CHAPTER 2

BRIEF SUMMARY ON SHIP STABILITY THEORY

A ship will experience many forces (eg. wind and
waves) trying to turn it over in the service. It must be

capable of resisting thes what is termed its stability.

It is also well wn J"I oo much stability is
undesirable becaus unpleasant motions and
— o ——
be costly. Thu i ‘..'!pnﬂbr to be compromised.

Actually no shi 2/ Buk nte der all conditions.

Because a ship ‘ons during her life.

251 INITTAL SFAE
ey ¥
A ship is/fa omjngg” and is not in the
mathematical sense @ &%:@13%: ‘-wever, for the purpose

of studying stabi sible so to regard it in

calm water annfh ----------------- -ﬁ‘fg- ship is in waves
or is underway, the miﬂ forces acting on
the ship which may. . affect th buoyancy forces. For fast

sotor bosfl] umm&m@w B Frodoninate on

assessing stability.

ARNAINIUNNINY AL

4 Any small disturbance can be resolved into three
components of +translation and three of rotations with
reference to the ship’s body axes. Fig. (2.1) shows the

positive directions prescribed.

- Translation along the x-axis (SURGE) leads to

no resultant force. The ship is in neutral



33

equilibrium for this type of disturbance.

- Translation along the y-axis (SWAY) leads to
no resultant force. The ship is also in neutral
equilibrium for this type of disturbance.

- Translation along the z-axis (HEAVE) results in

an augmented buoyancy force which will tend to

opposite direction. The
is type of disturbance.

) L
(Speci i S NS bmerged body is not

- Rota h } ‘;“ .. ROLL), results in a
mome ] - ’ .;.' \:\-- about which no

The ship may dis-

stable equilibrium.

(PITCH) leads to the

condition-=i u_\,h- lling
= Ro -&E?TT-‘TI‘E:_“"—D“*-—-EJ ), results in no
i

The ship 1is in

resu!ﬂanvf a:eﬂi.

neutrq} equlllbrlu for this type of disturbance.

Thwyﬂ‘ ’1 uﬂ nj ﬂﬂ Ilﬂ ‘j demand study are
 ARIA e

the two separately :-

a) The stability exhibited by the ship for rota-
tions about the x-axis referred to as its

transverse stability.



Fig.
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(2.2)
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b) The stability exhibited by the ship for rota-
tions about the y-axis referred to as its

longitudinal stability.

Consider the irregular shaped body shown in Fig.

(2.2) floating in a state of equilibrium. The centre of

buoyancy, B and the f gravity, G, must lie

&ate of equilibrium. If
‘_
td @nal disturbance, by

gle aticonstant displacement,

o’
on the same vertical
the body is no& s
turning it throug
the centre of b some new position, B.
In the figure, !"1':f as--»\is shown as being

: r \\\t will be realised
that the conditi P T‘;y. «jhplacement will, in

general, require tr lational ements of G by forces as

well.

The hy‘ —and  buc Ce continue to act
vertically afteE rotat n g%eral, are separated
so that the body i#smsubject togpa moment AGZ where Z is

the foot oﬂuﬂlnﬂ;ﬂ;ﬁm Bl ) Quine of action

of the buoyancy force. @s drawngathis moment tends . to
‘Q HLAND A5 HI31 nm Bhd coupre 1o
termed the righting moment and is termed the

righting lever.

Another way of defining the line of action of the
buoyancy force is +to use 1its point of intersection, M,

with the z-axis. As the angle is indefinitely diminished
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M tends to a limiting position termed the metacentre. For

small values of Beta, it follows that

GZ

GM sinf
= GMJ3

The distance GM is termed the metacentric height

and is said to be positi lies above G. This 1is

for should M lie below
,J

the condition of stab
G, the moment actin to increase ﬁ, ’ the
body is unstable. he equilibrium is

neutral. See Fi

The method of fo

Alteratio ons (ie.in x, y or
z.directions) can tment of transverse
metacentric height. form changing has the
advantage of main '-5**“5”* icients of fineness

unaltered and isﬁ__“ 'Egvy stages of ship

design. » Iﬂ

= (conffm) x L x Bgg T _
Hence a.l H’Jqﬂﬂﬂ El"]ﬂ‘j
= const.f + log Let Log B + weg T

si% TRLTHRR

=dL + dB + d
B

Thus, if the percentage changes in the main dimensions are
small, their sum will provide the percentage change in the

displacement. It can also be shpwn that

BM = 1p = {const.) x §E

v T
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By the same process

dBM = 2dB - dT
BM B T

Also (Fig. 2.2)

dBM = dBG + dGM
BM BM
= dBG +

BG

Some special cases ar

a) To ch ‘*ih Q; beam only, the increase

If KG b ‘}-1.‘.“;"“__“."’._"-‘:‘——_-;. -

Y]

U

Hence dGM

Normally Bﬂ%ﬁa‘%%ﬁ%ﬁ Wi}f}ﬂﬁtrlc height

is normally ncrease more than tw1ce that in beam.

AR FAMAINLIAY. ....n.

= dB
B

[}
IQ-
e

Thus, the length must be decreased in the same ratio as the
beam is increased. Provided, KG = const. The change in

metacentric height is according to case (a).
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c) To change the vessel’s draught while keeping the

length and displacement constant

Normally KG varies as - the draught, hence two possibilities

exist :-
(i) KG
Then BG

dBG

Hence, from the p

dBG_+ dGM

w _Auiingmingn

Qﬁﬂﬁﬂﬂﬁmﬁﬂﬂﬁ“ﬂmﬂ ¢)

The ab ve constants of proportionality are not necessarily
the same.
Hence dBG = dT = -dB
BG T B
It has been shown that

dBG + dGM = 2dB - dT = 3dB
BG + GM B i B
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Hence

-BG dB + dGM 3(BG + GM) dB
B B

and

dGM

(4BG + 3GM) dB

Effect of free

WL and let it be all angle ¢ to a new
waterline W;L;. _8fn Be-s the liquid in the
tank is free, it s rface inclination

relative to the ts p Fig. (2.4).

For small it can be shown

that the transfer o approximately by
the expression.

\r

Ds Is . ¢ =2

Vs lﬂ

it Inemdne e o

movement of %he liquid 1n the tank is approx1mately

AFAPIUNING AT

Transferring of weight opposes the righting moment
due to the transfer of buoyancy and results in the
effective righting moment acting on the ship being reduced
to

AsGMo - fﬁll
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Let GMgp be the effective metacentric height

allowing for the action of the liquid free surface

DsaMpg = Osam_ g - PIg g

Therefore

GMp = GMg - g‘lll . 8
S

independent of the
dependent of the
the second moment of

1'3=lly unchanged when

Normally, 2 4f"r-{ ) effect is regarded as

being a virtual rise 3; entr gravity of the ship.

] |
AULINENINYINg
RIANTIUNRIINGAY
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The wall-sided formula

A ship may be regarded as wall-sided if those
portions of the outer bottom covered or uncovered by

the moving waterplane are vertical with the ship upright.

No practical ship re truly wall-sided but many
may be regarded aé ' M/angles of inclination .
A“I'

nc®in
\F

_ 1
\ \‘- g

Lll-sided, WL and W;L4

Let the s ts initial water WL

to a new water heeled through a

small angle g. Si

must intersect o Fig. (2.5)

The vol ~an elemental wedge

of length 6L, whe

Moment this wedge in a

direction paral‘ﬂl to WL

- pRUEINENITNYINT
AR TR TURT I A e

volume fjis

gﬁ tan g . dL
12

Horizontal cgpponent of shifting of B, BB’is given by

BB’ =_1_f__itan¢.dL
V01z

u
-
‘-+
o
S
=
"
w
=
ek
®
=
h Y



Fig.

(2.6)

Wall-sided ship with liquid contained in

a wall-sided tank
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Similarity, vertical shift B’B" is given by

i
B'B" = 1 [b%2 . tang 1L b . tan g . dL
V) 8 3
0
= T & tan2¢
2V

GZ

GZ

AULINENINYINT
ARIANTAUNNINGIAY
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Wall-sided vessel containing a tank with vertical sides

containing liquid

Let the density of the liquid in tank belP times

that the water in which the ship is floating

Fig.(2.6), horizon and vertical shifts of B will

be as calculated for &l 11T out a tank. The centroid

gg’ =
and

g'g'’ =
The centre of : R ip, will suffer movements
of :

GG’ = tan #
and

ﬁIl"ﬂtan L7
" AuERTiENINgINg

The presen of the free surface will effectlvely reduce
@ tﬂﬁﬂaﬂﬂ‘iﬁuﬂﬁ’]’mmﬁﬂ
where

6zp = sinp [(GM - PLL) + (BM—jOIV_l)%_tanz #]

S S
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2.2 LARGE ANGLE STABILITY [65]

Cross Curves of Stability

In principle, the concepts of large angle transverse
stability are equally applicable to longitudinal stability

but, in practice, they ot normally required because

of the relatively f trim a ship can accept

for reasons other

Let the tially at a waterline

WL. Fig. (2.7 heeled through some
angle 0 to a new that the displacement
remains constant. Y >, will act through By
the new position p &l buoyancy, its line of
action being perpe If z, is the foot

of the perpendicularqshﬁp G on to the line of

"

action of th“:;;;rwnqm?-"—wﬂg ----- ;35&} righting moment

Y

s

acting on the shir m

of Ustability, the concept of a

NS ¥ 1 [ g
o AT TRV A ™

In general, a ship when heeled will also trim to
maintain its longitudinal equilibrium. This can usually be
ignored but where it is significant. The points shown in
Fig. (2.7) must be regarded as projections of the true

points on to a transverse plane of the ship.
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Fig. (2.8) Cross curves of stability
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Since the displacement is the same, it follows that

the volumes of the immersed and emerged wedges are equal

Let bo) buoyancy force associated with immersed wedge

bl; bz = centroids of volume of the emerged and

immersed wdeges respectively

ti : s from bl; bz onto WLy
3 om B on to the line of
o ——
: force through Bl

=
-
=
\V]
i
Hh
®
o
t—f.
@)
H

=
"
i
(o}
(o]
c+

The above f -gﬁaj?-f‘ as Atwood’s Formula. The

point G depends upon the ship and 1s not a

fixed point. Itsis—more—com - e—to—think in terms of an
= v, if

arbitrary, but iﬁxe-,

SZ from the line f action the buoyancy force SZ is

a@u&q SIS s can or

calculated for various ahgles of . heel and E}lsplacements
o) RARI R IQNBIIDELR L on
9

Then

s qarpendlcular distance

' GZy = SZ + SG sin 4

The position of G can be calculated for a particular
condition of loading. The * values of SZ can be plotted

against displacement for each of a number of angles of
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Fig.{(2.9) for constant

iqf J”.-'- [1.U .

h 1 -
WAL

(i b2/ 5 T

Fig. (2.10) Radial integration for Barnes’s method

of deriving statistical stability data
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inclination as shown in Fig. (2.8). The curves are,

commonly, called "Cross Curves of Stability"

For constant displacement, the SZ curve may be

determined as follows. Fig. (2:9) let WL be the

upright waterline, W Ly the inclined water line at the

same

inclination of WlL

displacement and the waterline at the

intersection of

WL with the cen

Let
)

and let this foreecia

the 1

= buoyanc Sec : ﬂkﬁed wedge between

= emerged "‘;‘v ee) and W,L,

= immer 3 twe L' and Wsz

Layer of 151 and WoLy is Qg

ayer iS l' :_,-l-_—ll_ll—-r—ur.-_-r_ﬁ—_-’_- I's d as the Centrold

- : ‘

of the waterplam ' @

" Let

by

Then

ﬂ ‘IA&L’J Ylf;lmmmiween L and o
m SRS e

20 projections of bl’ 3 bz,, on to W2L2

Onih, = O Ohy, + 8,0h,, - (&, - 6,) OF,

-51



51

There area and first moment of area of waterplane

'Wsz are given by the expressions.
L

Area = r dx
[5

First moment of area about fore and off axis through O

. dx

By dividing the m*n‘ the value of OFZ is

found. Substitut

OF, - BS Sinf

'\\ \”"
Evaluati various values of &

gives the values ¢ at placement.
ﬂ%ﬂ
W red

An adaptatio Ofﬁw T od, if a whole range

S2 - = ©0hy

of ship displaceme s.ﬁ t o2 overed, would be to find

the displacement®p %o waterline WZLZ through

RININIUNRINYIAE
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Other methods to derive cross curves of stability

It is quite common to derive data for the plotting
of cross curves from a digital computer. Some methods will
be described here.

a) Integrator methods

An integrator ially a machine which

closed curve and the

,—d
f th %bout a datum line -

"~-ds to be used- the

measures the area
first and second
the axis of the
all-round and th
b)
From the
Oh;h, = - &1) - OF,
vluated wusing radial
integration.

By consitiering the element of sle in Fig.(2.10)

g \’
and applying th‘fw integration.
L &

«

+ 1 r? dogr cos(g-x)dx
RE LR

? 2 cos ( MJ dx d&

R LAraR HABANUIAY, carin

intermedlate radial waterlines at equal increments of heel
and measuring the offsets’ r’at the appropriate stations.

The same process can be followed to evaluate.

L ¢
g = i 1’22 4o+ dx
ok ¢2
5. = f1 r? do dx
y + 5
2



53
c) Reech’s Method

Let B“and Mot be-the positions of the centre of
buoyancy and metacentre corresponding to inclined water-
plape Wo( Ly « From the definition of pro-metacentre, 1if
BO(, moves to Boc+§o(f°r a very small additional inclination

By Borad B Madx

+8X is parallel to Wo( Loc

It follows b \ from waterplane

W L, the position Avien : an be expressed as
(y,2z) where .& Z ! . \
A A
Y = . C.. - d
prador: ¥ |
VA = M Q_‘\; o
k) (s, - - ...
The negative sif ..1:._.-;:.4 signifies only that Bl

e A

is "higher" than B.

cosp -z sing - s sing

SZ =
= coﬂ! B M, , sing fﬂ o(sino(do(— BS sing
(%
To evaluatef is expresgi ion, is necessary to

determine a ﬂugl mglﬂi w&qﬂg at constant

displacement and for each daterplan& obtain tl@ value of

o by eobalibe |G Dol b ST bl Bnde) 3 area ana

dividing by the volume of displacement.

d) Prohaska’s method (53)
Prohaska considers the stability lever GZ as

composed of two parts :-

GZ = GM sin g + MS
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MS is the distance from the upright metacentre to the line
of action of the buoyancy force when view from projection

on a transverse plane.

MS is normally called the residuary stability levep. Fig.

(2:12)

Define : Cgrs

Coordinates of ( of for 90 and 180
degrees inclinatio ete: ,xﬁn.relatlve to the
upright ship. Thu =;.f;~€, ~d radii for 0, 90 and

180 degrees can

Using this geometric form data,

Prohaska reduces the he residual stability
curve to a calculation orm. The tables used
are based on - ,3 forty-two forms
having forﬁ charae g f&e usual merchant
ship field, backed up by mathematlcal‘treatments assuming

that the stﬁluﬂé}-‘ﬁ E‘:ﬂ ?Wﬂq)ﬂ%ed by a trigo-

nometric ser s. By the n%Fure, thls method 1s approximate,

but 1) W”%‘Nﬂ%ﬂéﬂ PHE) A G onse o

paramet considered, accuracy comparable with that

achieved by the so-called exact methods is obtained.



—— —
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—

Fig.

(2.12)

Prohaska’s method

25
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Physical Modelling Techniques

An assumption that has been used extensively in the
above described method is the neglect trim induced by the
heeling of the ship. This can be overcome by finding the

true equilibrium waterplane at each inclined waterplane

omplication. One method of

automatically allowing \ ‘ ‘/)‘ects of trim is to use

a scale model of "to it known heeling

but this leads to conside

.

A\ \\

tests. When th in waterplane shape

moments and noting bk ting angles of heel.

Normall re a model already

exists for othe ynduct of ship tank

shows its advantage.

Curves of Statical Sta-;—-5—1
et e 4"" - A

For rac;ﬂfiiiff,=tfi?*‘““---—- -ecessary to present
stability in t}ﬁ onﬁnts or levers about
the centre of gra‘uty, as the 1p is heeled at constant
it mwmmng, ans 15 Ko
as statlcalqgtablllty curve. 1s a curve, derived from
oross A 1 4RI AN §eBlecenere

GZ = SZ - SG sinff
For a particular angle of inclinations, SG is known

for the particular loading of the ship.
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L

Fig. (2.14) Angle of loll
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Main features of the GZ curve are as follows :-

a)

b)

c)

d)

Slope at the origin.
For small angles of heels, the righting lever is
proportional to the angle of inclination, the

metacentre being effectively a fixed point. The

tangent to th at the origin represents

the metacen

steady heeling

‘moment tha j --\ without capsizing.

\

The GZ reduce ome. angle, normally
greater than d becomes negative for

larger incl'- which GZ is zero,

gle,

is termed——ahfto—ot—iairialta—-atability and the
Y X J
range of!ﬂa i i%ﬂre) for which GZ

maintains io itive val e is called the range of

TP T EY S—

with this range of stabili y 1if heelj g moment is

VRN 1 I um'mma e

Angle of deck edge immersion

At point A in the Fig. (2.13) corresponds to the
angle at which the deck edge becomes immeréed. It
is normally corresponded to the lowest point on
deck edge. It provides guidance to the designer

upon the possible effect on stability.
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e) Area under the curve
This area represents the ability of the ship to
absorb energy imparted to it by external loads ie.

winds, waves etc.

Angle of Loll

A special cas GM is negative but GZ

W

become positive at easgon ‘le of heel. This is
illustrated in Fig!!!'-' i--?EdQ ship is momentarily
‘moment acting due
to GZ tends to incr . :3-;1 \M\'e angle is greater
than g#;, the mom the heel. Thus the
angle ¢1 is ibrium. Unfortuna-
tely, since the GZ - '-evi'~=l about the origin,
as ﬁl is decreased, Thotes tually passes through the

upright condition ddenly lurch over

-

towards the angle f@ ide and overshoot

this motion whicﬁﬂis often only dilgct indication that

the heel to one side. is due tdia ative GM rather than
o » rorses @ W NEMANEAN ..,
ecial casef, a eds vessel
neaméﬂ DS EINIIND
GZ = sin @ (GM + %_BM tan? 7)
GZ is zero when sin g = 0. This merely demonstrates

that the upright condition is one of equilibrium. GZ is

also zero when GM + 1 BM tan?d = 0. i.e. when

tan g =% ’ -2GM
BM
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Also, in this case, the slope of the GZ curve at ¢1 will be

given by

z

cos ¥ (GM + 1 BM tan2g) + sin # BM tan ﬂ'secz‘ﬁ
2

0 + BM tanzﬂi/cos ¢1 (putting & = ﬁi

= -2 GM/cos

':'.E U
AuEINENINeIng
RN TN INAY
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2.3 DYNAMICAL STABILITY

The dynamical stability of a ship, at a given angle
of heel, is defined as the work done in heeling the ship

to that angle very slowly and at constant displacement.

Let the righting m at an angle of heel g be M

&heallng the ship through

approx1mately by

Fig.(2.15). Then, the,

an additional small

]
-
x £

ﬂuld_l d
4:« Aor
Hence, the f"

T i s
proportional to the ard%éna-fh statical stability curve

OR

" at an angle, is

up to that angle,.

J

An alte é' -w: the work done in

{

to 1nvest1gate the potential energy of

the ship. ﬁoﬁﬁq%ﬂﬂﬁwqm displacement

forces remaifil constant durlng the process but they are

e QAR IR ATIN TR e

of the 1p.

heeling a ship 1

When the ship is heeled from waterline WL to

waterline W1L1, Let B move to By

Increased vertical separation = Blzl - BG

Dynamical stability (at angle ﬁ) = ‘A(Blzl - BG)



f?ighﬁng momenl —>=

-
-

& |
A s

Y oSS o TN
NW T6VN

eV
Angle of heel =

¢ .

Fig. (2.15) dynamical stability
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Let v be the volume of the immersed or emerged
wedge, let their centroids of volume be at bl and bz and
let hl and h2 be the feet of perpendiculars dropped from

bl and b2 onto W1L1.

BlR =
Therefore

B121 =
Dynamical stabili hy » hi BG(1l-cos ¢{]
The above formula ] siMosel ey’ Formula. Curves of
dynamical stabili 1 y using this expression
but it is time-consuming-* p i i S It is not often

A . o
N more in ship’s
B ’FI'

|

stability, are requested to consult [14]
AUYINYNINYINT
RIAINIUUNINYAY
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