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CHAPTER I

INTRODUCTION

Let F, be the finite field with iptic curve over I, whose char-

acteristic is greater than cy? = 2% + ax + b, where
a,b € F, and 4a® + 27 0 \ on the curve E is called
a rational point. Let a points together with a
distinguished point at infimity, dg - : here e addition +, which makes

(E(F,),+) become an abeli

(a) [Identity] P + oo = 0o

(b) [Negative] If P = :,—y) = oo. The point

(x,—y) is denote 1

¢) [Point addition] Let" L) a .12) be points in E(F,) and
N éﬁ

P # +0Q. Where

QW@@%ﬁ)ﬂﬁ%mﬂ’liJ(ﬁ&')@ﬂ

(d) [Point doubling] Let P = (z1,11) € E(F,) and P # —P. Then 2P = (x3,y3),

where

322 +a\’ 322+ a
xr3 = < : ) —2r; and y3= ( _ (1 —23) — Y1
2y, 2y,




Elliptic curves over finite fields play an important role in many areas of modern
cryptology. Following the work of Lenstra, Jr. [?] on integer factorizations, many
researchers have used this idea to work out primality proving algorithms [?, ?].
Recent work on these topics can be found in [?]. Another application is to construct

ves for constructing a public key, it is

@)OWH number of points and its
‘ A—d.
eld W@l’mmber of rational points

he o‘\ !"v\i\i

\\\.\_

the public keys. When using elliptic

sometimes necessary to find el
group structure over a gi

and the group structur

M—r

2. E(F)) = Zn, ® Zy, fol so cgers ny and ny, and ny divides

L
_r" ~

ged(ng, g — 1). ,fr",—‘.f,‘,—.‘

A permutation T;v ver I, is a pol : J whose function on I,

0 see that e@y linear polynomial is a

"°F1°1:r9‘“*?‘17i Wh‘w N

Theorem 1.0.2. et Fy be a finite field, a € F, nd n

AMASIMANIANINAY, .. .

also permutation polynomials.

induced by f is a leeE

2. A monomial " is a permutation polynomial over F, if and only if ged(n, ¢ —

1) =1.



Proof. (1) They are just vertical and horizontal translations for a permutation

().
(2) Clearly, f(r) = 2" is an endomorphism on F;* = F, \ {0}. Recall that F

is cyclic, say generated by a. We have thus f is a permutation polynomial <

(a"):imfzIF;(:)gcd(n,q—l)zl O
Permutation polynomials e he :&v r the ring of integers modulo
n have been widely studi e & lot of applications in combinatorics and

cryptography [?, 7] as or the extensive studies, we

refer the reader to Lidl a ter 7.
\ of elliptic curves E : y? =
f(z), where f(x) is a cubi€ p A olynomial. This work extends to an

elliptic curve over a ring of integers mod a ring of Gaussian integers

we-define a shift-invariant

-——

modulo a € Z[i] in that ch

elliptic curve, inspir ation polynomial, and

characterize this type © elliptic curve on the finite .mlds the ring of integers

modulo n and aﬂ.aj Eiqmrﬂgﬁﬁ&w H\Wrﬂq de this research by

giving a remark on elliptic curve cryptography in.Section3.3.

ARIANN 3TN UA1INYA Y



CHAPTER 11

ELLIPTIC CURVES WITH PERMUTATION

i§§ma$m

In this chapter, we stud

structures, namely, finite

Since a? = a for allj@-e-di—as—a-ti .-“—-"-ﬁ"i-”-ff—”-;':; only on permutation

v
polynomials modulo xﬂ»

ﬁmmmmﬁﬁﬂﬁﬁﬂ%?WWﬁﬂi

Theorem 2.1.1°0?] If f(z) is a permutation polynomwl over ]F then
AN Mmmmm ng ﬂ d

forallt < q—2 and ged(t,q) = 1.

als of mgree < q. We record a

The following result characterizes permutation polynomials over finite fields of

characteristic greater than 3.



Theorem 2.1.2. Let q be a power of prime p > 3 and f(z) = 23 —azx + b
a cubic polynomial over F,. Then f is a permutation polynomial if and only if

ged(3,g—1) =1 and a = 0.

Proof. By Theorem 1.0.2 (1), it suffices to consider only when b = 0, i.e. f(z) =

2% — ax. Assume that a # 0. y
Case 1. ¢ =1 mod 3. Then &ge N. We have ged(n,q) =1

and n < ¢ — 2. Also, de n=q—1>q—2.
Case 2. ¢ = 2 mod 3. L3 N,sog+1=3n+1).
, 4" \ S
Thus, ged(n+1,¢9) =1 a A £ig—2 " \
f )™
= lower terms

mod z? — z.

Since 3+ = patlicly AR ged(n +1,q) = 1, we

conclude that deg(f(z)™"! modxq—xT—3n+l—q—l>q 2.

Hence, both ﬂséuoﬁt}’g W}Ei %&] % Wﬁ ’1 ﬂ’} az is not a permu-

tation polynomial 1f a # 0. That is, f(z) = 2® is the only permutation polynomial
o s 00 W HIR b QJ&M’ISA neaae

The converse of this theorem follows directly from Theorem 1.0.2 (1) and (2).

This completes our proof. O

Finally, we count the number of points of E(F,) for the elliptic curve E : y* =

5



f(x) = 23+ b, b € F,, where ¢ is odd greater than 3, and determine its group

structure. Observe that for each z € IFy, if

(

0, then (z,0) occurs in E(F,);

f(z) =1 r?, then (z,r) and (x, —r) occur in E(F,);

From Theorem 1.0.1 (2) KRO at B(E,) & Zyn, X Ly, for some positive

integers ny and ny, and ny divide ince ny divides |E(F,)| = ¢+1,

ny = 1 or 2. Assume w‘———— : f'" vhich contains 3 points

of order two. Since f (azﬂ 23+ b has only one root in Iﬁ‘msay a, (a,0) is the unique

double point 1nﬁ(ﬂﬁl—ﬁm‘cgﬁwﬂﬁ ﬂ ?nce, E(F,) = Zy,.

Therefore, we ha¥ié shown: ¢

e A AN TN BIANY A

nomial over Fy. Then E(F,) is a cyclic group of order ¢+ 1, i.e. E(F,) = Zgyyq.




2.2 Elliptic Curves with Permutation Polynomials over the

Ring of Integers Modulo n

To extend the study, we consider elliptic curves with permutation polynomials

Theorem 2.2.1. Let e rings, [ a permutation

polynomial over Ry X and f({0} x Ry) = {0} x Rs.
In other words, f is a the subrings Ry x {0} and

{0} x Rs.

for all » € Ry and f ismn injection, we have f is a bﬂction on Ry x {0}. The

st (Y HNUNTNYINT -

From the Chinese remainder théorem, Z, 27 rn X ... X Zfrr, where n =

e A AAN IR AN N E

Theorem 2.2.2. For any n = Hle pi", f(x) is a permutation polynomial over

the ring of integers modulo n if and only if f(x) is also a permutation polynomials
over the rings of integers modulo p;* for all .

7



Hence, it suffices to consider only a permutation polynomial over the rings Z,»

studied in [?].

Theorem 2.2.3. [?] If f(z) = ax® — bx + ¢ is a permutation polynomial over Z,-,

where p > 3 is a prime, thenr =1, p=2 mod 3 , b= 0 and a € Z,; .

This theorem yields an im

Corollary 2.2.4. If there . C ¢l %ﬂ’mut&tion polynomial over a
ring of integers modulo Juare-fréevin eger whose prime divisor

1s congruent to 2 mod

+ b be an elliptic curve with

ion on F(Z), we apply
d p; for all 7. Using the
Chinese remainder theo'em we know that the homomorphism 7 = (mq,...,7) :

s s LA AT W A e » s

be defined by usmg the addition on #(Z,,) and the projection map 7.
The o oAl bkl AR, o

tion polynomial over Z,. Its proof is evident from the above observation.

Theorem 2.2.5. Let n = Hle pi, where p; < piy1 are odd primes which are

congruent to 2 modulo 3 and E : y?> = 23 + b be an elliptic curve with permutation



polynomial over Z,,. Then

B(La) = Zpysa X -+ X Ly,

2.3 Elliptic Curves with Permutation Polynomials over the

dulo «

w@uon polynomials over the

0 NONLDTt Zli]. We start by deter-

Ring of Gaussian

In this section, we consider:
rings of Gaussian intege
mining cubic permutati

(m™), where 7 is a prime

in Z[i] and n is a positi hinese remainder theorem

to find necessary and suffici stence of a permutation poly-
nomial over Z[i|/(«), where Gaussian integer. Finally, we
end this section by classiflyin permutation polynomials over
this ring. . -
: v X
Again, from the ChEese re de we h@z Z0i) /() = Z[i]/(7]") x

X [ (), ﬁhﬁ ﬁ 3;? ﬁﬂaﬁ %rgwﬂqg]m ﬁ[%Applying Theorem

2.2.1 leads to the@e oremnl.

e AR TRIMATNGAN, 0 ..

permutation polynomial over the ring of Gaussian integers modulo « if and only if
f(z) is also a permutation polynomial over the rings of Gaussian integers modulo

7wy for all j.



Therefore, it suffices to consider only a permutation polynomials over the ring

Zli]/(7"). Write N(a) = |a|? for the norm of a.

Lemma 2.3.2. (Hensel’s lemma on Gaussian integers) Let f(x) be a polynomial
over Zli], m a prime in Z[i] and n a positive integer. Then the number of the

solutions of

(2.3.1)

(2.3.2)

18

(a) none, if f'(z) =0 m is 7 olution of (2.3.1);

(b) one, if f'(z) 0 £
A7 A

(¢) N(m), if f'(z) = l:l od 7 ana a solution of 31)

Proof. Let z € ﬂ H EJ’J %ﬂ%@ﬂﬁf}ﬂj’ ) and 5 a Gaussian

integer with N(s . Then westonstruct we= z + s7"~'. Byconsidering the
Taslor %H']@ INFIRTINDa

n—1)2

—f"2)+...

fw) = [z 47" = f(z) + (s7"7) f'(2) +

10

10



11

T 1)k

since 7 divides —f(’“)(z) where k£ > 1. Then w is a root of (2.3.1) if and only

if

or

Case 1 f'(2) 20 mod - {8 the.unique Gaussian integer with

Case 2 f'(z) =0 mod 7. Fheft dng Ga n could make w = z+ s

a root of (2.3.1), that is, 7). O

Lemma 2.3.3. Let 7 be a pri posili teger and f(x) a polynomial

over Z[i|. Then f(z) permutes “—--Jm g ™), n > 1, if and only if it

e ST v
b S

permutes the elementsof Z every quadratic integer

_ , .
2 in Z[i). Y/ — X

)

Proof. Suppose f(x) perliiutes the elemen s of Zi]/(7"™), n > 1. That is f(x)

1m@M/ﬂu&anQM§wyaai.mwmu
e Wﬁ SNIlRIVE jjj (FHG -

a € Z[i]/(m), we can see, by Lemma 2. 3 as exactly one root

in Z[i]/(7") if f'(a) =0 mod = for some « € Z[i| /(7

Conversely, suppose that z is the root of

f(x)=0 modn

11



satisfying 0 < N(z) < N(w) and f’(z) = 0 mod 7. Then, according to Lemma
2.3.2, f(z) = 0 mod 7% has exactly one root corresponding to z. Repeating the
argument we obtain f(z) =0 mod 7" has exactly one root corresponding to the

solution z of f(z) =0 mod 7 for every n > 1. By replacing f(z) with f(x) —

/h ve f is a bijection over Z[i]/(n™). O

where « is an arbitary element in Z[i

Remark. We follow the idea; 1 ing Theorem 2.3.1, Lemmas 2.3.2

and 2.3.3 on the ring of

Theorem 2.3.4. If f(z) olynomzal over Z[i]/(7"),

where w is a prime in = -_ ‘\. itive integer, then r = 1,

d-permu tion polynomial over Z[i] /()
which is a field. By Theorem s : 0. r. Then f'(0) =0 mod 7 which
is contary to Lemma 2 -l”‘*—’*"'*‘ — \_ ' is a cubic permutation
polynomial over the ﬁe | YAl Y — Oﬂnod m by Theorem 1.0.2
wﬁ)x . Ca LY ‘
UEINENINEINT

The primes 1nq'k[z are characterlzﬁd in the folllowmg theorem

e MDY DAEMNANEIN ., .

three types:

and a € (Z[i]/(

(i) m=a+bi or ™ = b+ ai, where N(7) = p = a®> + b* is a prime in Z and
p=1 mod 4;

12

12



13

(ii) ™ = p, where p is a prime in Z and p =3 mod 4;
(iii) m=1+1i.

By the above theorem, 7 is a prime in Z[i] with N(7) > 3 and N(7) = 2

mod 3 if and only if 7 = a + bi or b+ ai, where N(7) = p = a®> + ? is a prime in

Z and p =1 mod 4. Hence, we . \ corollaries.

Proof. If 7 = p is an odddprifn 7 aid d4 then N(7) = p? = 1
mod 3, so by Theorem 2.3. ! &C ‘a%bio ai, where N(m)=a?+b* =

5

p =1 mod 4. Thus, N(r) =2 auod 3 N(7®) = 1 mod 4, so N(m)

mod 12. The converse is clea O

Yo

7=
/

Corollary 2.3.7. If tation polynomial over

a ring of Gaussian mtegers modulo «, then a 18 square-free product of Gaussian

s o U ANEHANEART
ooy ST e

nomials solthe ring we are interested is Z[i]/(c), where a satisfies the condition
of Corrollary 2.3.7. Let E : y> = 2% + b be an elliptic curve with permutation
polynomial over Z[i|/(«). We can define a group operation on Z[i]/(«) based on
the structure of an elliptic curve over finite fields similar to the definition over Z,,

13



14

in the previous section. The next corollary is obtained from combining Theorem

2.1.3 and Corollary 2.3.7.

k . . . .
Corollary 2.3.8. Let a = szl 7j, where 7 is a Gaussian prime whose norm is

a prime integer p; congruent to 5 modulo 12 for all j € {1,....,k} and let E : y* =

AULINENINYINg
ARIANTAUIM TN

14
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CHAPTER III

SHIFT-INVARIANT ELLIPTIC CURVES

3.1 Permutation P Varlables

In this section, we stud hials in two variables over a finite

ring. Let f(z,y) be a oefficients in a finite ring
R. We say that f is a Lif for every 7 in R, the inverse

image of r under f is h a simple form of weak

permutation polynomials ov fidite fiel -FL
£ -3"57‘-' 4 s
Theorem 3.1.1. Let R be a fimite ring. “Let g(y). and_f(x) be polynomials in

Rlx,y]. Then a polynomial i () is a weak permutation

polynomial if f(x) or gm) 1S a permutation polynomiamver R.

) L AN WD T mers: (0.0 <
Rx R | g(y).=p(n)} — R defined by ¢(r,4)= y is a bijectioh.  This makes
() iﬁﬁgéﬁﬁj— iﬁﬁ)ﬁ 97 ﬁdﬂ

|.
Without loss of generality, suppose f(z) is a permutation polynomial. To
show that g(y) — f(x) is weak, we determine the cardinality of {(z,y) € R x R |

g(y) — f(x) = r} for an arbitrary r in R. Since f(z) + r is also a permutation



polynomial, we have

{(z,y) € Rx R | g(y) — f(x) =r}| = [{(z,y) € Rx R | g(y) = f(x) + 7} = |R],
for all r € R. O

Corollary 3.1.2. 1. If E : 3? s an elliptic curve with permutation

polynomial over F,, t | ak permutation polynomial in
Fylz,y]

2. If B :y? = f(x) is jcf cur: \ ation polynomial over Z,,
then y* — f(x) is 0 PO \.\ Zylx,yl.

3. IfE : y?> = f(o)i :f ""' ve with permutation polynomial over

polynomial in Zi]/(«)[z, y].

3.2 Shift-i 1nva

z) and a € Fy, we m E, denote the a-shifted

elliptic curve, yﬁ ﬁ)ﬂaﬁfﬂpﬁmeﬁﬁvﬁjﬂceresmng property

of elliptic curves With permutation ‘polynomlals Together Wlth Theorem 2.1.3,

e QWA DDA B B v

movariant ellzptzc curve as an elliptic curve E whose numbers of its rational points

For any elliptic curve E 2 =

do not change when it is shifted by any constant in F,. Also, we may define a

shift-invariant elliptic curve on Z, and Z[i]/(«) in the same way.

16

16



Theorem 3.2.1. An elliptic curve E over a finite field F, whose characteristic is
greater than 3 is a shift-invariant elliptic curve if and only if it is an elliptic curve

with permutation polynomial.

Proof. Let E : y*> = f(x) be a shift-invariant elliptic curve. Then for any a

in [F;, the cardinality of the set ' oints of £, must be the same, say

K € NU{0}. For each c € imag inder f, let n. = [f~'(c)|. Note
ﬁ

that Zcef(IFq) ne = |Fy| V |
Assume that 0 ¢ f(IF, c) =1 or —1. Thus,

"N

3

Cef—a(]FlI

=n,+2

ﬂ‘UEJ’J‘VIEJVI@WEJ\’m‘i

which forces n, be even for any arbifrary a in f(E,). This is contrary to the fact
= PIAINIUIBING AL

Finally, suppose f is not onto and let b ¢ f(F,). Counting rational points of E_,

gives 0 € f_4(F,). Thus, K = 2} ccs ., N and when we count rational points
x(c)=1

of B_,, we still get K = n,+ 2 cer ,,) ne for every ain f(F;). A contradiction
x(e)=1

17

17
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occurs in the same way because ) fE,) e = 4 is odd. The opposite direction is

clear. 0

Next, we study a shift-invariant elliptic curve E : 4> = f(z) on the ring of

integers modulo n. For any r € Z,, the cardinality of the set of rational points

of E, must equal the same consta

number of roots of the equat

K = Z : - a -Nf+a(r+a)
r€f(Zn) fa(Z

when F is shifted by a

Y s =) e =71} =|Zn| =n
’)"EZn TGZn
Note that for all 7 € Z,, Nl i N () 810 Y5, cfeey N7 (r) = |Uyes, /70| =
. fles '
| Z,,| = n.
To answer the next, que [s there ¢ mvariant elliptic curve in the

L

-
rem, it suffices to work

7

ring of integer modul

only with the case n is Bprime power. The following t}ﬂrem gives us the number

of square roots ﬁuﬁ?{?}%ﬂ% %:w EJ‘ ’] ﬂ i
I.Jernma ‘ﬁ% %aﬁs,g[)ﬁ‘frtﬂélﬂ]%[ﬁ ﬁbﬁnﬂdﬂfﬁ‘gn a positive
integer, a @ residue modulo p" and s(a) denote the number of square roots of a.

Then

(i) for a = pt where 0 < k < n and ptt, if a is a quadratic residue, then k is

k/2

even and s(a) = 2p*/?, and

18



19

(i) if a =0 mod p”, then s(a) = p"~ 2]
In particular, s(a) is odd if and only if a =0 mod p".

The technique used in the proof Theorem 3.2.1 can be extended to prove the

next theorem which describes a shift-invariant elliptic curve over the ring of integers

Theorem 3.2.3. Letn; vere {1
44 .' ‘ﬁ

E over a ring of integers

modulo n.

1. Then an elliptic curve

Proof. In Zp,n:, we know ¢ previeo corem that 0 is the only residue

0\

in [1*, Zpn: = Z, kiak‘odd roots a ' 11 7. Suppose on the

AUETISNINEINS
AT NNMINeNaY

Ny(3) = Ny (0) = K — > s(7) - Ny_(7)

e f 51z, Zpmi)
7#(0,0,...,0)

contrary that (0,0, ... ,E z

which are even for all § € Hle Zpri- On the other hand, > o ;) Ny(5) =
[T, p™ = nis odd. Hence, (0,0,...,0) is in the image of f. Again, f must be

19



onto unless (0,0,...,0) & f ATI, Zyn) for some i’ € []i_, Z,,» which leads to a

contradiction in the same way. This completes the proof. O
Together with Corollary 2.2.4, we may conclude from Theorem 3.2.3 that:

Corollary 3.2.4. If there is a shift-invariant elliptic curve over a ring of integers

modulo n, then n is an odd co ’%}6 integer whose prime divisor is
congruent to 2 modulo 3

We finish our Work

ing Sitnilar results in ..'"! ing of Gaussian integers

modulo a where « is ir a involving the number of

square in Z[i]/(7*) where 7fis & Gaussi —. \ a positive integer.

Lemma 3.2.5. Let 7 be afGag 3'?' rm is not 2 or'9, n a positive

integer, o a Gaussian integer '{’:‘e “de th number of square roots of «

modulo ©. Then i ‘J"’ NI

-

o 7
(i) for a = why wheﬂo
is even and s 2N(*/?), and

ﬂuﬂqwaﬂiWHWﬂi

(ii) if a =0 med 7", then s(a) —N7r 3]
WA AINI NI NN AT

Proof. (i) Assume a = ¥y is a quadratic residue. Then there exists 8 in Z][i]

\‘
S mquadmtic residue, then k

such that 2 = a = 7%y mod 7". This means % — 7fy = 7§ for some
§ in Z[i], thus 5% = 78(y + 7"7*§). Since 7 1 (v + 7"7%6), by the unique
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factorization of Gaussian integers, k must be even. Hence we write k =
2u,u € Z.

2

Case 1 uw = 0. This means 7 does not divide «a, then h(x) = 2* is a homo-

morphism on (Z[i]/(7™))*. Thus, s(«a) = |ker(h)| = s(1) = 2.

Case 2 u # 0. Then a = “‘ a: I y can see that ~ is also a quadratic

77 for some 7 € Z[i]. Since

7 | B, we can writM a\\, count s(a), we first show
/8 \\\

_4 — o mod 7", 3?—a is divided

. \ B

by 7", that is, 7" | \\\ n 7= (oc—n)(c+n)m"

Since 7 is a prime whi , either 7 | (¢ +n) or

7 | (6 —n). Conseq . : " d vid ~ either § — nm* or B + nm*.
,.M.f’. \

Next, we consider the ¢ase 4| 5= e can see that all square root 3

of a are of the fo So-there are totally N(7)

S
A

different elements/of i ering together with the

choice of n we ha& ( ) = 2N(7"). It can be Iaoven similary in the case

~ U INENTNGINT
” ﬁl"‘ﬁﬂ“’l NI ﬁ‘iﬁﬂsﬁ”‘i 3 | ET'T&’ .

of the form 721§ where N [51). Hence s(a

required.
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Finally, we can similarly prove Theorem 3.2.3 using the fact that 0 is the only

residue in Z[i]/(7™) whose number of square roots is odd to obtain the final result.

Theorem 3.2.6. Let o = [[5_, 7™ where N(m;) > 3 for all i. Then an elliptic

curve E over a ring of Gaussian integers modulo « is a shift-invariant elliptic

”/ permutation polynomial.

curve if and only if it is an ellipti

Together with Corollar

\' \ ve over a ring of Gaussian

integers modulo o, the " Gaussian primes whose norms

are primes in Z congruent

3.3 A Remark on a ryptography

An Elliptic Curve Cryptogr 7 (EC ', s dis d.in 1985 and have been used
widely now as a public.ke ' ! ' o8 environments. It is a
secure cryptosystem WJ‘E small key sizes, Which resultﬂn fast computations. Its

security concepﬂ ﬁﬂoﬂt%ﬁ%fﬂlﬂtﬂﬂ Discrete Logarithm

Problem” which is stated as follows: ¢

ARIAINIUUNINYAY

Elliptic Curve Discrete Logarithm Problem. Given an elliptic curve E over
a finite field F,, and points P and Q) in E(F,) \ co. Then find an integer n such

that nQ) = P, if such an integer exists.
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According to this problem, to construct a secure cryptosystem, it is neces-
sary to find elliptic curves over a given finite field with a large number of points.
Moreover, its group structure must not be too easy, e.g., a multiplication of small
primes. Elliptic curves with permutation polynimials seem to fit for this situa-

tion. Unfortunately, it turns out tha is only one form of this type of elliptic

curves, namely, %2 = 2 + b, and this form is well studied

and unfamous now. . N

However, we find i ll u N ther advantage of elliptic
curves with permutati ' --cL_~. a shift-invariant elliptic
curve so we can gene | ,\o\ loss of security level by
4t hat the shift-invariant prop-

erty does not occur in any other, types of € i ves over finite fields, the ring

of integers modulo n and the __;,15, egers modulo .

AU INENTNYINS
RINNIUUNIININY
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