a skew-cyclic shift, namely, skew-cyclic codes. Later on, in
[10], more properties and good examples of such codes have been established.
Recently, in [8], that approach has been extended to codes over Galois rings.

Motivated by these works, we generalize the concept of skew-constacyclic codes
to over Rym ¢y := Fpm +uFym +- - -4u"'Fpm , the finite chain ring of characteristic
p, nilpotency index e and residue field F,~. Some algebraic tools and techniques
are developed. The structure and properties of free skew-constacyclic codes with
respect to a unit A\ are studied. In particular, when A?> = 1, the structures of
their Euclidean and Hermitian dual codes are determined. Moreover, necessary
and sufficient conditions for such codes to be Euclidean and Hermitian self-dual
are also given. When the nilpotency index of rings is 2, the structure of all
skew-constacyclic codes is completely determined over Rym oy 1= Fym + ulfpm.
This allows us to express generators of Euclidean and Hermitian dual codes of
skew-cyclic and skew-negacyclic codes in terms of the generators of the original
codes.

Codes over finite rings are linked to codes over finite fields using the Gray maps
defined in different ways. The classical Gray map over Z, is first generalized to
finite chain rings in [19]. Qian, Zhang and Zhu have characterized the Gray
images of (1 + u)-constacyclic and cyclic codes over the ring R2) = Fa + ulF,
in [30] and some constacyclic codes over Rs3 = Fa + uFy + v°F, in [31]. In
[3], Amarra and Nemenzo have generalized the results of [30] over Rm o) =
Fpm + uF,m . In [11], Congellenmis have introduced (1 — u~!)-constacyclic codes

over Ry = Fy + uFy + - - - 4+ u°"'Fy and generalized the results of [30] and [31].



In this work, we generalize these concepts to the case over Rm ). We focus on
(1 — u*1)-constacyclic, cyclic and (1 + u®!)-constacyclic codes over this ring
and characterize the structure of the Gray images of such codes. Finally, we give
descriptions concerning the Gray images of some skew-constacyclic codes.

In Chapter II, some useful definitions and properties concerning finite chain
rings, skew polynomials and standard terminologies used for error correcting codes
are recalled. The definition and some basic properties of a skew-constacyclic code
are introduced over Rym c).

In Chapter III, we determine necessary and sufficient conditions for skew-
constacyclic codes over R,m ) to be free. Based on these conditions, the algebraic
structure and some properties of free skew-constacyclic codes over this ring are
established. In many cases, the structure of the Euclidean and Hermitian dual
codes of free skew-constacyclic codes are given. Necessary and sufficient conditions
for such codes to be Euclidean and Hermitian self-dual are determined as well.

In Chapter IV, we restrict our study to the case over Rym 2y := Fym+ulf,m . We
characterize the structure of all skew-constacyclic codes over this ring. Moreover,
the structures of Euclidean and Hermitian dual codes of skew-cyclic and skew-
negacyclic codes are determined. Based on this characterization, an illustration
skew cyclic codes of length 2 over F3 + uF3 and their duals is also provided

Finally, in Chapter V, the Gray map is introduced for R,m ) to link codes over
this ring and its residue field. We prove that the Gray image of an (1 — u®™')-
constacyclic code over R,m ) is a distance-invariant quasi-cyclic code over its
residue field. When the length n of codes is not divisible by p, the Gray images
of a cyclic code and an (1 + u¢~!)-constacyclic code are permutatively equivalent
to quasi-cyclic codes over its residue field. Lastly, we give descriptions concerning

the Gray images of some skew-constacyclic codes over this ring.



CHAPTER II

PRELIMINARIES

In this chapter, we recall some useful definitions and properties concerning
finite chain rings, skew polynomials and classical Error Correcting Codes. First,
some algebraic properties of finite chain rings of prime characteristic are cursorily
given in Section 2.1. In Section 2.2, some useful results concerning skew poly-
nomials over such rings are derived. Finally, the standard terminologies used for
error correcting codes are recalled and the definition and some basic properties of

a skew-constacyclic code are established over these rings in Section 2.3.

2.1 Finite Chain Rings

A finite commutative ring with identity 1 # 0 is called a finite chain ring if
its ideals are linearly ordered by inclusion. It is known that every ideal of a finite
chain ring is principal and its maximal ideal is unique (see [28]). Let R denote
a finite chain ring and v a generator of its maximal ideal. The the residue field
R/(v) is isomorphic to F,m, for some prime number p and positive integer m.

With these notations, the ideals of R form the following chain

ROM20) 220720 =(0).

The integer e is called the nilpotency indexr of R. A finite chain ring R with

¢ and its characteristic

nilpotency index e and residue field F,» has cardinality p™
is a power of p ([17, Proposition 2.2]). Further details concerning finite chain rings

can be found in [5], [12], [13], [28] and [37].



In this work, we focus on the case where the characteristic of R is prime. In
this case, finite chain rings of the certain prime characteristic, nilpotency index
and residue field are unique up to isomorphism. We denote by F,m[u] the ring of

polynomials over F,= in an indeterminate .

Lemma 2.1.1 ([13, Lemma 1}). Given a prime number p, and positive integers m
and e, Fym[u]/(u®) is the only finite chain ring of characteristic p with nilpotency

index e and residue field Fym .

For simplicity, the ideal notation will be dropped and the ring Fym [u]/(u¢) will

be isomorphically expressed as

e—1

1=0

where the addition and multiplication are the usual addition and multiplication
of polynomials in F,m[u] together with the rule u® = 0, and simply denoted
by Rme. We note that the element u is a generator of the maximal ideal
(u) = uFpm + -+ +u"'Fym. The ideals of R(ym ) form the chain

Rpme) 2 (u) = uFpm + *Fpm + - + u ' Fym

D (u?) = uFpym + -+ u Fpym

Note that when e = 1, this ring is the finite field Fym .

Example 2.1.2. We establish here some examples of rings R,m .y which play an

important role in later chapters.

i) For p =2,m =1 and e = 2, the addition and multiplication tables on the

ring Rz = Fo +ulFy = {0,1,u,1 4+ u} are as follows:



+ 0 1 U 14+u . 0 1 u | 1+u
0 0 1 u 1+u 0 0 0 0 0
1 1 0 1+u U 1 0 1 U 1+u
U u 14w 0 1 U 0 u 0 u
l+u | 14+u U 1 0 1+u 0 1+u| u 1

Table 2.1: The ring R(22)
ii) For p=3,m =1 and e = 2,

R(372) = F3 + UF3 = {07 1727u7 UZv 1+ u, 1+ U2, 2+ u, 24 U2}

In [2], the structure of the automorphism group Aut(R(mc)) of Rym ) has

been characterized. For § € Aut(Fym), 8 € Fym and w € Rym ), let
0,50 1 Ripm.e) = Ripmye)

be the automorphism defined by

e—1 e—1
@975711,(2 au') = Z u' Bw'é(a;).
i=0 =0

Proposition 2.1.3 ([2, Proposition 1]). Aut(Rpm ) = {Oppw | 0 € Aut(Fpm),
p €l andw € 1+ uFpm +---+ u*Fym}, where Frm denotes the group of

units m Fym .

It is easy to see that the automorphisms Oy, g, », and Og, g, w, of Rm ) are

equal if and only if 0, = 0y, 81 = 3> and w; = wy mod u¢~!. Then

’AUt(R(pmﬁ))‘ = | AUt(Fpm)HF;mHl + ulFpm + -+ + ue_lem|/|Fpm’

— m(pm o 1)p(672)m,

and hence the next corollary follows.



Corollary 2.1.4. Aut(Rm.)) is non-trivial if an only if m > 2 or p is odd or

e>3.

When e = 2, automorphisms Oy g, and Oy g1 are equal, for all § € Aut(F,m),
B € Fym and w € 14 ulym. For simplicity, we will drop w. Then Aut(Rm 2)) =

{@9”3 ‘ 0 e Aut(]Fpm) and (3 € F;m}
Example 2.1.5. i) The automorphism group of Ry ) is trivial.

ii) The ring R32) is the smallest finite chain ring (which is not a field) having

non-trivial automorphism group Aut(Rs2)) = {Oiq,1, a2}, where
Oia1(a + ub) = a + ub and Oy 2(a + ub) = a + u2b,
for all a +ub € R3p).

If © is an automorphism of R,m ) extended from an automorphism 6 of Fm,

then we have

0(r) = O(r) for all r € Rpm ¢y,

where ~: R(ym ¢y — Fpm is the canonical reduction modulo u.

2.2 Skew Polynomial Rings over R~

In [7], 8], [10] and [28], results concerning skew polynomial rings over finite
fields and over Galois rings have been studied. Applying the ideas in these refer-
ences, the following results over R(,m ) are given as follows.

Given an automorphism © of Rym ¢, the set Rm ¢)[z; 0] = {ag+a1x+-- -+
anx™ | a; € Rgm,ey and n € Np} of formal polynomials is a ring under the usual
addition of polynomials and the multiplication is given by the rule xa = O(a)x.

The multiplication is extended to all elements in R,m ¢)[x; O] by associativity and



distributivity. The ring Rm ¢)[z; O] is called a skew polynomial ring over Rm )
and an element in Rym o)[z; O] is called a skew polynomial. It is easily seen that
the ring R(ym ¢)[x; O] is non-commutative unless © is the identity automorphism
on Ryme).

In addition, assume that © is extended from an automorphism 6 of Fym.
Based on the canonical reduction modulo u, ~: Rm.e — Fpm, a natural ring

epimorphism extension ~: Rym ¢)[2; O] = Fpm[2; 0] is defined by

ro + 1T 4 rpx” = g 4 et

In other words, for each f(x) € Rmey[x;0], f(x) denotes the componentwise

reduction modulo u of f(x). Since every skew polynomial in R,m ¢)[z; ©] can be
e—1

uniquely viewed as Z u'fi(x), where fi(x) € Fpm[z;0] for all 0 < i < e, we have
=0

e—1
> filz) = folx) € Fym[a;6].
i=0
The ring R(m ) [r; ©] may not be a unique factorization ring. Moreover, for
a reducible skew polynomial in Rm ¢ [x; O], the degrees of its irreducible factors

are not unique up to permutation as the next example shown.

Example 2.2.1. Refer to the automorphism ©iq2 of R(32) in Example 2.1.5.

The following are two irreducible factorizations of 2% — 1 in R 32)[x; Ojq 2]
2 —1=(z+132+2)>%= (2% +ur +2)°

The skew polynomial ring Rym ¢ [z; O] is neither left nor right Euclidean.
However, left and right divisions can be defined in the case where the leading
coefficient of the divisor is a unit in Rym ). Let f(z) = ag+a1x+---+a,2" and
g(x) = by + b1z + - - -+ bsx® be skew polynomials such that b is a unit in Rm ).
The right division of f(x) by g(x) is defined by reducing literately degree of f(x)

as follows:



If »r < s, then
f(z) = 0g(z) + f(x).

Suppose that r > s. First, note that the degree of
f(x) = a, 0" (b; )a"g(x)

is less than the degree of f(x). Then iterating the above procedure by subtracting
further left multiples of g(z) from the result until the degree is less than the degree

of g(x), we obtain skew polynomials ¢(z) and r(x) such that

f(z) = q(x)g(x) + r(z) with deg(r(z)) < deg(g(x)) or r(x) = 0.

Obviously, ¢(x) and r(z) are unique and they are called the right quotient and
right remainder, respectively. The above algorithm is called the right division
algorithm in Rm ) [x; ©)].

If r(z) = 0, we say that g(z) is a right divisor of f(x). In this case, denote

by % the right quotient ¢(x) of f(z) by g(x). This implies
@,
o) = L gt 2:2.1)

Similarly, the left division algorithm in Rm ¢ [x; ©] can be defined using the

fact that the degree of
f(@) = g(2)0~"(a,b;")2"*
is less than the degree of f(z).
For a skew polynomial f(x) in Rm ¢)[z; O], let (f(x)) denote the left ideal of

R(pm e)[x; O] generated by f(x). Note that (f(x)) does not need to be two-sided.

A sufficient condition for (f(z)) to be two-sided is given as follows:

Proposition 2.2.2. If f(z) = z'g(x) where g(x) is central and t € Ny, then

(f(x)) is a principal two-sided ideal in Rym o |x; O].
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n

Proof. Since g(x) is central, for a skew polynomial Zaixi in Rmelz; O], we

i=0

have (Z aixi) (ztg(x)) = 2 Z O (a;)x'g(x) = (2'g(x)) Z O “(a;)x". Hence,
i=0 i=0 i=0

the result follows. O

Corollary 2.2.3. If f(x) is a monic central skew polynomial of degree n, then

the skew polynomaials of degree less than n are canonical representatives of the

elements in Rpm o)z, O]/ (f(x)).

Proof. By Proposition 2.2.2, (f(x)) is a two-sided ideal and hence the quotient
Rpm ey, ©]/(f(x)) is meaningful. Therefore, the desired result follows from the

right division algorithm. [

Proposition 2.2.4. Let n be a positive integer and A a unil in Rym ). Then

the following statements are equivalent.

a) x" — X is central in Rm o[z, O].

b) (z™ — \) is two-sided.

¢) n is a multiple of the order of © and X is fixed by ©.

Proof. a) = b) follows directly from Proposition 2.2.2.

Next, we prove b) = c). Assume that (2" — \) is two-sided. Let r € Rm c).
Then ra™ —rX =r(a" — X) = (2" — A\)s = ©"(s)z"™ — s\ for some s € Rpm ).
Comparing the coefficients, we have A = sA. As A is a unit, it follows that
r = s, and hence rz™ — r\ = ©"(r)z™ — rA. Thus, n is a multiple of the order
of ©. Next, we observe that "™ — O(\)z = z(z" — \) = (2" — N)(ax +b) =
O"(a)z"t + ©"(b)z" — aAx — bA, for some a and b in Rym ). Then 0"(a) =1
and ©"(b) = 0. As © is an automorphism, it follows that « =1 and b = 0, and

hence "t — O(\)z = 2"t — A\z. Therefore, A is fixed by ©.
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Finally, we prove ¢) = a). Assume that n is a multiple of the order of © and
A is fixed by ©. Then z(z" — \) = 2" — O(\)x = 2" — Az = (2™ — \)z and
(2" =Xt = O™ (t)a" —tA = ta" —tA = t(z" — ), for all t € R(ym ). Consequently,

x" — X commutes with any skew polynomial in Rm ¢)[z; ©]. ]

Proposition 2.2.5. Let h(z), g(z) € Rpme)[2;0]. If h(x)g(x) is a monic central

skew polynomial, then h(x)g(x) = g(x)h(z). In particular, if g(x) is a right

divisor of a central skew polynomial f(x), then g(x) and the right quotient %
commute, 1.e.,
f@) _ gy = L)
o(o) g = @) = St (222)

Proof. Assume that h(z)g(z) is monic and central. Then the leading coefficient

of g(z) and h(z) are units. Since h(z)g(x) is central, we have

h(z)(h(z)g(x))

!
=
&
Y
=
=
=
!
=
=
o
=
=
=

Thus, h(z)(h(z)g(z) —g(z)h(x)) = 0. As the leading coefficient of h(z) is a unit,

h(x) is not a zero divisor. Hence, h(x)g(x) = g(x)h(z) as desired. O

The later study of dualities of codes requires the map defined in Proposition
2.2.7 which links between R ym o) [x; ©] and its right localization. First, we ensure
that the right localization of Rm ¢)[x; ©] exists. In the light of Theorem 2 of [33],
necessary and sufficient conditions for R,m ¢)[z; ©] to have the right localization

are given as follows.

Theorem 2.2.6 ([33]). Let S = {2’ | i € N}. Then Rm[z; 0] has the right

localization at S if and only if both of the following conditions hold.

i) For all 2 € S and a(z) € Rym olx; O], there exist 27 € S and b(z) €

Rpm ey[2; O] such that a(x)z’ = 27b(x).
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ii) Given a(z) € R[z;0] and z' € S, if x'a(x) = 0, then there exists 27 € S

such that a(z)z? = 0.

Condition ) holds because the multiplication rule allows the shifting of powers of
x from left to right by changing the coefficients. Since z° is never a left zero divisor,
a(x) in 7) must be zero and hence i) follows. Then, by Theorem 2.2.6, the right
localization R ym ¢)[x; ©]S™! of Ripm e [z; 0] at S exists. Hence, az™' = 27'0(a)
where 7! is the inverse of x in this right localization.

The following map is key to determining the structure of dual codes.

Proposition 2.2.7. Let ¢ : Rym o) [2; 0] = Rpm o[2;O]S™ be defined by

t t
go(z a;x") = Z r”a;.
i=0 i=0

Then ¢ is a ring anti-monomorphism.

Proof. Clearly, ¢ is an injection. Let p(x) = Zaixi and q(z) = Zbixi be skew
i=0 i—

polynomials in Rm ¢ [x; ©]. Then ¢(p(x) + q_(x)) = p(p(x)) + ¢ q(()x)) and

e(p(x)q(z)) = ¢ (Z( > ai@i(bj))xt)

=0 i+j=t
r+s

=Y () oY)
=0 it+j=t
r+s

= Z Z 774,09 (b))
t=0 i+j=t
r+s

= Z Z x7bja ",
t=0 i+j=t

= Z xIb; Z z”'a; = (q())p(p()).

Hence, ¢ is a ring anti-monomorphism. O
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2.3 Classical Error Correcting Codes and Codes over R, )

Given a finite set A, a code of length n over A is a nonempty subset C of
A". The Hamming distance dgam(uw,v) between w and v in A" is defined to be
the number of entries which w and v differ. The minimum Hamming distance of

a code C, denoted by dgam(C), is defined by
dpam(C) = min{dgom(u,v) | u,v € C,u # v}.

A code C' is said to be t— error-correcting if it is able to correct t or fewer
errors. The minimum Hamming distance of a code plays very important role for

its error-correcting capability.
Theorem 2.3.1. A code C' is t-error-correcting if and only if dgem(C) > 2t+1.

A rich algebraic structure of codes leads to efficiency encoding and decoding
procedures. In order to study codes with more algebraic structure, A is assumed
to be a finite field or a finite ring. A code C' over the finite field (resp., a finite
ring) A is said to be linear if it is a subspace (resp., submodule) of the A-vector
space (resp., module) A™. A linear code is said to be free if it is a free A-module.
We note that every linear code over finite field is free. When codes are studied
over finite fields or finite rings, the Hamming weight of a codeword v, denoted
WHam(v), is defined to be the number of nonzero entries of v. The minimum

Hamming weight wgq,(C) of a code C' is defined by
WHam(C) = min{wyam(u) | uw € C \ {0}}.

If C is linear, then dyum(C) = Whyem(C). Further details concerning Error Cor-
recting Codes can be found in [22], [26] and [27].
In this work, we focus on codes over the ring Rm ). All codes are assumed

to be linear unless otherwise stated. Given an automorphism © of Rm ) and
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a unit A in Rmey, a code C is said to be skew-constacyclic, or specifically,

O-A-constacyclic if C' is closed under the ©-\-constacyclic shift
pox Ripme” = Rimo)”
defined by

pox((ag,ar,...,a,—1)) = (O(Aan—1),O(ap), ..., O(an—2)). (2.3.1)

In particular, such codes are called skew-cyclic and skew-negacyclic codes when A
is 1 and —1, respectively. When © is the identity automorphism, they become
classical constacyclic, cyclic and negacyclic codes.

Analogous to the case of classical constacyclic codes, a characterization of
©- A-constacyclic codes will be given in terms of left ideals in the quotient ring
Rpm ey l; ©]/(x"™ — A). However, due to Proposition 2.2.4, Rm ¢ [2; O]/ (2" — X)
is meaningful if and only if (™ — A) is two-sided, or equivalently, n is a multiple
of the order of © and A is a unit fixed by O.

For this purpose, throughout, we restrict our study to the case where the
length n of codes is a multiple of the order of ©® and A is a unit in R(epm’e), where
Rgm,e) denotes the subring of R,m ) fixed by ©.

The skew polynomial representation of a code C' is defined to be {cy + c1x +
<ot cp12™ | (co, 1y ... cn1) € C}. For convenience, it will be regarded as C
itself. The next theorem is analogous to that for classical constacyclic codes. The

proof is omitted.

Theorem 2.3.2. A code C of length n over Rym ) is ©-A-constacyclic if and

only if its skew polynomial representation is a left ideal in Rym o)[x; O]/(x™ — ).

There are two inner products on R,m )" in which we are interested. One is



15

the Euclidean inner product defined by

n—1
<’Ll/, 'U) = Z U; V5,
=0

for w = (ug,uq, ..., up—1) and v = (v, v1,...,Vp—1) in Rpm". When the order

of © is 2, we can also consider the Hermitian inner product which is defined as
n—1
(u,v)g = Zul@(vl)
=0
Elements w and v are said to be Euclidean orthogonal (resp., Hermitian orthog-

onal) if (u,v) =0 (resp., (u,v)y =0). The Euclidean dual code of a code C' of

length n over R,m . is defined to be
Ct={veRpme"| (v,e)=0forall ce C}.
Similarly, the Hermitian dual code of C is defined as
CH1 ={v e Rpny" | (v,e)yg=0forallce C}.

The code C' is said to be Euclidean self-dual (resp., Hermitian self-dual) if C' =

C* (resp., C = Cti).



CHAPTER III

FREE SKEW-CONSTACYCLIC CODES OVER R pm )

In this chapter, we account for the algebraic structure and some properties of
free ©-A-constacyclic codes of length n over R,m ), where A is a unit in Rg;m’e)
and the length n of codes is a multiple of the order of ©. We determine necessary
and sufficient conditions for ©-A-constacyclic codes over R,m ) to be free. Using
these conditions, we extend results on skew-constacyclic codes over Galois rings

8, Sections 4-5 and 7] to the case over Rym ).

3.1 Structures of Free Skew-Constacyclic Codes

A characterization of free skew-constacyclic codes over R,m ) is provided in
this section. Some properties of free skew-constacyclic codes and necessary and

sufficient conditions for them to be constacyclic are also given.

Proposition 3.1.1. Let C be a non-zero ©-A-constacyclic code of length n
over Rpmey. Then C s free if and only if C is generated by a monic right

divisor of " — \.

Proof. First, assume that C' is free of rank s, for some positive integer s. Then
C = Rme® as modules. Hence, C' := {e | ¢ € C} = F5,. as vector spaces.
Moreover, C' is a skew-constacyclic code of length n over Fym, ie., C is gen-
erated by a monic right divisor a(z) of " — 1 in Fym[z; 0] provided that © is
extended from 6 [7]. Let g(x) € Rym ¢)[; 0] be a monic preimage of a(x). Then

deg(g(z)) = deg(a(z)) = n — s. Tt is obvious that {g(x),zg(z),...,2°  g(x)} is
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linearly independent over R,m ), hence it is a basis for C'. Since 2°g(x) € C' and
g(x),zg(x),...,2°  g(x) form a basis for C', there exist by, b1,...,bs_1 € Rypm e

which not all are zero such that
bog(z) + biwg(z) + -+ + b_12° tg(x) = —2g(x).
Thus,
(bo 4+ bix + -+ + bs_12° "+ 2%)g(x) = 0 in Rym ¢ [1;0]/(2* — ).
Since x™ — )\ is central, we have
(bo+brx+ -+ by 2t +2%)g(z) = (2" — \)p(x),

for some p(x) € Rymel2;©]. By degree consideration, p(z) is a monic skew
polynomial of degree 0, i.e., p(x) = 1. Consequently, g(z) is a right divisor of
" — X in Rym o) [x; O)].

Conversely, assume that C' is generated by a monic right divisor g(z) of ™ —A\.
Then there exists a monic skew polynomial h(z) such that =™ — 1 = h(x)g(x).
Without loss of generality, we assume that deg(h(z)) = k and deg(g(z)) =n—k.

k—1

Thus, for all ¢ > k, z'g(x) is a linear combination of g(x),zg(z),...,z" 1g(x).

Hence, every element in C' (as a left ideal in Rym o)[z; ©]/(x™ — X)) is a linear

k—1

combination of g(z),zg(x),...,2" 'g(x). Let agp,a1,...,ar-1 € Rpm ) be such

that
aog(r) + arxg(z) + - + ar_12" 'g(x) = 0 in Rpm ¢[7;0]/(x* — ).

Since z" — A is central, we have

(ap + a1 + -+ + a1 2" Hg(x) = (2" — N)p(z),

for some p(x) € Rm e |2;©]. By degree condition, p(z) is the zero skew poly-
nomial, and hence ay = a; = --- = a_1 = 0. Therefore, C is free of rank

k =n — deg(g(z)) with a basis {g(z),rg(x),...,2* 1g(z)}. O
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Given a right divisor g(z) = E?Z_Ok_l iz’ + a2 F of 2™ — \, a generator matrix

of the free ©-A-constacyclic code C' generated by ¢g(z) is given by

Jo ce Jn—k—1 1 0 ce 0

0 @(gg> c. @(gn,kfl) 1 c. 0

G = 0 @2<gn—k—1> 0
i 0 Ce 0 @k_l(go) ce @k_l(gn,kfl) 1 ]

A parity-check matrix for C' is determined in the next proposition.

Proposition 3.1.2. Let C' be the free © -\ -constacyclic code generated by a monic
"=\

g(z)

right divisor g(z) of 2™ — X and h(z) := . Then the following statements

hold.

i) For c(z) € Rlx;0], we have c(x) € C if and only if c(z)h(z) = 0 in

Rlz; ©]/(x" — \).

i1) If h(z) = Zi':ol hix® + 2% | then the following matriz

1 O(hg_y) OF (hy) 0 0

0 1 0%(hp—_1) ... OF 1 (hy) ... 0
H=10 0 0

0 0 1 0" *(hi_y) ... " (ho) |

s a parity-check matrix for C'.

Proof. Since n is a multiple of the order of © and A € R®, 2™ — X is central and
it follows from Proposition 2.2.5 that 2™ — A = h(x)g(x) = g(z)h(z).
First, we prove i). Assume that c(z) = p(z)g(z) for some p(z) in R[z;O)].

Then c(x)h(x) = (p(x)g(x))h(z) = p(x)(z" = A) = 0 in R[z; O]/ {z" = A).
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Conversely, assume that c(x)h(z) = 0 in R[x;0]/(x™ — X). Then there exists
p(x) € R[z; O] such that c(z)h(z) = p(z)(z™ — X) = p(z)g(x)h(x). As the leading
coefficient of h(x) is a unit, we then have c(z) = p(x)g(x) € C.

To prove i), let c(z) = co+crx+--+cp 12"t € C and [Sg Spi1 =+ Sno1] =
[cocy +++ co1]HT. Then, for 1 € {k,k+1,...,n— 1},

k—1
S| =C+ Z a0 (hy)
=0
which equals the coefficient of 2! in c(z)h(z).
Since ¢(x) € C, it follows from ) that c¢(z)h(x) = 0 in R[x; ©]/(x™—\). Then

there exists ¢(x) € R[z; O] such that ¢(x)(z" — \) = ¢(x)h(z) having degree less

than n+ k. Therefore, the coefficients of the monomials =¥, ¥+, ... 2"~ in this
product must be zero, i.e., [Sg Sk+1 -+ Sp_1] is the zero matrix.
Since the rank of H is n — k, the result follows. O

When © is the identity automorphism, a ©-A-constacyclic code becomes \-
constacyclic. However, the converse does not need to be true. Here, necessary and
sufficient conditions for a free ©-A-constacyclic code generated by a right divisor

of 2™ — X\ to be A-constacyclic are given.

Proposition 3.1.3. Let g(z) be a monic right divisor of x™ — X in R[z;O].
The free ©-X-constacyclic code generated by g(x) is \-constacyclic if and only if

g(z) € R®[x;0].

Proof. Suppose g(z) = Z?:_Ok_l gz’ + "% and C is the free ©-\-constacyclic
code generated by g(x).
Assume that C' is A-constacyclic. Then zg(x),g(z)x € C'. Since C' is linear,

zg(z) — g(z)x € C' and hence

(©(g0) — go)z + (B(g1) — g1)a* + -+ + (O(gnr-1) — Gn-k-1)z" " = p(x)g(x),
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for some p(x) € R[x; O] such that deg(p(x)) < k. Thus, deg(p(z)g(z)) < n
which implies that p(z) is constant such that p(z)gy = 0. Since g(z) is a right
divisor of 2 — X\ and \ is a unit, gq is not a zero divisor. Thus, p(z) is zero and
hence g; is fixed by © for all .

Conversely, assume that g(z) € R®[z;0]. Then gz = zg; for all i =

0,1,...,n— k. Thus, g(z)r = xg(x) € C' and the desired result follows. O

3.2 Euclidean Dual Codes of Free Skew-Constacyclic Codes

We now study Euclidean dual codes of free ©- A-constacyclic codes over Rym ).
In particular, when A\? = 1, a generator of the Euclidean dual code of a free ©-\-
constacyclic code is determined. Furthermore, necessary and sufficient conditions

for such a code to be Euclidean self-dual are given.

Lemma 3.2.1. Let C be a code of length n over Rymey. Then C is ©-)\-
constacyclic if and only if C+ is ©-\"1-constacyclic. In particular, if \* = 1,

then C is ©-\-constacyclic if and only if C* is ©-\-constacyclic.
Proof. We note that, for each unit o in Rym ), o € R® if and only if o' €
Ram@)- Since A € Ram,e)’ we have \7! € R(@;m’e). Let u = (ug,u1,...,up1) € C

and v = (vg,v1,...,v,_1) € C*. Since
(O™ (M), 0" (\uy), .. ., @"‘1()\%_1), 0" Hug)) = p’é;\l(u) e C,
we have
0= (s (u),v)
= (0" (Aup), 0" M Aug), ..., 0" (Muy_1), 0" Hup)), (vo, 1, - o, V1))

= M(O0" Huy), 0" (ug), ..., 0" Hup_1), 0" 1A ), (vo, v1, . ., Up_1))

= MO (A M ug)vnr + Y O™ Hug)viy).

i=1



21

It follows from n is a multiple of the order of © and A~! is fixed by © that

n—1

0=0(0) = OO (A ug)vn_y + Z " (us)vi1))
= Mug©® A tv,_y) + i u;O(v;—1))

=1

= Mpor-1(v),u).

Therefore, pg -1(v) € C*.
The converse follows from the fact that (C+)t = C.
In addition, assume that A2 = 1. Then A = A~! and hence the last statement

follows immediately from the main result. O]

If A2 =1, we obtain from the previous lemma that the Euclidean dual C* of

a ©-\-constacyclic code C' is again ©- \-constacyclic. In this case, a generator of

C* is given through the ring anti-monomorphism ¢ defined in Proposition 2.2.7,
t t

where go(z a;x’) = Zx_iai. The next lemma is key to obtaining the main

i=0 i=0
result.

Lemma 3.2.2. Assume that \*> = 1. Let a(z) = ap + a1z + -+ + a,_12"' and
b(x) =bo+biz+---+b,_12" " be in Rim o [x;©]. Then the following statements

are equivalent.

a) The coefficient vector of a(x) is Fuclidean orthogonal to the coefficient vector

of ' (x"1p(b(x))) for all i € {0,1,...,n—1}.

b) (ag,ai,...,a,_1) is Euclidean orthogonal to (b,_1,0(b,_2),...,0" (b)) and

all its © -\ -constacyclic shifts.
c) a(x)b(x) =0 in Rym(z;0]/(x™ = A).

Proof. The definition of ¢ gives that a) is equivalent to b). We prove b) is

equivalent to ¢). Let a(z)b(z) = co+crz+---+cp12"t € Ripm o) [x; O] /(™ = N).
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Since \ € Rg)m,e) such that A2 = 1 and n is a multiple of the order of O, it follows

that, for each k € {0,1,...,n — 1},

a= Y a®b)+ Y Aaih)

i+j=k i+j=k+n
0<i<n—1 0<i<n-—1
0<j<n—1 0<j<n—1

=M D0 @@ )+ Y a0 (D)

i+j=Fk i+j=k+n
0<i<n—1 0<i<n—1
0<j<n—1 0<j<n—1

= M(ag, a1, ..., an_1), Abg, O Abp_1), . .., OF(Aby), O (b,_1),...,0" (bri1)))
= )\<(CL0, ag, ... aan—l)a (@(n_k)+k()\bk)a

QU REDHE (X, 1), OF(Abg), O R (b, 1), ..., @0 E D (L)),

Hence, a(x)b(x) = 0 if and only if ¢, = 0 for all k£ € {0,1,...,n — 1}, which is

true if and only if (ag,aq,...,a,—1) is Euclidean orthogonal to
(bue1,0(bp_2),...,0" (b))
and all its ©- A-constacyclic shifts. O]
Theorem 3.2.3. Assume that \> = 1. Let g(x) be a right divisor of x™ — A
" = A

g(x)
Then the following statements hold.

and h(z) := . Let C be the free ©-X-constacyclic code generated by g(x).

i) The skew polynomial x38P@)p(h(x)) is a right divisor of x™ — X.
it) The Euclidean dual C* is a ©-\-constacyclic code generated by

2D (1))

Proof. First, we prove i). Using the assumptions that n is a multiple of the order
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of ® and \ € Rgm@), we observe that

(p(g(a))(=A)z"~BCED) (298N o (h(2))) = p(g(w)) (= A)a"p(h(z))
= —A2"p(g(x))p(h(z))
= —\z"p(h(x)g(z)),

(since ¢ is a ring anti-monomorphism )

= =Xx"p(z" — \)
=-=X\x"(z7" =)
=a" = A\

Since @(g(z))(—\)z"~4t@) and zdeh@p(h(z)) belong to Rym e [z; 0], we
have z9°8M®)(h(z)) is a right divisor of 2™ — X in Rym ¢ [z; O].

Next, we prove ). Since g(z)h(xz) = 2" — A = 0 in Rm olz; O]/ (2™ — A),
by Lemma 3.2.2, (z3@)p(h(x))) C C*+. Moreover, z48M@)p(h(z)) is a right

divisor of ™ — A, by Proposition 3.1.1, we have
(@D (h(1)))] = [Rpm o [*~ 45 = |C].

Therefore, (3@ (h(z))) = C*+. O

We give necessary and sufficient conditions for a free ©-A-constacyclic code

to be Euclidean self-dual in the next theorem.

k—1
Theorem 3.2.4. Assume that \* =1 and n = 2k is even. Let g(z) = Zgixi +
i=0
z¥ be a right divisor of ™ — X\. Then the free ©-X-constacyclic code generated by

g(x) is Buclidean self-dual if and only if

k—1 k—1
<Z gir' + :Ek> (Z O (gy tgr_i)r’ + mk) =z" -\ (3.2.1)
i=0

=0
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Proof. Let C be the ©-\-constacyclic code generated by g(x) and let g*(z) be

the generator polynomial of the Euclidean dual code C*. Denote by h(z) :=

" —

g9()

_ . A
Zfzol h;x' + x* the right quotient . It follows from Theorem 3.2.3 that

gt (z) = 2P¢(h(x)) = OF(ho)x* + - + O(hy_1)z + 1. (3.2.2)

Assume that C' is Euclidean self-dual. It is easily seen that g(x) is the unique
monic generator of minimal degree in C'. Then g*(z) is a scalar multiple of g(z)

of the form

k—1

g+ () = 6"(ho)g(x) = @k(ho)(z gix' + ). (3.2.3)

=0
Comparing the coefficients in (3.2.2) and (3.2.3), we obtain ©%(hg)gy = 1 and

©%(ho)gi = ©'(hy_;), for all i = 1,2,...,k — 1. Consequently, hg = O~ %(g;")
and h; = ©'(hg)O"*(gr_s) = O (g5 O *(gr_i) = O (g5 gr_s), for all i =
1,2,..., k—1. and h(z) = 7 %(g5) + ¥ ©*(gy tgr_i)a" + 2*. Therefore,
(3.2.1) holds.

On the other hands, assume that (3.2.1) holds. Then

h(z) =07"(g ") + % 0" (gy gr—i)x’ + 2.
i=1
Hence, by Theorem 3.2.3,
k
g (x) = (b)) = (g9 g0)a" + 1= g5 ' g(a).
i=1
This completes the proof. n

Remark 3.2.5. From Theorem 3.2.4, we observe that if there is a Euclidean self-
dual ©-\-constacyclic code, then —\ = go©*(g;!) = ©%(go)gy . Thus, if the
order of © divides k and A # —1, then there are no Euclidean self-dual ©-\-
constacyclic codes of length 2k. In particular, if © is the identity automorphism
and A # —1, then there are no Euclidean self-dual ©-\-constacyclic codes of any

length.
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3.3 Hermitian Dual Codes of Free Skew-Constacyclic Codes

Due to the constraint in the definition of the Hermitian inner product, the
Hermitian dual codes of skew-constacyclic codes are studied only when the order
of © is 2. Using arguments similar to those in the previous proofs, the following

results concerning the Hermitian duality are obtained.

Lemma 3.3.1. Let C be a code of even length n over Rym ). Assume that the
order of © is 2. Then C is ©-X-constacyclic if and only if C+# is ©-\"1-
constacyclic. In particular, if \> = 1, then C is ©-\-constacyclic if and only if

Ct# is ©-)\-constacyclic.

When A\? = 1, a generator of the Hermitian dual code of a ©-\-constacyclic
code is determined through the ring anti-monomorphism ¢ defined in Proposi-

tion 2.2.7 and a ring automorphism ® on Rm ¢)[z; ©] defined by

t t

() ap') = Z@(ai)xi. (3.3.1)

i=0
Lemma 3.3.2. Assume that the order of © is 2 and N> = 1. Let a(z) =

ap+arr+---+a,_ 12" and b(x) = by +byx+- -+ b1t be in Rpm o)z O].

Then the following statements are equivalent.

a) The coefficient vector of a(x) is Hermitian orthogonal to the coefficient vector

of ¥'®(x"1p(b(x))) for all i € {0,1,...,n —1}.

b) (ag,ai,...,an_1) is Hermitian orthogonal to (07 (by_1),bn_o,...,0" 2(by))

and all its ©-X-constacyclic shifts.
c) a(x)b(x) =0 in Rpm e [z; O]/ (a™ — A).

Theorem 3.3.3. Assume that the order of © is 2 and N> = 1. Let g(x) be a

A
right divisor of ™ — X and h(x) = xg(x) . Let C' be the ©-\-constacyclic code

generated by g(x). Then the following statements hold.
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i) The skew polynomial ® (38" @)p(h(x))) is a right divisor of ™ — \.

ii) The Hermitian dual C17 is a ©-X-constacyclic code generated by

(245D p(h(z))).

Proof. From the proof of Theorem 3.2.3, we have
o(g(x)) (—Azn~deeM)ygdes®) (b (1)) = 2™ — A,
Then
®(p(g(2)) (= A" EW)) @ (24D (h(2))) = @ (2" — A) = 2" — \.

Hence, ®(z9"(=)y(h(x))) is a right divisor of 2™ — X, which yields 7). Since

g(@)h(z) = 2™ = A =0 in Rym)[z;0]/(2™ — A), by Lemma 3.3.2,
(@(a " Dp(h(2)))) € CH.
Since ¢(xd°eh@)p(h(x))) is a right divisor of 2™ — A, by Proposition 3.1.1,
(P2 B D p(h(2))))] = [Rpm )|~ = O],
Therefore, (¢(x3°8"@)p(h(x)))) = C+#. This proves ii). O

Next, we give necessary and sufficient conditions for a free ©-\-constacyclic
code to be Hermitian self-dual. Using the definition of the Hermitian inner product
and the arguments similar to those in the proof of Theorem 3.2.4, we have the

following theorem.

Theorem 3.3.4. Assume that the order of © is 2, \> = 1 and n is even, denoted
k-1

by n =2k. Let g(x) = Zgixi + 2% be a right divisor of ™ — X. Then the ©-\-
i=0
constacyclic code generated by g(x) is Hermitian self-dual if and only if

k—1 k—1
(Z gzl,z + I’k) (Z Gi_k_l(g()_lgk—i)xi + ZEk> — " — )\
=0

=0
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Remark 3.3.5. Suppose there is a Hermitian self-dual ©-\-constacyclic code.
Then, by Theorem 3.3.4, we have —\ = go© % ~1(gy"). Since A is fixed by O, it
follows that A = —©%1(gg)gy*. Recall that the order of © is 2, so

1 if k is odd,
N\ =

—O(g0)gy " if k is even.

Therefore, if k is odd and A # —1, then there are no Hermitian self-dual ©-\-

constacyclic codes of length 2k.



CHAPTER IV

SKEW-CONSTACYCLIC CODES OVER R pm 2

The class of finite chain rings of the form R,m.) has widely been used as
alphabet in certain constacyclic codes (see, for example, [3], [6], [15], [16], [23]
and [30]). In order to avoid a tedious computation, we restrict our study to the
case ¢ = 2 and we use the notation Fym +ulF,~ instead of R¢m o). We characterize
the structure of all ©-A-constacyclic codes over the ring Fym + ulF,m» under the
conditions where A is a unit in Fpm 4+ ulF,» fixed by a given automorphism © and
the length n of codes is a multiple of the order of ©. Moreover, the structures
of Euclidean and Hermitian dual codes of skew -cyclic and skew-negacyclic codes
over this ring are determined.

Recall that Fpm 4+ ulF,m is a finite chain ring of nilpotency index 2 and char-
acteristic p. Its only maximal ideal is ulF,» and its residue field is the sub-
field Fym of Fym + uF,m. Every automorphism of F,m + ulF,m is of the form
Op5(a + bu) = 0(a) + BO(b)u, where 6 € Aut(Fym) and 8 € ;... For simplicity,
where no confusion arises, the subscripts # and g will be dropped.

Let f(x) in (Fym+ulF,m)[x; ©]. Then the multiplication rule allows the shifting
of u and powers of = from the left to the right of f(z) (and vice versa) by changing

the coefficients of f(z). Thus, for Q € {u,z" | i € N}, we may write
pA—] <——Q
i) f(z) for the skew polynomial satisfying f(x)Q = Qf(x) , and

0 Q
i1) m for the skew polynomial satisfying Qf(x) = f(7§ Q.
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4.1 Classification of Skew-Constacyclic Codes

In this section, the classification of ©-A-constacyclic codes is given in terms
of generators of left ideals in (Fym + ulFm)[z;©]/(z™ — X). These generators
are uniquely determined under some conditions. Furthermore, we study their
properties.

Let C' be a non-zero left ideal in (Fym 4+ uF,m)[z; ©]/(z™ — ) and let A denote
the set of all non-zero skew polynomials of minimal degree in C'. Clearly, A is
non-empty. We consider three cases: when there is a monic skew polynomial in
A, when there are no monic skew polynomials in C', and when there are no monic

skew polynomials in A but there is a monic skew polynomial in C'.
Theorem 4.1.1. Let C' and A be as above. Then:

i) If there exists a monic skew polynomial in A, then it is unique in A. In this

case, C = (g(x)), where g(x) is the unique such skew polynomial.

i1) If there are mo monic skew polynomials in C', then there erists a unique

skew polynomial g(x) = ugi(x) in A with leading coefficient w. In this case,
C = (g9(x)).

iii) If there are no monic skew polynomials in A but there exists a monic skew
polynomial in C', then there exist a unique skew polynomial g(x) = ug(x)
in A with leading coefficient u and a unique monic skew polynomial f(x) =
fo(z) +ufi(x) of minimal degree in C' such that deg(fi(x)) < deg(gi(x)).

In this case, C' = (g(x), f(z)).

Proof. To prove i), assume that g(z) and ¢’(x) are monic skew polynomials in A.
Then the degree of g(x)—¢'(z) is less than the degree of g(z). By the minimality
of deg(g(x)), g(z) — ¢'(x) = 0. Hence, g(x) is the unique monic skew polynomial

in A.
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Let ¢(z) € C. Then by the right division algorithm, there exist unique skew

polynomials ¢(z) and 7(z) in (Fpym + uF,m)[z; ©] such that

c(x) = q(x)g(x) +r(x),

and 7(z) = 0 or deg(r(x)) < deg(g(z)). Then

r(z) = c(r) —q(z)g(x) € C.

By the minimality of deg(g(z)), r(z) = 0. Hence, c(z) = q(x)g(z), ie., C =
{g(x)).

To prove i), assume there are no monic skew polynomials in C'. Without
loss of generality, let g(z) be a skew polynomial in A with leading coefficient
u. First, we show that g(z) is a right multiple of w. Suppose that g(x) has a
unit coefficient a; for some i < deg(g(z)). Then ug(z) € C' is a non-zero skew
polynomial having degree less than deg(g(x)), which contradicts the minimality
of deg(g(x)). Hence, g(z) is a right multiple of u, and we write g(z) = ug;(z),
where ¢;(x) is a monic skew polynomial in Fym[z;6)].

For the uniqueness, suppose that ¢'(z) is a skew polynomial in A with leading
coefficient u. Then the degree of g(z) — ¢'(x) is less than the degree of g(x). By
the minimality of deg(g(x)), g(z)—¢'(x) = 0. Hence, g(z) = ug;(x) is the unique
skew polynomial in A with leading coefficient wu.

Now, we show that C' is generated by g(z) = ugi(z). Suppose that there
exists h(z) in C' of minimal degree ¢ which is not a left multiple of g(z) = ug:(z).

Moreover, h(z) can be chosen to have leading coefficient u. Then
k(z) : = h(z) — uat480@) g (z)
= h(z) — )

l—des(g(z ;

(z)
g(x) € C.
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If k(r) = 0, then h(zr) = xfdel@) ug(:v) which contradicts the assumption.
Suppose k(z) # 0. Then the degree of k(z) is less than ¢ and k(x) is not a left
multiple of g(z) which contradicts the choice of h(z).

Finally, we prove iii). Assume there are no monic skew polynomials in A but
there exists a monic skew polynomial in C'. It can be shown as in #i) that there
is a unique skew polynomial g(z) = ug;(x) in A with leading coefficient w.

Let F(x) be a monic skew polynomial of minimal degree in C'. We view
F(z) = Fo(z) + uFi(z), where Fy(x), Fi(x) € Fym[x;0]. By the right division
algorithm, there exist unique skew polynomials ¢(z) and r(z) in Fym[z;6] such
that

Fi(z) = q(x)gi(x) + r(z),

and 7(z) = 0 or deg(r(z)) < deg(g1(x)). Thus,
P(x) = Fo(z) + uFi(z) = Fylw) + ug(2)gy (x) + ur(z).

We choose f(z) = F(x) —uq(z)q1(x), fo(z) = Fo(z) and fi(z) = r(x). Then
f(z) = fo(x) + ufi(x) is a monic skew polynomial of minimal degree in C' such
that deg(fi(z)) < deg(g1(x)).

The uniqueness of ug; (z) can be shown as in the proof of ii). Suppose ty(z)+
uty(z) is a monic skew polynomial of minimal degree in C' such that deg(t;(z)) <
deg(gi(x)). Then (ufo(z)) = uC = (uty(z)). Hence, by the proof of i), fo(x) =
to(z). Note that u(fi(x) —t1(z)) = (fo(z) +ufi(z)) — (to(z) +uti(z)) € C. Then
u(fi(x) — ti(x)) is the zero or deg(fi(z) — t1(x)) < max{deg(fi(x)), deg(t:(x))} .
If the later case occurs, then deg(fi(z) — t1(z)) < deg(g1(z)), which contradicts
the minimality of deg(gi(z)). Hence, fi(x)—t;(x) =0.

Let B be the set of all non-zero skew polynomials in C' with degree less than

deg(f(x)). Then the leading coefficients of all skew polynomials in B are multiple
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of u. Since ug; € A, we have deg(ug;(z)) < deg(f(x)), and hence ug,(x) € B.
We show that B is contained in the left ideal generated by wug;(x). Suppose
there exists h(z) in B of minimal degree ¢ < s which is not a left multiple of

g(x) = ugi(x). Moreover, h(x) can be chosen to have leading coefficient u. Thus,

k(z) : = h(z) — uzt4e0@) g (z)
= h(x) — gl;f*deg(g(z);uug1 (2)
= h(z) — xg_deg(g(“)iug(x) e C.

If k(z) = 0, then h(z) = xg_deg(g(“)iug(:c), which contradicts the assumption.

Suppose k(z) # 0. Then the degree of k(z) is less than ¢ < s. Hence, k(z) € B

and k(z) is not a left multiple of g(z), which contradict the minimality of /.

Therefore, B is contained in the left ideal generated by g(z) = ugi(x).

To show that C' is generated by {g(z) = ugi(z), f(z) = go(x) + ugi(z)}, let
c(xz) € C'. Then there exist unique skew polynomials ¢'(x) and '(x) in (F,m +
ulF,m)[z; ©] such that

c(x) = ¢'(2) f(z) +7'(z),
and 7'(x) = 0 or deg(r'(x)) < deg(f(x)). If r'(x) = 0, we are done. Assume

that deg(r'(z)) < deg(f(x)). Then 7'(z) € B and so 7'(z) = m(z)g(x) for some

m(z) € (Fpm + ulFym)[z; ©]. Hence,

co(z) = ¢'(x) f(z) +r'(x) = () f(x) + m(z)g(x).
Therefore, C' is generated by {g(x) = ugi(x), f(z) = fo(z) +ufi(z)}. O

Following Theorem 4.1.1, we distinguish three types of the left ideals in (F,m +
ulFym)[x; ©]/(x™ — A). Type LI-1 refers to the zero ideal or a left ideal satisfying
i), type LI-2 refers to a left ideal satisfying i), and type LI-3 refers to a left ideal

satisfying 7).
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Further properties of left ideals of each type are given in the following propo-

sitions.

Proposition 4.1.2. A left ideal of type L1-1 is principal and generated by a monic
right divisor g(x) of 2™ — X in (Fym + ulF,m)[x; ©]. Moreover, if we view g(x) =
90(x) + ugi(x), where go(x), g1(x) € Fpm[z; 0], then deg(gi(x)) < deg(go(x)) and

go(x) is a monic right divisor of x™ — X in Fym|z;0].

Proof. Let C be a left ideal of type LI-1. If C' = {0}, then C' = (0) = (z™ — X)
has the desired properties.

Suppose C' is non-zero. We prove that the generator polynomial g(x) in
Theorem 4.1.1 i) satisfies these properties. Recall that g(z) is the unique monic
skew polynomial in A, the set of all non-zero skew polynomials of minimal degree
in C'.

First, we show that g(z) is a right divisor of " — A in (Fpym 4+ ulF,m)[z; ©]. By
the right division algorithm, there exist unique skew polynomials ¢(x) and r(x)

in (Fpm + uF,m)[z; ©] such that
2" — X = g(@)g(z) + r(2),

and 7(z) =0 or deg(r(x)) < deg(g(z)). Then

By the minimality of deg(g(z)), r(x) = 0. Hence, g(z) is a right divisor of 2™ —\.

Finally, we write g(x) = go(x) + ug1(x), where go(z), g1(x) € Fym|[x;0]. Since
g(x) is monic, it is clear that go(x) is monic and deg(gi(z)) < deg(g(x)) =
deg(go(z)). Since g(z) is a right divisor of " — A in (Fym + ulFym)[x; O], there

exists p(z) in (Fpm + uF,m)[z; ©] such that

2" = A = p(x)(go(x) + ugs (x)).
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Reducing modulo u, we have 2" — X\ = p(z)go(z) in Fpm[z;0]. This means go()

is a monic right divisor of 2™ — X in Fym[x;6]. O

Proposition 4.1.3. A left ideal of type LI-2 is principal and generated by g(x) =
ug,(z), where gi(z) is a monic right divisor of a™ — X in Fym[z;0] such that

deg(gi1(z)) <n.

Proof. Let C' be a left ideal of type LI-2. We prove that the generator polynomial
g(x) = ugi(x) in Theorem 4.1.1 i) satisfies the desired properties. Recall that
g(x) = ugy(x) is the unique skew polynomial with leading coefficient u in A, the
set of all non-zero skew polynomials of minimal degree in C'. Clearly, deg(g;(x)) <
n. By the right division algorithm, there exist unique skew polynomials ¢(z) and

r(z) in Fym[z;6] such that

2" =X = g(@)g1(z) + r(2),
and r(z) = 0 or deg(r(z)) < deg(gi()). Since u(z™ — \) = u(z™ — \), we have

ur(z) = —uq(2)g1(x) + u(z" — )
= —q(z uugl () +u(z"™ = N)
= @) g(x) + u(z" — \) € C.

By the minimality of deg(g(z)), ur(z) = 0. As r(z) € Fym[x;0], r(z) = 0.

Hence, g;() is a right divisor of 2™ — X in Fym[z;6]. O

Proposition 4.1.4. A left ideal of type L1-3 is generated by {g(x) = ugi(x), f(x) =

fo(x) +ufi(x)}, where fo(z), fi(z), gi(z) € Fpym[z; 0] satisfy the following prop-

erties:
i) g1(z), fo(x) are monic,

i) deg(fi(x)) < deg(gi(x))< deg(fo(x)) <n,
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it1) g1(x) is a right divisor of fo(z) in Fym[z; 6],

i) fo(z) is a right divisor of x™ — X\ in Fym|[z;0].
—u

—
Moreover, if X € Fym, then gi(x) is a right divisor of (xf( >) fi(z) in
o\

Fym[z; 6].

Proof. Let C be a left ideal of type LI-3. We prove that the generator set
{9(z) = ugi(z), f(x) = fo(x) + ufi(z)} in Theorem 4.1.1 iii) satisfies the de-
sired properties. Recall that g(x) = ug;i(z) is the unique skew polynomial with
the leading coefficient u in A, the set of all non-zero skew polynomials of minimal
degree in C' and fo(x) + wfi(z) is the unique monic skew polynomial of minimal
degree in C' such that deg(fi(x)) < deg(g:1(x)).

Properties i) and i) are clear. Using the right division algorithm, we have

fo(x) = q(x)g1(x) + (),

for unique ¢(z),r(x) € Fym[z;6] such that r(x) = 0 or deg(r(x)) < deg(g:i(z)).

Then

ur(z) = ufo(r) — ug(x)g ()
=ufo(x) — qx uugl (x)

—uf(x) - qlz) g(z) € C.

By the minimality of deg(g(x)), ur(x) =0. As r(z) € Fym[z; 6], r(x) = 0. Thus,
iii) follows.

Note that ufy(z) is a skew polynomial of minimal degree in (ufy(x)). Using
arguments similar to the proof of Proposition 4.1.3, fo(z) is a right divisor of

2" — X in Fym[z;0]. Hence, property iv) is proved.
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Finally, it is straightforward to see that if A € F,m, then A = A. Thus,

" — A\ " — A

@) (folz) + ufi(z)) = e )Ufl(l")

—l
(xfo(_)> hz)

e CNu((Fpm + uFym)[z; 0] /(z" — N)).

Note that CNu((Fpm +uF,m)[x; O]/(z" —\)) is a left ideal in (Fym +ulF,m)[z; O]/
(™ — X\) containing ¢g(z) = ugi(x) as a skew polynomial of minimal degree.
Since C' N u((Fym + uFym)[z;©]/(z™ — X)) does not contain any monic element,
by P ition 4.1.3, it i ted b = . H i ight
y Proposition , it is generated by g(x) = ugi(x). Hence, ¢gi(x) is a rig

divisor of ( ;)( )A> Ai@). 0

Example 4.1.5. Figures 4.1 and 4.2, respectively, show the ideal lattices of (F5+
ulF3)[z]/(x* — 1) and (F3 + ulF3)[z; Oiq2]/(z* — 1), where Oiq2(a + bu) = a + 2bu
for all a,b € F3. The subscripts 1, 2 and 3 indicate types LI-1, LI-2 and LI-3,

respectively.

Figure 4.1: The ideal lattice of (Fs + ulF3)[x]/(x? — 1)



37

(x+1+4+2u)y; {(x+1+w); (z+1) (x+2)1 (x+24u) (x+242u)
(u(z +1))2 (u(z +2))2

Figure 4.2: The ideal lattice of (F3 + ulF3)[x; ©iq2]/(z* — 1)

Note that Figure 4.1 is embedded in Figure 4.2.

4.2 Euclidean Dual Codes of Skew-Cyclic and

Skew-Negacyclic Codes

We study the structures of the Euclidean dual codes of skew-cyclic and skew-
negacyclic codes over Fpm + ulF,m. For this purpose, we assume that A = £1.
Since A = A\ € F,n is always fixed by any automorphism, © can be arbitrary.
However, the length n of codes is assumed to be a multiple of the order of ©.

From A2 = 1, by Lemma 3.2.1, the Euclidean dual codes of skew-cyclic and
skew-negacyclic codes are again skew-cyclic and skew-negacyclic, respectively.
Their generators are given through the unique representation of the original

codes and the ring anti-monomorphism ¢ defined in Proposition 2.2.7, where
¢ ¢

gp(z a;x’) = Zx_iai.
=0 i=0

Theorem 4.2.1. Let A € {—1,1}. Then the Euclidean dual code of a left ideal

in (Fpm 4+ uFym)[x; O] /(z™ — A) is also a left ideal in (Fym + ulFym)[z; O] /(2™ — \)
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determined as follows:

T—A
f (go() g1(x)) ( ® 0@) T ugn (@) )

LI-2%. If C = (ugi(2)), then C* = (u,a" 4@y (x e /\)>-
g1(x)

LI-3L. If C = (ugi(x), fo(z) + ufl(f)), then there exists m(x) € Fym[z; 0] such

that m(z)g1(x) = (x;(_x;) fu(x) and

n_ A\ " — A
CJ- — xn_ng(fO(I)) (l‘ u) 7xn—d0g(g1(.’lt)) ( —umlx > .
| "\ R o )

For LI-1+, the Euclidean dual code of type LI-1 code is determined in The-
orem 3.2.3 and it is shown to be type LI-1. Moreover, (C+)+ = C implies that
C' is type LI-1 if and only if C* is type LI-1. However, this is not the case for
types LI-2 and LI-3 (see Example 4.3.2).

In LI-2+ and LI-3%, fo(z), gi(z) are right divisors of 2™ — X in Fym[z;0)].

Since z™ — A is central, it follows from (2.2.2) that

A o T AL

fol@) fo(z) 7 A fo(z) fol@), (42.1)
oA T A

g1(x) (@) =z" -\ (@ g1(x). (4.2.2)

These two facts and the centrality of ™ —\ will be frequently used in the following

proofs.

" — A
91(x)
=u(z"—X) =0 in (Fpm+ulF,m)[z; O]/ (2" —

Proof of LI-2+. Let D := (u,a""de@n(@), (
"= A

g1(x)

\). Hence, D C C* is concluded via Lemma 3.2.2.

>> Clearly, u € C+. It fol-

lows from (4.2.2) that (ug(z))

For the other direction, we note that C* is of either type LI-2 or LI-3. If
C+ = (usi(x)) is of type LI-2, then C+ C (u) € D. Suppose that C+ :=

(usy(x),to(x) + uty(z)) is of type LI-3. Clearly, usi(x), uti(x) € (u) C D.
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Since ug,(z) € C and to(x) + ut,(z) € C*, it follows from Lemma 3.2.2 that
0 = (ugy(2))p™" (z~ B (tg(2) + uti(2)))
= ugi ()" (2~ B0 tg(2))

n (Fpm + uFym)[z;0]/(z™ — ). Thus, g;(z)p t(z~d<el@)t (2)) = 0. Hence,
n (B + uFyn)[a; O],
gi(@)p~ (27 B0t (2)) = li(w) (2" = A) = (" = Nh(2), (4.2.3)
for some [i(x) € Fym[z;6]. Note that
deg(to(x)) = deg(li(z)) + n — deg(g1(x)). (4.2.4)
With the notation in (4.2.2), left cancellation of (4.2.3) by g;1(z) gives
"= A

——li(x) = @t (el (7)),

and hence, by (4.2.4),

to(x) = pdeslto@)y, (x - )\h(x))

91(x)
"o
_ pdeg(li(@)+n—deg(91(2)) (] (x_)
x ¥
PeDe o
gn—des(oy (2)) n_y\
_ deg(li(z n—deg(g1(x)) z
=z L(z x ® ( ) eD.
(@) g1(x)
Consequently, to(z) + ut(z) € D and C*+ C D, as desired. O

Proof of L1-3*. Since X\ € Fym, it follows from Proposition 4.1.4 that g;(z) is a
%

’I’L

right divisor of ( ) fi(z). Then there exists m(z) € Fym[z; 6] such that

Jolx)
m(x)g1(x) = (x};(;; ) fi(). (4.2.5)
Let D := (gn—deslfol@)y (I;O(_x))\u) , " dee(g1(@) (xg”l(;))\ —um(x))) It fol-
lows from (4.2.5) that
A\ " — A
@) =) £ = rusie) (42.6)
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Multiplying on the left of (4.2.6) by fo(x), we have

" — A
Jolx)
= (2" — Nufi(z) (using (4.2.1))

fo(x)um(z)gi(z) = folx) ufi(z)

=ufi(x)(z" = N)

" = A _
=ufi(z) (@ g1(x) (using (4.2.2)).

Hence,
" = A
fo(z)um(z) = ufi(z) @) (4.2.7)
and
deg(m(z)) = n+ deg(fi(z)) — deg(fo(x)) — deg(g1(x)). (4.2.8)
Now, we observe the followings:
a) Since u? = 0, we have
" — A
ugy () @) u = 0. (4.2.9)
b) Using u? =0 and (4.2.2), we conclude that
ugy () (i;(;))\ - um(x)) = ugl(x):E;l (_x))\ =u(z" — \). (4.2.10)
c¢) Tt follows from u? =0 and (4.2.1) that
() + u(a) () = o) et = (o = A = u(a” = ).

(4.2.11)

d) Since gi(x) is a right divisor of fo(z), by (2.2.1) and (4.2.2), we have

" =N [ folx) . A (1€)) 9655”_)‘
b o = <gl<sc>91( )) 0@ ) (gl( >gl<x>>
@)

D = A). (4.2.12)

B g1(x)
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The next equation follows from u? = 0, (4.2.7) and (4.2.12)

" — A " — A "=\
(fo(z) + ufi(x)) (m - Um(x)) = fo(@m + uf1(x)m
— fo(z)um(zx)
_ @)
= gl(x)( A). (4.2.13)

Equations (4.2.9)-(4.2.11) and (4.2.13) equal 0 in (F,m + ulF,m)[x; O]/(x™ — N).
Thus, D C C* by Lemma 3.2.2.

For the reverse inclusion, we note that C* is of type LI-2 or LI-3. First,
suppose that C* := (us;(z)) is of type LI-2. Since fo(z) + ufi(z) € C and

usi(x) € C*, the Euclidean orthogonality and Lemma 3.2.2 imply that
(fo(x) + wfi(z))e™ (&~ 95 us (x)) = 0
in (Fym + ulF,m)[z; ©]/(x™ — A\). Hence, in (Fym + ulFym)[x; O],
folx)pt(zdeE1@yg () = ul(z) (2™ — \) = (2" — Nul(x), (4.2.14)

for some [(x) € Fym[z;60]. Moreover, deg(si(z)) = n+ deg(l(z)) — deg(fo(x)). It

follows from (4.2.1) and (4.2.14) that

@1 (z(ntdegl(@)—deg(fol@D)yg) (1)) = @1 (2 8 @)y (1)) =

Since ¢ is a ring anti-monomorphism, we conclude that

" — A " — A
g~ (nrdeg (@) —deg(fo(@)yyg, (1) = < e ul@)) = o(l(z))yp < u) .
0

Consequently,

us, (z) = xn+deg(l(x))—deg(fo(w))Qp(l(x))go (‘75; (_))\u>
o\T

el gn—deg(fo(z)) 4 " — )\
= p4e8l@) o (1(z) g deg(fo(@)) ( 0 u) e D.
0
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Next, suppose that C* := (us(x),to(x) + uti(z)) is of type LI-3. Using
arguments similar to those above, fo(z) + ufi(z) € C and us;(x) € C* imply
usi(x) € D.

Since ug,(z) € C and to(x) + ut,(z) € C*, it follows from Lemma 3.2.2 that
0 = ugi(a)p~! (@™ 0 (t(2) + uti(2))) = ugi(x)p™ (a7~ B0y (2)),

in (Fpm +ulFm)[z;0]/(x™ — \). Thus, g;(z)p~t(z~ @)t (2)) = 0, and hence,

in (Fym + uFm)[z; O],
gi(@)p (27 4B g (1)) = Iy () (2" — \) = (2" — M(2), (4.2.15)

for some Iy(x) € Fym[7;6]. Note that
deg(to(x)) = n + deg(l1(z)) — deg(gy (x)). (4.2.16)

In the notation of (4.2.2), the left cancellation of (4.2.15) by g;(x) implies

" — \

~1 (g~ deslto(2))y = Li(z), 4.2.17
¢ D (0)) = T2 (o) (4217
and hence
to(x) = xesltol@) (Ell(a?)) = gdeso@) (1, (z)) (Q;” _ )\) (4.2.18)
91() 91 ()
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By Lemma 3.2.2, in (Fym + uFym)[z; O] /(2™ — A),

0= (folz) +ufi(z))p (z~ B to(2) + uts(2)))
= fo(x)™ ! (a™ *E 0 Dto(2)) + fo(a)p™" (27 B ut, (2))

+ufi(z)p ! (a0t (2)
" — A

91()

" — )\

L(z) + folx)e H(z™ deg(to(@)) ¢, () + ufi(x) (@)

ll(l’)

(using (4.2.17))

= (2" — Ny (2) + fo(z)e Ha™ deg(to(@)) ¢, () + folx)um(x)l;(x)

(using (2.2.1), (4.2.2) and (4.2.7))

f0(37)l
91()

= fo(z)(p™ (™ ©BODuty () + um(z)h (2)).

= L(2) (@™ = A) + folz) (¢ (@ 80yt (2)) + um(z)l (z))
Then there exists lo(z) € Fym[z;60] such that, in (Fym 4+ uF,m)[x; O],

folz) (™ @™ B uty (2)) + um(@)h (2)) = ulp(x)(@" — X)

= (2" — Nula(2). (4.2.19)
Using (4.2.8), (4.2.16) and the fact deg(fy(x)) > deg(fi(z)), we conclude that
deg(m(z)h(x)) < deg(m(z)) + deg(lh(z)) < deg(to(x)). (4.2.20)
Thus, from (4.2.19) and (4.2.20),
deg(to(z)) = n + deg(ls(z)) — deg(fo(z)). (4.2.21)
The left cancellation of (4.2.19) by fo(z) implies
@ Mm@yt (1)) + um(z)l (v) =

)
Hence, o~ (z~d8t0@)yt, (z)) = -

ut(x) = zelo@) ( uly(z) — um(x)ll(a:)> : (4.2.22)

fo(z)
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Therefore,

to() + utr (x) = 29EOE) o (1, ()0 (il(;;\)

+ xdeg(to(w))gp (I; (_x)\ub(m) — um(@h(ﬂ)
0

)
(using (4.2.18) and (4.2.22))

n_ )
_ pdes(to(@)) (1 (1 (x
e(li(z))e (@

+ gleslio@), (35; (_xj ul2(x)>
0

_ xn+deg(ll(w))*deg(gl(f’f))go Li(z))p (— -
(h()) 91()

+ gtdes(ia@)=dea(fo(@) (1, (1)) o

(using (4.2.16) and (4.2.21))
gn—deg(g1())
= xdeg(h(a:))spal(x); v deg(g1(2))

gn—des(fo(@)) " — )\
+ mdeg(b(ﬂ”))w(lg(;ﬁ)i xnfdeg(fo(r))ﬂ u) € D,

and we have C+ C D as desired. OJ

AS)
N
SH
= |
>
|
e
S
&
S~

4.3 Hermitian Dual Codes of Skew-Cyclic and

Skew-Negacyclic Codes

We assume that the order of © is 2 and determine the structure of the Hermi-
tian dual codes of skew-cyclic and skew-negacyclic codes in terms of their unique
representative generators, the ring anti-monomorphism ¢ defined in Proposi-
tion 2.2.7 and the ring automorphism & defined in (3.3.1). Using Lemma 3.3.2 and

arguments similar to those in the previous subsection, the next theorem follows.
Theorem 4.3.1. Let A\ € {1,—1} and let © be an automorphism of order 2.

Then the Hermitian dual code of a left ideal in (Fym + ulF,m)[x; O]/(x™ — \) is

again a left ideal in (Fym + ulFym)[z;©]/(x™ — X) determined as follows:
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LI-11# IfC = (go(x)+ug1 (:p)) , then Ctn — <¢)(xn7deg(go(x))g0 (go($§n+—u;\1 (I))»

LI-2+#. If C = (ugi(x)), then C# = (u, ®(an @@y (mg (;)A)»'
1

LI-3+#. If C = (ugi(x), fo(x) + ufi(x)), then there exists m(x) € Fym[z; 0] such
that m(z)g1(x) = (%) fi(z) and

Ctr — <(I)(xn—deg(fo(x))gp (x;)(;))‘u>)7 q)(xn—deg(m(:v))SO (i;(_x;‘ _ um(x))))

Example 4.3.2. Table 4.1 shows the Euclidean and Hermitian dual codes of
the left ideals in (F3 + ulF3)[z; ©q2]/(x? — 1) classified in Example 4.1.5. The
dual codes are obtained via Theorems 4.2.1 and 4.3.1 and rewritten to satisfy the
representation in Proposition 4.1.1. The subscripts 1, 2 and 3 indicate types

LI-1, LI-2 and LI-3, respectively.



C Ct Ctu

(0)1 (1) (1)

(u(z +1))2 (u, x + 2)3 (u, @ + 2)3
(u(z 4 2))2 (u, .+ 1)3 (u, .+ 1)3
(u) (u)2 (u)2

(x 4+ 14 2u) (x4 2+ 2u)y (x+24+u)
(x+14u) (x4 2+ u) (x4 2+ 2u)y
(x4 1), (x4 2)1 (x4 2)1
{r+2) (z+ 1) (z+ 1)
(424 u) (x4+1+u) (x 4+ 1+ 2u),
(x +2+2u)y (x + 1+ 2u)y (x+1+u)
(u,z + 1)s (u(z +2)), (u(z +2))
(u,  +2)3 (u(z +1))2 (u(z + 1)),
(1) (0)1 (0)1

Hermitian dual codes
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Table 4.1: The left ideals in (F3 + ulF3)[z; ©q2]/(x? — 1) and their Euclidean and



CHAPTER V

GRAY IMAGES OF CODES OVER R pm )

The discovery of good nonlinear codes from linear codes over Z,, via the Gray
map [21], motivated the study of the Gray images of codes over rings in general.
Analogs of the Gray map have also been defined for codes over other finite chain
rings [19] linked these codes to codes over finite fields. Qian, Zhang and Zhu
characterized the Gray images of (1 + u)-constacyclic and cyclic codes over the
ring Repo) = Fo + ulfy in [30] and investigated some constacyclic codes over
R3) = Fa 4+ uFy + uF, in [31]. Congellenmis [11] have introduced (1 —u®')-
constacyclic codes over R ) = Fao+ulfy+- - -4+ u¢" 'y and generalized the results
of [30] and [31].

Motivated by these works, we generalize these concepts to the finite chain ring
Rpm ey = Fpm + uFpm + -+ + 0 Fpm. We study (1 — u®')-constacyclic, cyclic
and (1 + u®~!)-constacyclic codes over this ring and characterize the structures
of the Gray images of such codes. Moreover, we give descriptions concerning the
Gray images of some skew-constacyclic codes over Rm ).

First, we recall some necessary definitions and introduce some useful notations.

In (2.1.1), an element r € R(ym ) is uniquely written as

e

—1
r=apt+uar+---+U A1,

where a; € F;n. Hence, an element r € R(,m )" can be viewed as

1

r =ao(r) +ua(r) + -+ u ae_1(r),
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where a;(r) = (ri0,7i1,.-.,Tin-1) IS a vector in Fm , for every 0 <7 <e—1, or
r = (To,Tl,...,Tn_l), (51)

where r; = ro; +ury; + -+ U ey ; € Riym ), for every 0 <i<n—1.

Let p, p1_ue-1, proue—1 : Ripme)” — Rpme)” be defined by

p((?”o, T1y... ,Tnfl)) = (rn,l,ro, RN ,Tn,Q),
Pl—ue—l((TOa T1y... ,7"”,1)) = ((1 — uefl)rn,l, Toy ... ,Tnfg)
and
Prowe—1((ro, 71, 1)) = (L 4+ 0 Dr 1,70, ..., Tha).

In the light of (2.3.1), a code C' of length n over Rm .y satisfying p(C) = C is
a cyclic code, while C' satisfying p;_,e-1(C) = C and py,e-1(C) = C are called

(1 — u*1)-constacyclic and (1 + u®"!)-constacyclic codes, respectively.

Let o®P™ 7" FZ:(EA)" — FZ:(FA)” be defined by
m(e—1)—1__ m(e—1)—1__
(@ [ |+ a7 0) 1 (p(a) | pla®) |-+ | (a7 0),

where o) € 70, | a vector concatenation and ¢ : Fpn — F7u denotes the cyclic
shift on F:

o((co,c1y -y Cpnt)) = (Cpn—1,C0s - - - Cpn—2)-
A code C of length p™©eYp over F,m satisfying cr@pm(e_l)_l(a) = C is called

(e=D=1 " Tn general, for an automorphism 6 €

a quasi-cyclic code of index p™
Aut(F,») and a permutation § on {0,1,...,p™ VUn — 1}, C is called a 0-6-
invariant code, a generalization of a permutation invariant code [24], if it is in-
variant under a composition of the permutation ¢ on the coordinates and the map
defined by taking 6 coordinatewise.

Codes 51 and 6’2 are said to be permutatively equivalent if 52 can be obtained

from permuting the coordinates of C.
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5.1 Homogeneous Weights and Gray Maps

A homogeneous distance has firstly been introduced for arbitrary finite chain
ring in [19]. In light of this, the homogeneous distance on R,m )" can be defined

in terms of the weight function wpe, () as follows:

n—1
whom<r) - thom(ri)
=0
for all » = (ro,71,...,7n—1) € Rpm,e)", where
¢
pm(e—2)<pm _ 1) ifr e R(pm,e) N Ue_lR(pm’e),

Whom (1) = ple=) if 7 € u"Rym )\ {0},

0 otherwise.

\

The homogeneous distance dpom(T,s) between vectors 7, s in Rpm.e)" is defined
to be whom(r — 8). The minimum homogeneous distance dpo,(C) of a code C

over Rym ) is defined by

hom (C) := min{dpom (7, s) | r # s € C}.
When the code C' is linear, dp,,(C) is the minimum homogeneous weight of
non-zero elements in C.

Example 5.1.1. In Rz2) = 3 + ulF3,

(

2 ifre{l,1+u,142u,2,2+u,2+ 2u},
Whom (1) = 4 3 if r € {u,2u},
0 if r=0.

Let
C' ={(0,0,0,0), (2,1 +u,2 4+ u,1), (1 +2u,2,1 + u,2 + u),
(24 2u, 14+ 2u,2,1 4+ u), (1,2 4+ 2u, 1 + 2u,2), (2 +u, 1,2 + 2u, 1 + 2u),

(14+u,24u, 1,2+ 2u), (2u, u, 2u, u), (u, 2u, u, 2u)}.
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Then C is a linear (1 — u)-constacyclic code of length 4 over R(32). Every non-
zero element in C' has Hamming weight 4, and hence dgq,,,(C) = 4. The elements
(2,1 +u,24u,1),(1+2u,2,1 +u,24+u),(2+2u, 1 +2u, 2,1 +u), (1,2 +2u, 1+
2u,2), (24+u, 1,24 2u, 14+2u) and (1+u,2+wu, 1,2+2u) have homogeneous weight
8 and (2u,u,2u,u) and (u,2u,u,2u) have homogeneous weight 12. Therefore,

dhom (C) = 8.

In order to define the Gray map for Rm ), an element € € Zyn is viewed

uniquely as the p-adic representation

e=C&(e) +&(e)p+ -+ Enaa(e)p™

where &;(e) € {0,1,...,p— 1}, for every 0 < i < m — 1. Let a be a primitive
element of F,m. For each € € Z,m, the element o, € F,m corresponding to € is
given by

e = &) & ()a+ -+ Enoi(e)a™
Similarly, an element w € Zme-1) is viewed uniquely as the p™-adic representa-

tion

where &;(w) € {0,1,...,p™ — 1}, for every 0 <i <e — 2.

m(e—1

We define the Gray map @ : Rim )" — Fom n by
(I)(’I‘) == (b07 bl, R ,bpm(efl)i]_),
for all 7 = ao(r) + uay(r) + - + uae_1(r) € Rym )", where

e—2
bupmre = aean(r) + > o a(r) + aei(r), (5.1.1)
=1

forall 0 <w < p™e=2 —1 and 0 <e<p™—1.
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Theorem 5.1.2. The Gray map ® is an Fpm -linear isometry from (Rgm )", dpom)

m(e—1) . i m(e—1)
to (Fpn ", dbam), where dyam denotes the Hamming distance on Ty, "

Proof. The linearity is clear. It suffices to show that, for all 7 # s € Rm ),
Whom (1 = 8) = Wram (®(r) — P(s)),
where Wy, denotes the Hamming weight. We observe that

O(u1r) = (ag(r), ap(r), . .., ao(r)) (5.1.2)

O(r+uls) = d(r) + ¢(u's). (5.1.3)

For the case 7 —s € u* 'Ryme ~ {0}. That is r —s = u*'t for some
t € Rpmye. It follows from (5.1.3) that ®(r) — ®(s) = ®(r — s) = P(u't).
Hence, by (5.1.2), Wrram(P(1) = ®(5)) = Wram (P(u¢™'t)) = p™=D = wpom(r —s).
Next, assume that r —s € Rm ) N ueflR(pmﬁ). Write r = s + u/t, where
0<j<e—2andt e Rpmne \uRpme. To compute Wrem(P(r) — (s)), we

count the number of 0 < w < p™¢ 1) —1 and 0 < e < p™ — 1 such that

0= ac (ao(r) — ao(s)) + i A, () (@(r) = a(s)) + (a1 (r) = aca(s))

e—2

= aap(ut) + Z aglil(w)al(ujt) + a1 (ut). (5.1.4)
=1

It follows from a;(u’t) # 0 that a;(r) —a;(s) # 0. Consequently, equation (5.1.4)
is a linear equation in the e — 1 variables a. and ag (0<l<e—3). So, the
number of distinct pairs (w, €) corresponding to solutions is p™=2) Hence, we

have Wam (®(r) — ®(s)) = p™eH) — pmle=2) = pme=2) (pm 1) = wpom(r—s). O
Example 5.1.3. Let
C =1{(0,0,0,0), (2,1 +u,2 +u, 1), (1 +2u, 2,1 +u,2 + ),
(24 2u, 14+ 2u,2,1 +u), (1,2 + 2u, 1 + 2u,2), (2 +u, 1,2 + 2u, 1 + 2u),

(14+u,24u, 1,2+ 2u), (2u, u, 2u, u), (u, 2u, u, 2u) }
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be a code as in Example 5.1.1. Then

o(C) ={(0,0,0,0,0,0,0,0,0,0,0,0),(0,1,1,0,2,2,0,1, 1,0, 2, 2),
(2,0,1,1,0,2,2,0,1,1,0,2),(2,2,0,1,1,0,2,2,0,1,1,0),
(0,2,2,0,1,1,0,2,2,0,1,1),(1,0,2,2,0,1,1,0,2,2,0, 1),
(1,1,0,2,2,0,1,1,0,2,2,0),(2,1,2,1,2,1,2,1,2,1,2, 1),

(1,2,1,2,1,2,1,2,1,2,1,2)}.
Hence, dpom(C) = 8 = dgam(P(C)).

In order to establish the onward results, an element r € R,m (" is viewed as in
(5.1), i.e., = (ro,r1, .., Tn-1), Where r; = ro; +uri; +- - +u"'re_1; € Ripme)
for every 0 < i < n — 1. Corresponding to this representation of r, ®(r) is

written as

CI)(’I“) = (bo, bl, ce 7bpm<e’1)n—1)7

where

e—2
Dapmtemts = QcTog + Y g, | (w)hg + Tem1s (5.1.5)
=1

forall 0 <w <p™e2 1 0<e<pm—1 and 0 <j<n-—1.
It follows from equations (5.1.1) and (5.1.5) that for each 0 < w < pre=2) 1

and 0 <e < P — 17 boup"ure = (b(wpm—i-e)na b(wpm+e)n+17 s 7b(wpm+6)n+n—1> :

5.2 Gray Images of (1 — u°"!)-Constacyclic Codes

A characterization of the Gray images of (1 — u®"!)-constacyclic codes over

Rpm e is given through the next theorem.

m(e—1)—1

Theorem 5.2.1. ®o p;_,e1 = o®P o®.
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Proof. Observe that

e—1

Prowe—1(T) = ( Top—1+uarp1+-+u" (Tem1p-1—Ton-1)s

e—1
o0 tuai o+ -+ U Teo10,---,

e

~1
Ton—2 + UM o + -+ U Te_1n_2).

Let (do,dy, ..., dyme-1,_1) = P o pi_ye-1(r). Then for each 0 < w < pme=2) 1,

0<e<p"—land 0<j<n—1,

( e—2

QeToj—1 + Z g, (@) Tlj—1 T Te—1,5-1 if j # 0,
=1

dwpmteyntj = e—2
(ae - 1)74077171 + Z agl_l(w)rl,nfl + Te—1n-1 1f.7 = 07
=1

\

( e—2

QeToj—1 + Z g, (@)1 T Te—15-1 if j #0,

m—1 = e—2

(Q_&(a" = rons+ 3 _ag wyrin-
i=0 1=1

- + Te—1,n—1 1f] =0 and 50(6) 7& 07

m—1 e—2

(D_&(@a'+p=1ron1+ 0z,
i=0 1=1

-+ Te—1,n—1 lfj =0 and 50(6) = 0.

\

For the other direction, by equation (5.1.5), we have

@(7‘) = (bo, bl; . 7bpm<€71)n71>7

e—2

where biupmyonty = Gelo; + Y 07, (71 + Temtyy forall 0 Sw < pne? —1,
=1

0<e<p"—land 0<j<n—1.

Let (Co, 1.y Comie—tin_q) = 0™ "7 0 ®(r). Then for each 0 < w <
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pe2 — 1, 0<e<p®—land 0<j<n-—1,

( e—2
Qo1 + Z Qg, (@) Tlj—1 T Te—1,-1 if j # 0,
m—1 = e—2
(D&’ = Dropos + D 0z wymam
i=0 =1
Clwpmte)ntj =  Teoimo1 if j =0 and &(e) # 0,
m—1 e—2
(Z 51‘(5)0/ +p—1)ron-1+ Z OF, () Tln—1
i=0 =1
+ Te—1n—1 lfj =0 and 50(6) = 0.
\
Hence, the result follows. O

Theorem 5.2.2. Let C' be a linear code of length n over Rm . Then C is a
(1 — w1 -constacyclic code if and only if ®(C) is a quasi-cyclic code of index
p™e=D=1 and length p™¢~Yn over Fym . In this case, ®(C) is a distance invariant

quasi-cyclic code.

Proof. The necessary part follows from Theorem 5.2.1, that is
oV 5 B(C) = B o py_yes (C) = B(C).

For the sufficient part, assume that ®(C) is quasi-cyclic. Then

m(e—1)—1

O(C) = o®P 0 P(C) =D op;_ye—1(C).

The injectivity of ® implies p;_,-1(C) = C, that is C' is (1 —u®"!)-constacyclic.

In addition, ®(C') is distant invariant by Theorem 5.1.2. O

Example 5.2.3. From Example 5.1.3, it is easy to see that the code C' is a
(1 — u)-constacyclic code over R(32) with dpem(C) = 8. Hence, its Gray image
®(C) is a quasi-cyclic code of index 1, i.e., it is a cyclic code over F3 with

dHam((I)(C)) =8= dhom<C)'
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5.3 Gray Images of Cyclic and (1+u‘"1)-Constacyclic Codes

Throughout this section, we assume that p does not divide the length n of
codes. Then ged(n,p) = 1, and hence there exists n’ € {0,1,...,p— 1} such that
nn' = 1(mod p). Let 8 =1+n'u*"'. Then 7 = (1+n'u*') =1+jn'v*' € R,
for all j € Z. In particular, 8" =1+ u¢! and 7" =1 —u!.

Let p1: Rpme)” — Rpm,e)" be defined by

(10,71, Tne1) = (10, Br1, ..., B 1), (5.3.1)
Then both g and p? = p o u are R (pm e)-module automorphisms on Rm 0" .

Proposition 5.3.1. Let C' be a non-empty subset of Rm ). Then C is a linear

cyclic code if and only if u(C) is a linear (1 —u®~1)-constacyclic code.

Proof. Assume that C is a linear cyclic code. Let (rq, 871,...,8" 'r,_1) € u(C).
Since p is injective, (rg,7r1,...,7,—1) € C'. By the linearity and cyclicity of C',

we have 871 (r,_1,70,71,...,7n_1) € C. Thus,

prowe=1((r0, Br1s -, 8" )
— (1= u By, 70, B, o, B0 s)
= (B7"B" M o1, 70, By -5 B2 0)
= ((B7ra=1), BB o), BB 1), BB )
= (B~ 1, B0, 87000, BT 1))

= [1,(6_1(7"”_1,7“0, AT arn—l)) S [L(C)

since 87 (rp_1,70,71,---,Tn_1) € C. Hence, u(C) is (1 — uc"')-constacyclic as
desired.
For the other direction, assume that ;(C) is a linear (1 — u¢~!)-constacyclic

code. Let (rg,71,...,7,_1) € C. Then (1o, Bry, ..., " 'ro_1) € u(C). By linear-
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ity and (1 — u®1)-constacyclicity of u(C), we have

ﬁ((l — ue_l)ﬁn_lrn_l, To, ﬁ?“l, Ce ’ﬁn—an_z) € ,U(C)

Since p is bijective, we have

P((To, T1y. .. 7717171)) = (Tnfla ro,T1y - 771n72)
= /’j“_l((rn_b BTO7 BQ’Flv s 7Bn_1rn—2))
= M_l((ﬁ_nﬁnrn—la /BT07 /827”1, s 7/871—17,”_2))

- /’L_I(B((l - ue_l)ﬂn_lrn—la To, Brlv s 76n_2rn—2)) S C
since (1 —u*)r,_1,70,Br1,..., 8" %r,_9) € u(C). Therefore, C is cyclic. [

Proposition 5.3.2. Let C' be a non-empty subset of Rm . Then C'is a linear
(14u*') -constacyclic code if and only if u*(C) is a linear (1—u®"') -constacyclic

code.

Proof. Assume that C' is a linear (1 + u®"!)-constacyclic code. To prove that
p2(C) is (1 — u®1)-constacyclic, let (rg, %r1,..., 32" Vr,_1) € p?(C). Then
(ro,71,...,7n_1) € C. From the linearity and (1 + u°"!)-constacyclicity of C, it

follows that S72((1 +u*Y)r,_1,70,71,...,7n_1) € C. Thus,

proue((ro, 81, .., B2 Vr 1))
= (1 —uHB* "V, 1 v, 2, ..., B2 D, o)
= (8782 D,y g, BPry, ., B2, )
= (B(B7%rn1), B2(B7%r0), BB 72r), ., B2V (B 0))
= 12((B72B" 01, 87270, 672015+, B7%r00)
= 12(B7H(+u D1, 10,1, - Ta1)) € B2(C)

since B72((1+u*Yr,_1,70,71,...,7n_1) € C. Therefore, p?(C) is a (1 —u®')-

constacyclic code.
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Conversely, assume that p?(C) is a linear (1 — u"!)-constacyclic code. Let
(10,71, .,7n_1) € C. Then (ro, Br1,..., %" Yr,_1) € p?(C). By linearity and

(1 — u¢~1)-constacyclicity of p?(C'), we have

62«1 - ueil)rnfla To, 527'1’ s 752(n72)rn72) S M2<C)

Since p? is bijective, we have

Proue—1((To, 715, Tno1))
= ((1+u" ) 1,70, 71, -, Tn2)
= p 2 (L4 u ey, Bro, By, . B2 )
= 12 ((B7" B o, BP0, B, o, B2, )

= /’L_Z(BZ((]- - ue_1>/82(n_1)rn—17 To, /827”1, s )/82(n_2)rn—2)) € C

since B2((1—u1)B2"Vr, 1 v, B2r1, ..., 32" D, o) € p?(C). Therefore, C is

a (1 + u¢~1)-constacyclic code. O

The Nechaev permutation in [32] is extended to be the permutation 7 on

{0,1,...,pn — 1} defined by
T(sn+j) = (s+jn')pyn + 7,

where 0 <s<p—1,0<j<n-—1,and (s+jn'), is the least residue of s+ jn'

modulo p. The permutation 7 induces m : Fby, — FV. as follows:

71-((007 Cly- - 7Cpn—1)) = (CT(0)7 Cr(1)y - -+ 7CT(pn71))-
. @pmle—D—1 _rmpmle=ly ey,
The map 7 is then extended to 7P : Fpm — Fym by

@® | a® |- | a® Y s (1(@@) | @) | | (@@ T,

where a'¥ € F¥7, | | is a vector concatenation.
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(e—1)—1

Proposition 5.3.3. ® oy = 7" o®.
Proof. First, we have pu(r) = (ro, 71, ..., " 'rp_1). Since 7 =1+ jn'u®"! € Rm ),

Blry = (rog +ury;+ - +u (jn'ro; +re;)).

Let (do, dl, ce ,dpm(e—l)il) = @(,u(r)) Then

e—2
Qv = QcTog + )0 ey + (070 + rec1)
=1
e—2
= (e + )10+ )05 ()tg + Te1
=1
= ((fo(e) +E&()a+ -+ Epoi(e)a™ ) + jn’) To.j
e—2
+D 08wy e
=1
e—2
= Q(gg(e)+in")p+E1()pt-tm—1()pm—1T0,5 T Z g, ()Tl T Te1
=1

= D(upm+((o(e)+in ) p+E1 ()t +Em—1()p™ 1))+ -

On the other hand, we have ®(r) = (bo, b1, ..., byme-1),_1), where

e—2
Dapmtonts = QeTog + 3 0 (w1 + Tem1js
=1

forall 0 < w < p™e2 — 1, 0 <e<p*—1and 0 < j <n—1. Let

(€0 1y vy Cpmte—ip_1) = T2V (®(r)). Then

Clwpm™+e)n+j = Clwp™+(o(€)+£1(€)p+-+Em—1(e)p™~1))n+j
= Clap™ (€1 (pttEm—1 (P 1))+ (nt g
= Dupmt (€1 (p+-tm—1(pm=1))n+(Eo(€)+in")pn-ti

= D(wpm +((€0(€)+5n ) p+£1 ()p+--+Em—1()pm=1))ntj

This completes the proof. n
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Next corollary follows immediately from Propositions 5.3.1, 5.3.3 and Theo-

rem 5.2.1.

Corollary 5.3.4. The Gray image of a linear cyclic code of length n over Rym e

e—1)—1

is permutatively equivalent to a quasi-cyclic code of index p™ and length

P n over Fym .

Finally, we establish the structure of the Gray image of a linear (1 + u¢1)-

constacyclic code.

Proposition 5.3.5. ® o p2 = g&" V7 o g@p™ TV o ¢

Proof. Observe that p?(r) = (1o, 821, ..., 82" Vr,_1). Since % = 1+2jn'uc"!,
B¥r; = (ro; +uryj+ - +u (290" o + e ).

Let (s0,81,---,Syme-1_1) = ®(u?(r)). Then

e—2
S(wpm+en+j = Oel'o,j + Z OF, ()T T (21105 + Te1)
=1

e—2

= (oze -+ 2jn/)7’0’j + Z OF, ()i + Te—1
=1

= (({0(6) +E&(a+ -+ Epoi(e)a™ ) + an’) To.j

e—2
D0 ) T e
=1
e—2
= Qg (e)+2in ) p+E1()pt-tEm—1(e)pm 170, + Z Qg ()i + Te1,j
=1

= D(uwpm+((€o(€)+2in" ) p+£1 ()pt-++Em—1 ()pm—1) )t -

For the other direction, let ®(r) = (bo, b1, . . ., bym(e-1,_1). Then we conclude

from the proof of Proposition 5.3.3 that

m(e—1)—
7T®p 1 1(@(1")) = (607 Cly.n. 7Cpm<€*1)n71);
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where
Clwpmteinti = Dwpm+((€o(e)+in)p+€1 (p+-+m—1r ()™~ ))n-tj-
Hence,
g (O @ (1)) = (do, sy Dy,
where
Aeopm ey = Awpm+(Eo()+€1(p-+-+Em—1 (P 1)+
= d(wpm 4 (€1 (p+-AEm—1 ()™ )n+0(n-+j
= Clapm +(€L(p++Em—1 (™ 1))+ (€ (6)-+in'pnts
= Clwp™+((€o()+in ) p+E1 ()p+-+Em—1()p™1))n+j
= D(uopm (€1 (p+-+em—1 (™ 1))+ (€0 () +2in )yt
= Daopm 4 ((60()+20m")p 461 (p+-+Emr (P
The desired result follows. O

A delineation of the Gray image of a linear (1 + u°"!)-constacyclic code is

given as a consequence of Propositions 5.3.2 and 5.3.5 and Theorem 5.2.1.

Corollary 5.3.6. The Gray image of a linear (1 + u*~')-constacyclic code of
length m over Rym ) is permutatively equivalent to a quasicyclic code of index

p™ D=1 and length p™Yn over Fym .

Remark 5.3.7. Form the previous classification of (1 —u®"!)-constacyclic, cyclic
and (1 + u®"!)-constacyclic codes, we conclude some algebraic relations among

those spaces:

n © n M n P1—yer1 n
Rpm.e) —  Reme —  Rpme Rpm.e)
lo O lo O lo O lo
m(e—1)—1

ﬂ_®pm(efl)71 o_@pm(e—l)—l

m(e—1) m(e—1)
Fgm — pm — gm " — g'm "
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For an arbitrary n, it follows from Theorem 5.2.1 that the third diagram com-
mutes. As a consequence of Theorem 5.2.1 and Propositions 5.3.3 and 5.3.5, all

diagrams commute whenever ged(n,p) = 1.

5.4 Gray Images of Some Skew-Constacyclic Codes

In this section, we give general descriptions of results in Sections 5.2 and 5.3

using the prefix “skew”in a particular case where an automorphism © of R,m )

is defined by
O((ag +uay + - +uta._1)) = (0(ap) +ub(ay) + - - +u'0(a._1)),

where 6 is an automorphism of F,m, i.e., © is Op 1, in Proposition 2.1.3. It is
clear that ord(©) = ord(f) and © fixes 1, 1 —u*! and 1+ u*!.

Let n be a multiple of the order of ©. We aim to determine the Gray image of
O-(1—wu1)-constacyclic, ©-(1+u°"!)-constacyclic and ©-cyclic codes of length

n over Rm ). First, we observe that

po1—ue—1(r) = (0(ron-1) + ub(rip—1) + -+ Ue_l(a(re—m—ﬁ —0(ron-1)),
0(’/’070) + U@(T’L()) + -+ ue_10(re_170), e

0(7’0’”_2) + U@(Tlm_g) + -t Ue_le(’f’e_l,n_g)).
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Hence, ® o pg1_ye-1(r) = (do,dy, . .., dpmee-1),_1), where
( e—2
adf(roj—1) + Y 0z (0(rij1) +0(re1;-1) if j #0,
A(wopmteyn+j = = e—2
(ae = 1)0(ron—1) + Z O‘El_l(w)‘%rl,nfl) +0(re—1n-1) i j=0,
L I=1

( e—2
al(ro;-1) + Y g @w0(r—1) +0(re1j) i A0,
=1

-1 e—2
&' = 1D)8(ron—1) + Y 0z (0 (rin-1)
i=0 =1
- + e(re—l,n—l) 1f.] =0 and §0<€) 7£ 07
m—1 e—2
O &' +p—1)0(rom—1) + > _ g, (0)0(r1n1)
i=0 =1
+ 6<Tefl,n71) if ] =0 and €0<€> = 07
\
(5.4.1)
forall 0 <w <p™e 2 -1, 0<e<p™—1land 0<j<n-—1.
From the proof of Theorem 5.2.1, we have
o T o B (r) = (e, 1, , Cym(e—1)_1) , Where
( e—2
Qelo,j—1 + Z Qg, (@) Tlj—1 T Te—1,-1 if j #0,
m—1 = e—2
(D_&(O)a" = Doy + D 07 s
i=0 =1
Clwpm+e)ntj = e imo1 if j =0 and &(e) # 0,
m—1 e—2
(Z §i(5)04i +p—=1)ron-1+ Z OF, () Tln—1
i=0 1=1
+ Te_1m-1 if j =0 and &y(e) = 0,
\

forall 0 <w <p™e2 -1, 0<e<p®—Tland 0<j<n-—1.

Let v be a permutation on {0,1,...,p"™ ¢ Yn — 1} defined by

vi(wp™+en+j)=(wp™+e)n+j
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if O(a:) = ac and 0(ag, () = (), for all 1 <1 < e—2. The linear transforma-

m(e—1)y, m(e—1

tion T, : FY.m — Fon " induced by v is given by

TV((CLO, al, “ e 7apm(e—l)n_l)) — (CLZ,(O), al,(]_)7 P ,all(pm(e—l)n_l)).

Then T, 0 0¥ """ 0 &(r) = (fo, fu, - -, Jyme=p_1), where

( e—2
0~ (ae)ro -1 + Z 9_1(05&71(@)7’1,]‘—1 + re—15-1 if j #0,
m—1 = e—2
071 (D &ile)a’ = Doy + 07 o, ()rin
i=0 =1
fwpmtents = F Tetnt if j =0 and &(e) # 0,
m—1 e—2
6‘1(2 &)o' +p—Dron1 + Z 9’1(0@_1@))17,",1
i=0 =1
+ Te—1,n—1 lfj =0 and &](6) = 07

(5.4.2)

forall 0 <w <p™e2 1, 0<e<p®—Tland 0<j<n-—1.
It follows from (5.4.1) and the result after applying 6 on both sides of (5.4.2)

m(e—1)—1

that T, o o®P 0P =®Dopg ye1.

m(e—1)—1

Let v, be the permutation on {0,1,...,p™¢ Yn—1} induced by T, 05%P

Hence, the next theorem follows.

Theorem 5.4.1. Let C be a linear code of length n over Rymey. Then C is a
©-(1 — u¢) -constacyclic code if and only if ®(C) is a 0-v,-invariant code of

length p™*~Yn over Fym .

Next, we assume that ged(n,p) = 1 and n’ € {1,2,...,p — 1} such that
nn’ = 1( mod p). Note that 3 = 1+ n/u"! is fixed by ©. Using p defined in
(5.3.1) and arguments similar to those in Propositions 5.3.1 and 5.3.2, we conclude

the the following results.
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Proposition 5.4.2. Let C' be a non-empty subset of Rm . Then C'is a linear

O -cyclic code if and only if u(C) is a linear ©-(1 — u¢~1)-constacyclic code.

Corollary 5.4.3. The Gray image of a linear ©-cyclic code of length n over
Rpm ey is permutatively equivalent to a 0-v,-invariant code of length pe=np

over Fpm.

Proposition 5.4.4. Let C' be a non-empty subset of Rym . Then C'is a linear
O-(1 + w1 -constacyclic code if and only if u*(C) is a linear ©-(1 — ut1)-

constacyclic code.

Corollary 5.4.5. The Gray image of a linear ©-(1 + u®"')-constacyclic code
of length n over Rym ey is permutatively equivalent to a 0 -v,-invariant code of

length p™Yn over Fym .
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