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CHAPTER I 

INTRODUCTION 

 

1.1  General 

During the past four decades, applications of highly flexible components in 

various civil engineering structures and infrastructural systems have been well-

recognized, for instance, suspension cables in suspension and cable stayed bridges, 

power-line cables for electric transmission, marine pipes for transporting oil and 

natural gas from the underneath ocean floor to the production platforms or drilling 

ships, and membrane roofs made of very thin components. In addition, various parts 

of machines and aerospace vehicles have generally been designed to function under 

conditions vulnerable to experience significant change of their configurations. For 

examples, leaf springs in the car suspension systems, helicopter rotor blades, wind 

turbine blades, and components in aircraft structures have been often designed up to 

the post-buckling limit state and the high-altitude long-endurance aircraft has also 

been designed to resist a wing tip deflection up to 25% of the wing span (Henderson, 

1990; Frank, 2007). Furthermore, due to the rapid growth in the space technology, 

highly flexible components have been increasingly employed to achieve the optimal 

design solution in the minimization of both the size and weight of space structures. 

In the analysis of such highly flexible structures, conventional techniques 

based upon linearized mathematical models (known as the linear analyses) are of very 

limited capability and generally predicts responses that are of insufficient accuracy 

especially when the displacement, rotation and deformation of those structures are 

relatively large. Another crucial drawback of the linear analysis is that it provides 

either inadequate or no information about the stability behavior of investigated 

structures (e.g. bifurcation or critical loads, stability status of structures, post-buckling 

behavior, etc.). In design practices, such stability information has been found essential 

and played a central role in the design of certain structural members such as columns, 
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beam-columns, and axially dominated thin plate and shell structures. The limitation of 

the linear analysis is also apparent when it is applied to very slender structures (cables 

and mooring systems) whose configuration and geometry can be substantially 

changed under regular service conditions.  

To enhance the modeling capability and improve the accuracy of predicted 

responses of structures experiencing significant change of their configurations, 

mathematical models integrating essential components capable of treating the present 

geometric nonlinearity are required. A simple model that has been widely used to 

account for the axial-bending interaction in the study of beam-columns and the 

determination of buckling loads of axially loaded structures is the second-order 

analysis. Besides its simplicity and successful applications to the buckling and P-delta 

analysis, the technique has found lack of capability to analyze structures undergoing 

large displacement and rotation (e.g. post-buckling responses) due to its simplified 

kinematics. In such class of problems, the geometric nonlinearity plays a major role in 

the key governing equations and cannot sufficiently be captured by low-order, 

approximate kinematics. As a result, mathematical models based upon the exact 

relation between displacements and deformations have become an attractive 

alternative to resolve all those limitations and, in addition, allow various responses 

and behavior of structures to be thoroughly investigated.      

Besides vast capabilities gained, use of exact kinematics to model geometric 

nonlinearity has, at the same time, posed several mathematical and computational 

challenges due to its complexity. Although this type of analysis has a very long 

history heading back to Euler and Lagrange’s era and its framework has been 

nowadays well-established due to the emergence of powerful computing devices and 

reliable numerical techniques, rigorous investigations in this area are still required to 

further improve and enhance the modeling capability, computational efficiency and 

quality of solutions.  The key motivation of the present study is to develop a simple, 

efficient and accurate technique that is capable of performing large-displacement-and-

rotation analysis of structures of various geometries and subjected to general loading 

conditions. In the subsequent section, results from extensive literature survey are 

presented in order to demonstrate the historical development and current advance in 
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this specific area and clearly identify the originality and contribution of the current 

study. 

1.2  Background and Review 

Literature review has been extensively conducted with the primary focus on 

the development of analytical, semi-analytical and numerical techniques that are 

capable of performing the analysis of two-dimensional skeleton structures undergoing 

large displacement and rotation. Results from the review have been organized into 

three separate parts regarding to the structural configuration and the extensibility 

assumption considered in each investigation.  

1.2.1. Inextensible Single Member 

An elastica problem (i.e. a problem of finding the exact elastic or deformed 

shape of structures) has been introduced by Euler since his first investigation in 1744.  

In his study, both the direct approach and a method of final cause have been employed 

to determine exact elastic curves of a single straight member under different loading 

conditions. It should be noted, however, that preceding the work of Euler, James 

Bernoulli (1691) also attempted to determine the shape of a bent cantilever beam. 

Although his obtained result was incorrect due to an erroneous assumption on the axis 

of rotation of the cross section, his statement regarding the proportionality between 

the curvature and bending moment at any point was correct and used later by Euler in 

his study of elastica.  After Euler’s work in 1744, Daniel Bernoulli demonstrated that 

the final elastic curve of a bending beam minimizes the bending strain energy. He also 

suggested that the calculus of variations can be applied along with such minimization 

criteria to find the shape of the elastic curve for a given member length and boundary 

conditions. Lagrange (1770) followed the Euler’s direct approach with the 

independent variable measured along the unstressed configuration being chosen in his 

analysis and his analytical solutions were presented in term of elliptic integrals. Later, 

Kirchoff (1859) made a significant progress by introducing an analogy between a 

problem of finding elastic curve of a cantilever column and a problem of a pendulum. 

With such analogy, a closed-form solution could also be obtained in terms of elliptic 
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integrals. Due to complexity posed by the exact curvature-displacement relation, 

solutions of elastica problems in its early age have been limited to very simple 

structures under certain loading conditions.  

Due to the emergence of powerful computing devices and reliable numerical 

techniques, the analysis capability has been significantly enhanced and a broader class 

of complex and more practical elastica problems can be solved. Nowadays, the large 

displacement and rotation analysis has gained significant attention and been used 

extensively to investigate various aspects of post-buckling behavior of structures. 

Certain relevant works have been summarized and briefly discussed here with a 

primary objective to present a series of historical breakthrough and, at the same time, 

to identify the current gap of knowledge and the original aspect of the current 

investigation. 

Rao and Rao (1989) investigated the large deflections of a cantilever beam 

subjected to a rotational distributed load. In their work, the fourth-order Runge-Kutta 

integration scheme was employed to solve a second-order nonlinear integro-

differential equation. By assuming a special function form of the distributed load in 

terms of the Dirac-delta distribution, results for a beam under a rotational 

concentrated load were readily obtained. They also pointed out that the proposed 

technique involved less computational cost and yielded numerical results that are in 

good agreement with existing benchmark solutions. Wang (1997) employed a 

numerical procedure based on the perturbation technique to explore the post-buckling 

behavior of a prismatic, simply-supported column clamped at one end and subjected 

to a concentrated load at the other end. Later, Lee (2001) investigated the post-

buckling behavior of a prismatic cantilever column under the combined action 

between the uniformly distributed load and a concentrated load at the tip. In this 

study, Butcher’s fifth-order Runge-Kutta method was utilized to construct the 

numerical solutions and the good agreement with existing results was concluded. 

Madhusudan et al. (2003) employed the dynamic formulation to derive governing 

equations for the post-buckling of a cantilever column with variable cross-section and 

subjected to the distributed axial load and concentrated load at the tip. A fourth-order 
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Runge-Kutta integration scheme was adopted to solve such governing nonlinear 

differential equations.   

In 2007, Shavartman examined the influence of the rotational spring at the 

base of a cantilever column and the tip follower force on its deformed shape. In the 

formulation, a governing nonlinear two-point boundary value problem was 

transformed into an initial value problem by using the change of variables. The final 

problem was solved by a selected technique that requires no iteration and numerical 

results were obtained in a more efficient and highly accurate manner than that by the 

numerical shooting method and the fourth-order Runge-Kutta method. Wang et al. 

(2008) reexamined a cantilever beam subjected to a concentrated load at the tip. In the 

analysis, a homotopy analysis method (HAM) was developed to construct an explicit 

solution of the rotation and displacement at the free end. It was shown from this study 

that the HAM is a powerful and accurate technique and well-suited for solving 

strongly nonlinear problems in structural analysis. Benjaree et al. (2008) employed a 

nonlinear shooting method along with the adomain decomposition to determine the 

elastic curve of a cantilever beam under arbitrary loading conditions and containing 

an interior inflection point. Computed results were found comparable to those 

obtained from a classical elliptic integral technique.  

Klubjaidai and Chucheepsakul (2008) employed both the elliptic integral 

method and the shooting method supplemented by the seventh-order Runge-Kutta 

integration scheme to study the post-buckling behavior of a circular arch subjected to 

end forces. Solutions from the two techniques were compared and they were in good 

agreement. Shavartman (2009) employed a similar technique to that employed by 

Shavartman (2007) to reinvestigate a non-uniform cantilever beam subjected to two 

follower forces and similar findings regarding to the accuracy and computational 

efficiency were concluded. Recently, Chen (2010) employed the moment integral 

treatment to solve the large deflection of a cantilever beam. Results obtained from the 

proposed technique were compared with those from the elliptic integral approach and 

a reliable commercial FEM package, ANSYS©. It was concluded that the technique is 

computationally efficient, yields accurate numerical solutions, and can be applied to 
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problems involving complex loading conditions and variable beam properties (e.g. 

cross section and Young’s modulus). 

1.2.2. Inextensible Multiple Members 

It should be remarked that all studies described above are restricted only to 

structures consisting of a single member. On the basis of extensive literature review, 

work focusing on the large displacement and rotation analysis of structures consisting 

of multiple members is still relatively few and some of those investigations are briefly 

summarized below. 

Ohtsuki et al. (2000) performed a large displacement analysis of a square 

frame with rigid joints. The frame was loaded by a pair of opposite forces at two 

joints along its diagonal. Analytical solutions in terms of elliptic integrals were 

derived for the representative flexural quantities such as the arc length, horizontal and 

vertical displacement, curvature, bending moment, and bending stress. The predicted 

results were found in very good agreement with experimental data. Dado et al. (2004) 

investigated the post-buckling behavior of a cantilever column consisting of two 

segments of different properties connecting by a rotational spring. In their analysis, 

three methods (including a semi-analytical method based upon the governing 

equations cast in terms of elliptic integrals and solved by Newton-Raphson technique, 

a numerical integration technique, and the large displacement finite element analysis 

by NASTRAN) were employed. Results from their study revealed that the semi-

analytical technique was proved to be computationally efficient and accurate in 

comparison with the other two. Suwansheewasiri and Chucheepsakul (2004) studied 

the buckling and post-buckling behaviors of a two-member rigid frame of a particular 

configuration. Solutions of both the symmetric and non-symmetric post-buckling 

shapes were obtained by using the elliptic integral method.  

Later, Dado et al. (2006) performed a large displacement and rotation analysis 

of a flexible rhombus frame consisting of non-prismatic members connected by rigid 

joints. The frame was subjected to a pair of opposite diagonal forces. In their work, 

relations between the displacement at the corner and the applied force are obtained 



7 
 

using a new robust numerical technique based on a representation of an angular 

deflection of the member by a polynomial function along the deflected beam axis. 

This new method was compared with classical numerical integration techniques and 

all results were found in excellent agreement. Hu et al. (2008) employed a differential 

quadrature element method (DQEM) to study the large displacement structures 

containing discontinuity conditions. The proposed method seems to be 

computationally efficient and applicable to large displacement analysis of structures 

with general configurations; however, the method itself is an approximate scheme and 

the discretization of the problem must be properly treated in order to obtain converged 

numerical results. Shatarat et al. (2009) reinvestigated a problem of thin rhombus 

frame. In their study, the member cross section was assumed to be rectangular, the 

frame was subjected to two opposite diagonal forces, and both geometrical and 

material nonlinearities were treated. A semi-analytical solution has been formulated 

for the relation between the displacement at the corners of the frame and the applied 

forces. Results were compared with those obtained from ADINA and excellent 

agreement among those results was observed. Most recently, Rungamornrat and 

Tangnovarad (2011) proposed a semi-analytical technique based on a co-rotational 

formulation and a direct stiffness strategy for large displacement and rotation analysis 

of two-dimensional beams and frames. The element tangent stiffness matrices and 

load residuals were derived exactly from the governing nonlinear differential 

equations and used as essential components in a nonlinear solver by Newton-Raphson 

iteration. From extensive verifications with both analytical and benchmark solutions, 

their technique yielded highly accurate numerical solutions with independence of the 

mesh refinement 

1.2.3. Extensible Single Member 

All studies described in the previous two sub-sections were focused primarily 

on inextensible structures where the deformation of the neutral axis is fully prevented. 

It is worth noting that the inextensibility assumption is, to some extent, impractical 

and can lead to inaccurate predicted results when the axial deformation becomes 

significant. Various attempts have been devoted to incorporate the extensibility in the 
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large displacement and rotation analysis and some of those recent studies are 

summarized below. 

Anders et al. (2001) examined both buckling and post buckling behaviors of 

an extensible beam under an axial compression force. The governing equations were 

formulated from the principle of virtual work along with Euler-Bernoulli assumption 

and the close-form solutions were obtained in terms of elliptic integrals. In this study, 

they showed that the bifurcation load depends primarily on the slenderness of the 

beam and, for relatively small slenderness ratio, the bifurcation point becomes 

unstable. Chucheepsakul et al. (2003) employed a variational approach to construct a 

three-dimensional mathematical model for extensible marine cables with the specified 

top tension. In their works, the finite element method and the shooting optimization 

technique were utilized to determine responses of the cables.  Li et al. (2005) 

employed a shooting method along with the numerical integration to investigate the 

post-buckling behavior of an extensible, hinged-fixed beam under the uniformly 

distributed follower force. Recently, Mazzilli (2009) employed a method of multiple 

scales to study buckling and post-buckling behavior of an extensible rod under five 

end conditions.  Results from this study indicated that the multiple scale method was 

robust and yielded sufficiently accurate approximate solutions. Recently, Sepahi et al. 

(2010) applied the differential quadrature method (DQM) to investigate the buckling 

and post-buckling of an extensible cantilever beam with variable cross section and 

subjected to both a concentrated axial load at its free end and a non-uniformly 

distributed axial load. Results obtained from this particular technique were in very 

good agreement with analytical solutions from the elliptic integral method and 

numerical solutions from other methods such as shooting and multiple scale methods. 

The DQM was also exploited by Sepahi et al. (2010) to solve a post-buckling problem 

of a hinged-fixed column under the terminal forces and its self weight. Again, the 

DQM was found computationally promising and yielded sufficiently accurate 

numerical solutions. It is noted by passing that large displacement and rotation 

analysis of extensible structures has also been studied within the context of thermal 

loadings, for instance, Shirong et al. (2000) in the study of thermal post-buckling of 
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uniformly heated elastic rods by using the shooting method and other related works 

by Shirong et al. (2003), Vaz and Solano (2003) and Saha and Ali (2009). 

While various studies described above have already integrated the extensibility 

into the mathematical model, they were still focused only on structures consisting of a 

single member. Work towards the treatment of structures of arbitrary geometry and 

subjected to general loading conditions is still limited and this, therefore, necessitates 

further investigations. It should be noted again that ability to incorporate the member 

extensibility in the modeling allows complex and more practical structures to be 

investigated since, in real structures, both the axial and flexural rigidities of their 

components remain finite. 

1.3  Research Objectives 

The key objective of the present study is to develop a systematic, efficient and 

accurate technique capable of performing large displacement and rotation analysis of 

two-dimensional, extensible, linearly elastic frames of general geometries and 

subjected to general loading conditions. The computational behaviors of the proposed 

technique such as the accuracy and computational efficiency are to be explored. 

1.4  Scopes of Research 

The proposed investigation is to be carried out within following context and 

assumptions: 

1) frames are two-dimensional and can be discretized into straight prismatic 

members that are free of interior loads; 

2) each member is made of a homogeneous, isotropic, linearly elastic material; 

3) direction of all applied loads are fully fixed during their applications; and 

4) shear deformation is neglected. 

1.5  Methodology 

The co-rotational formulation and the direct stiffness strategy are integrated to 

establish a semi-analytical technique capable of performing large displacement and 

rotation analysis. The methodology can be described in details as follows: 
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1) three basic equations in structural mechanics (i.e. equilibrium equations in the 

deformed state, moment-curvature relationship, and exact kinematics among 

the curvature, rotation and displacement) are combined into a set of governing 

nonlinear ordinary differential equations for a straight member; 

2) a direct integration technique is utilized to transform a set of governing 

nonlinear ordinary differential equations into an equivalent set of governing 

nonlinear algebraic equations for a straight member; 

3) the force-displacement relationship in the co-rotational axis is developed by 

specializing a set of governing nonlinear algebraic equations to a simply-

supported member and the corresponding exact gradient matrix is derived 

using the chain rule for differentiation along with implicit differentiations; 

4) a co-rotational approach is employed to derive the force-displacement 

relationship and the exact tangent stiffness matrix of a member in the local 

coordinate system; 

5) standard transformations and direct assembly procedure are utilized to relate 

the displacements and applied loads in the structure level and to construct the 

structure tangent stiffness matrix and exact load residual vector; 

6) a standard Newton-Ralphson technique is employed to solve a system of 

nonlinear algebraic equations; and 

7) all computational procedures are implemented in terms of an in-house 

computer code and tested with reliable benchmark solutions. 



CHAPTER II 

 BASIC EQUATIONS  

 

This chapter summarizes the problem statement, key assumptions underlying 

the mathematical model, and the formulation of a set of governing differential 

equations for a straight member undergoing large displacement and rotation. 

2.1 Problem Statement and Basic Assumptions 

The problem statement is to develop an accurate and computationally efficient 

technique that is capable of modeling two-dimensional frames undergoing large 

displacement and rotation. The geometry and loading conditions of the frame are 

assumed to be general except that it can be discretized into straight, prismatic 

members that are free of interior loads as shown schematically in Figure 2.1. In the 

development of a mathematical model and a set of governing differential equations, 

following essential components and certain assumptions are employed: (i) all 

members are made of an isotropic, linearly elastic material; (ii) equilibrium is 

enforced in the deformed state; (iii) the displacement, rotation and curvature are 

related by exact kinematics; (iv) directions of all applied loads are fully fixed during 

their applications; (v) shear deformation is neglected while axial deformation of the 

centroid of any cross section is allowed; and (vi) the cross section remains plane after 

undergoing deformation. 

 

 

 

 

 

 

 

Figure 2.1 Schematic of two-dimensional, extensible, linearly elastic frames 



12 
 

2.2 Basic Governing Equations for Straight Prismatic Member 

Consider a straight, prismatic member of length L, cross-sectional area A, and 

moment of inertia I, and made of a linearly elastic material of Young's modulus E. An 

undeformed configuration of this member, represented by a line connecting the 

centroid of all cross sections, occupies a straight line defined by x  [0, L] and y = 0. 

Due to the action of applied loads, the member moves to a new configuration, termed 

the deformed configuration, as shown in Figure 2.2(a). Any cross section in the 

undeformed state, represented by its centroid (S, 0), displaces to a new position in the 

deformed state, represented by (S + u, v) where u = u(S) and v = v(S) are the x-

component and y-component of the displacement at the point (S, 0), respectively. 

Also, let define fx = fx(S), fy = fy(S), and m = m(S) as a resultant internal force in the x-

direction, a resultant internal force in the y-direction, and a resultant bending moment 

at the cross section (S, 0), respectively. 

Let dS be an infinitesimal element in the undeformed state occupying a 

straight line connecting the cross section (S, 0) and (S + dS, 0) and ds be the same 

element in the deformed state occupying a curve connecting points (S + u, v) and (S + 

dS + u + du, v + dv) as shown in Figure 2.2(a). 

 

 

 

 

 

 

 

Figure 2.2 (a) Undeformed and deformed configurations of straight prismatic segment 

and (b) free body diagram of infinitesimal deformed element ds  
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Upon considering geometry of the deformed element ds, it leads to following 

three geometric relations:  

0

1sin
1

dv
dS







                                                                                                       (2.1)    

0

1cos   1  
1  

du
dS




     
                                                                                     (2.2) 

0  1  ds
dS

                                                                                                            (2.3) 

where 0  is the (engineering) axial strain at the centroid of the cross section and   

denotes the rotation at any cross section. 

By enforcing equilibrium of the deformed element ds (see Figure 2.2(b) for its 

free body diagram), following ordinary differential equations are obtained 

   0xdf
dS

                                                                                                                   (2.4)     

  0ydf
dS

                                                                                                                   (2.5)     

     y x
dm dx dyf f
dS dS dS

                                                                                              (2.6)      

Upon exploiting the assumption (vi) along with the linear stress-strain relationship, 

the axial strain 0  can be related to the axial force n by 

0   n
EA

                                                                                                                   (2.7) 

where the axial force n (i.e. a resultant internal force normal to the cross section in the 

deformed state) can be expressed in terms of the internal forces fx and fy as 

  cos   sinx yn f f                                                                                                (2.8) 
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By exploiting the assumptions (v) and (vi) along with the linear stress-strain 

relationship, the bending moment m can be related directly to the spatial rate of 

change of the rotation  by  

  dm EI
dS


                                                                                                              (2.9)     

By substituting (2.9) into the moment equilibrium equation (2.6) and combining (2.7) 

and (2.8), it results in 

2

2    1+  + y x
d du dvEI f f
dS dS dS
    

 
                                                                             (2.10) 

0   cos   sinyx ff
EA EA

                                                                                      (2.11) 

With use of the geometric relations (2.1) and (2.2) along with the expression (2.11), 

equation (2.10) becomes 

 
2

2   1 cos sin sin  cosyx
x y

ffdEI f f
dS EA EA


   
 

    
 

                                   (2.12) 

By defining non-dimensional parameters 2ˆ   x xf f L EI , 2ˆ   y yf f L EI ,    S L   

and 2  I AL  , the relations (2.11) and (2.12) can be expressed in a non-dimensional 

form as 

   0 0
ˆ ˆ ˆ ˆ ;  ,  cos sinx y x yf f f f                                                                    (2.13) 

2 22

2

ˆ ˆ
ˆ ˆ ˆ ˆ  sin cos sin 2 cos 2  

2
x y

x y x y

f fd f f f f
d


    


 
    

 
 

                             (2.14) 

To suit the direct integration of the differential equation (2.14), a term on its 

left hand side is first re-expressed as 
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22

2

1      
2

d d d d d d d d
d d d d d d d d
    
       

     
       

     
                                          (2.15) 

With use of (2.15), equation (2.14) can directly be integrated to obtain 

2 2 2ˆ ˆ
ˆ ˆ ˆ ˆ 2 cos 2 sin cos 2 sin 2

2
x y

x y x y

f fd C f f f f
d
      


  
           

              (2.16) 

where C is an arbitrary constant of integration that can be determined from the 

boundary condition. It should be apparent from (2.9) that the normalized derivative 

d d   possesses an identical sign to that of the normalized bending moment 

ˆ /m mL EI . Equation (2.16) can therefore be uniquely solved to obtain  

 
2 2

ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ2 cos 2 sin cos 2 sin 2

2
x y

x y x y

md
d f f

C f f f f




     


 

     
 

                 (2.17) 

where  m̂  is a moment-dependent function defined by 

 
ˆ  1       ,        0

ˆ
ˆ1       ,        0

m
m

m


  
                                                                         (2.18) 

By combining the geometric relations (2.1) and (2.2) with the equation (2.17), we 

then obtain the governing ordinary differential equations for the displacement u  and 

v  as 

   0

2 2

ˆ sin 1ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ2 cos 2 sin cos 2 sin 2
2

x y
x y x y

mdv
d f f

C f f f f

  


     

  
 

     
 

                   (2.19) 

   0

2 2

ˆ cos 1 1ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ2 cos 2 sin cos 2 sin 2
2

x y
x y x y

mdu
d f f

C f f f f

  


     

   
 

     
 

                    (2.20) 
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where û u L  and v̂ v L  are the normalized displacement in the x-direction and y-

direction, respectively. A set of three basic governing differential equations (2.17), 

(2.19) and (2.20) forms a basis for the development of the force-displacement relation 

for a simply-supported element presented in the subsequent chapter.  

 

  



CHAPTER III 

FORMULATION OF MEMBER AND STRUCTURE EQUATIONS 

 

This chapter presents the development of force-displacement relation and the 

corresponding tangent stiffness matrix for a member in following three different 

cases: a simply-supported member, a generic member in its local coordinate system 

and a generic member in its global coordinate system. A set of governing ordinary 

differential equations established in the previous chapter is utilized to set up an 

equivalent set of governing nonlinear algebraic equations. Results for the simply-

support member are then utilized as a basis for the development of results for the 

generic member in the local coordinate system via the co-rotational technique. 

Standard coordinate transformations are employed to obtain both the force-

displacement relation and the global element tangent stiffness matrix in the global 

coordinate system. A standard assembly procedure is finally employed to form the 

load-displacement relation and the tangent stiffness matrix for a structure.  

3.1 Force-displacement Relation for Simply-supported Element 

  

 

 

 

 

Figure 3.1 Simply-supported member subjected to end force and end moments 
* * *

x 2 1 2{ , , }f m m  respectively 

Let’s consider a simply-supported member of length L, cross-sectional area A, 

moment of inertia I, and Young’s modulus E. Let {x*, y*, z*} denote a Cartesian 

coordinate system as shown in Figure 3.1. It should be remarked that this particular 
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coordinate system is identical to the co-rotational coordinate system of this member 

since the x-axis always connects both ends of the member. The left end of a member 

is a pinned-support and subjected to a moment *
1m  in the z-direction while its right 

end is a roller support and subjected to a force *
x 2f  in the x-direction and a moment 

*
2m  in the z-direction. Boundary conditions associated with the prescribed 

displacements are given by 

(0) 0u  ,                                           (3.1) 

(0) 0v  ,                                                                                                                    (3.2) 

( ) 0v L                                                                          (3.3) 

whereas boundary conditions associated with the applied force *
x 2f  and moments *

1m  

and *
2m  are given by  

*
* 1
1ˆ(0) m Ld m

d EI
 




,                                                                       (3.4) 

*
* 2
2ˆ( ) m Ld L m

d EI
 




,                                                                       (3.5)  

* 2
* x2

x x2
ˆ ˆ( ) f Lf L f

EI
  .                                                                                    (3.6) 

By enforcing the boundary conditions (3.5) and (3.6) along with the fact that fx is 

constant throughout the member, the constant C  in equation (2.16) can be obtained as 

*2 2
2*2 * * * * * *

2 2 2 2 2 2 2

ˆ ˆ
ˆ ˆ ˆ ˆˆ 2 cos 2 sin cos 2 sin 2

2
x y

x y x y

f f
C m f f f f

 
     

 
 

                       (3.7) 

where *
2  is the rotation at the right end of the member. By substituting the constant 

C  from (3.7) into the governing equations for the rotation, the displacement in the y-

direction and the displacement in the x-direction (2.17), (2.19) and (2.20) respectively, 

it leads to a set of governing nonlinear ordinary differential equations: 
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 * * *
2 2 2

ˆ ˆˆ ˆ( )  , ; , ,x y
d m F f f m
d


   


  ,                           (3.8)  

   * * *
0 2 x2 2

ˆ ˆ ˆˆ ˆ( ) sin 1  , ; , ,y
dv m F f f m
d

       


  ,                         (3.9)
 

   * * *
0 2 x2 2

ˆ ˆ ˆˆ ˆ( ) cos 1 1  , ; , ,y
du m F f f m
d

        


.                                             (3.10) 

where the function F is defined by  

 * * *
2 x2 2

1ˆ ˆ ˆ , ; , ,yF f f m
i j




 


                                                                                             (3.11) 

   2* * * *
2 2 2 2

ˆ ˆˆ 2 cos cos 2 sin sin  x yi m f f                                                                (3.12) 

    *2 * * *
x2 2 x2 2

1 ˆ ˆ ˆ ˆcos 2 cos 2 sin 2 sin 2  
2

2
y yj = f f f f                                      (3.13) 

By imposing the moment boundary condition at the left end (3.4), it leads to an 

addition equation:  

   

    

2* 2* * * * * *
2 1 2 2 1 2 1

*2 * * * * *
2 2 1 2 2 1

ˆ ˆˆ ˆ 2 cos cos 2 sin sin

1 ˆ ˆ ˆ ˆ     cos 2 cos 2 sin 2 sin 2  = 0 
2

x y

2
x y x y

m m f f

f f f f

    

    

   

     
             (3.14)   

where *
1  is the rotation at the left end of the member. By enforcing overall 

equilibrium of a member in the deformed configuration, the normalized reactive 

forces * * 2
1 1x̂ xf f L EI , * * 2

1 1
ˆ

y yf f L EI  and * * 2
2 2

ˆ
y yf f L EI  can be obtained in terms of the 

normalized applied forces { *
x 2f , *

1m , *
2m } and the end displacement *

2û  as 

 * *
1 2

ˆ ˆ
x xf f   ,                                       (3.15) 

 
* *

* 1 2
1 *

ˆ ˆˆ
ˆy

m mf
d


  ,                           (3.16) 

* *
* 1 2
2 *

ˆ ˆˆ
ˆy

m mf
d


                             (3.17) 
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where * *
2

ˆ ˆ1d u    and * *
2 2ˆ /u u L .  

Upon performing direct integration of (3.8)-(3.10) from  = 0 to  =   = 

/S L  where S  [0, L], it leads to a set of three integral relations that can be used to 

compute the normalized displacements and the rotation at any cross section at S once 

all unknown quantities at both ends are solved : 

 
*
1

* * *
2 2 2

ˆ ˆˆ ˆ( )  , ; , ,x ym F f f m d 




     ,                                               (3.18)
 

   
*
1

* * *
0 2 2 2

ˆ ˆ ˆˆ ˆ( ) sin 1  , ; , ,x ym F f f m d v   




     
 
,             (3.19)

 

   
*
1

* * *
0 2 2 2

ˆ ˆ ˆˆ ˆ( ) cos 1 1  , ; , ,x ym F f f m d u    




         .                             (3.20) 

where  is the rotation at S , ˆ /u u L  is the normalized displacement in the x-

direction at S , and ˆ /v v L  is the normalized displacement in the y-direction at S .  

By setting * = 1 in (3.18)-(3.20), it leads to an essential and sufficient set of 

nonlinear algebraic equations for determining the end rotations *
1  and *

2  and the end 

displacement *
2u :  

 
*
2

*
1

* * *
2 2 2

ˆ ˆˆ ˆ( )  , ; , , 1x ym F f f m d 




    ,                                               (3.21)
 

   
*
2

*
1

* * *
0 2 2 2

ˆ ˆˆ ˆ( ) sin 1  , ; , , 0x ym F f f m d   




     
 
,             (3.22)

 

   
*
2

*
1

* * * *
0 2 2 2 2

ˆ ˆˆ ˆ ˆ( ) cos 1 1  , ; , ,x ym F f f m d u    




         .                             (3.23) 

where the displacement and rotation at the right end, i.e.   *
2

ˆ ˆ1u u   ,  ˆ 1 0v     

and *
2( 1)    , have been used.  
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Now, let’s define *f  as a force vector such that * * *[ ]p r Tf f f  where 

p* * * *
x 2 1 2

ˆ ˆ ˆ{ , , }f m mf  is a vector containing force and moments at the free degrees of 

freedom and r* * * *
x1 y1 y 2

ˆ ˆ ˆ{ , , }f f ff  is a vector containing reactive forces at the 

prescribed degrees of freedom, and let’s *u  be a vector of free degrees of freedom 

defined by * * * *
2 1 2ˆ{ , , }u  u . It is evident that once the relation (3.14) is utilized to 

implicitly define ˆ
yf  in terms of other quantities, the three equations (3.21)-(3.23) now 

involve only p*f  and *u . In the other word, the three equations (3.21)-(3.23) 

supplemented by the relation (3.14) implicitly define p*f in terms of *u , i.e. 
p* p* *( )f f u . By employing (3.15)-(3.17) along with p* p* *( )f f u , it can be 

concluded that the reactive forces r*f
 
are also functions of *u , i.e. r* r* *( )f f u . By 

integrating above two results, it leads to the implicit force-displacement relation  

* * *( )f f u                  (3.24) 

The implicit relation (3.24) implies that for a given end displacement and rotation *u , 

the force vector *f  can always be computed as follows: (i) the end force and 

moments p*f are obtained by solving a system of nonlinear equations (3.21)-(3.23) 

with the auxiliary equation (3.14) and (ii) the reactive forces r*f are subsequently 

computed from (3.15)-(3.17) by the direct substitution. This task is essential in the 

evaluation of load residuals in the solution procedure discussed later in the next 

chapter.  

Applying Taylor’s series expansion to the nonlinear function *f  about any 

given vector *0u  leads to the best linear approximation of *f  in the neighborhood of 
*0u : 

* * * *0 * *0 * *0( )  ( )  ( )( )  f u f u k u u u              (3.25) 

where the gradient matrix *k  is defined by  
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**
*

* *

p

r

 
     

kfk
u k

                   (3.26) 

with *pk denoting the gradient of the force vector p*f  with respect to the vector 
*u (this matrix is also known as the tangent stiffness matrix with respect to the co-

rotational axis)  and *rk  representing the gradient of the reactive force vector r*f with 

respect to the vector *u . The gradient matrix *pk  is given explicitly by 

* * * * * *
x2 2 x2 1 x2 2p*

p* * * *
1 2 1 1 1 2*

* * *
2 2 2 1 2 2

ˆ ˆ ˆˆ/ / /
ˆ ˆ ˆ ˆ/ / /
ˆ ˆ ˆ ˆ/ / /

f u f f
m u m m
m u m m

      
 

                

 
 
 

fk
u

                                                              (3.27)                 

and the gradient matrix *rk can be expressed explicitly in terms of entries from the 

gradient matrix *pk as 

p* * p* * p* *
11 12 13

r* * p* p* p* p*
1 2 22 32 23 33*

* p* p* p* p*
1 2 22 32 23 33

ˆ ˆ ˆ
1 ˆˆ ˆ( ) /ˆ

ˆˆ ˆ( ) /

k d k d k d

m m d k k k k
d

m m d k k k k

   
 

     
 

      

k                                               (3.28)                 

where *
ij
pk  is an entry located at the ith row and jth column of the gradient matrix *pk . 

It is obvious that the main task for computing the gradient matrix *k  is associated 

with the evaluation of all entries of the sub-matrix *pk and this can be achieved via 

explicit and implicit differentiations of equations (3.21)-(3.23) along with the 

additional equation (3.14) as described in the next section.  

3.2 Development of Gradient Matrix *pk  

The gradient matrix *pk is derived for two different cases, a member 

containing no inflection point (termed a single curvature member) and a member 

containing an interior inflection point (termed a double curvature member). These two 

cases are treated separately since the function F  appearing in equations (3.21)-(3.23) 

possesses distinct behavior. More specifically, the function F is well-behaved 
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everywhere for the former case whereas it is weakly singular at the location of the 

inflection point for the latter case. All involved singular integrals for the double 

curvature member requires some special treatment as described further below. It is 

worth noting that while results for the case of a member containing an inflection point 

at its end are not presented, they can readily be obtained via the proper limit process 

of those for the double curvature member.    

3.2.1 Member Containing No Inflection Point 

Let’s consider a simply-supported member subjected to the end force *
x 2f  and 

two opposite, nonzero end moments *
1m  and *

2m  as shown in Figure 3.2. The 

deformed shape of the member possesses a single curvature. For this particular case, 

the moment-dependence function  m̂  takes the value 1 or 1  depending on either 

the sign of *
1m  or *

2m ; in particular,  ˆ 1m   for * *
1 20 and 0m < m   and  ˆ 1m    

for *
1 > 0m  and *

2and 0m  .  

  

 

 

 

 

Figure 3.2 Simply-supported member subjected to end force and two opposite, non-

zero end moments 

For brevity in the presentation of established results, the relation (3.14) and the 

three nonlinear algebraic equations (3.21)-(3.23) are re-expressed as  

   

    

* * * * * 2* 2* * * * * *
2 1 2 1 2 2 1 2 2 1 2 1

*2 * * * * *
2 2 1 2 2 1

ˆ ˆ ˆˆ ˆ( , , , , , ) 2 cos cos 2 sin sin

1 ˆ ˆ ˆ ˆ                                        + cos 2 cos 2 sin 2 sin 2  = 0 
2

y y x x y

2
x y x y

f f m m m m f f

f f f f

      

   

     

     
  (3.29)   

*
y1f  

 x* *
x1f  

*
1m  

*
1  *

2  

*
2u  

*
2m  

*
x 2f  

*
y2f  

 y* 
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   
*
2

*
1

* * * * * * *
1 1 2 2 2 2 2 2

ˆ ˆ ˆ ˆˆ ˆ, , , ,  , ; , , 1 0x y x yf f m F f f m d




         ,                                  (3.30)
 

     
*
2

*
1

* * * * * * *
2 1 2 2 2 0 2 2 2

ˆ ˆ ˆ ˆˆ ˆ, , , , sin 1  , ; , , 0x y x yf f m F f f m d




             ,              (3.31)
 

     
*
2

*
1

* * * * * * * * *
3 1 2 2 2 2 0 2 2 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , cos 1 1  , ; , , 0x y x yf f m u F f f m d u




                          (3.32) 

where 1   for *
1 0m   and *

2 0m   and 1    for *
1 0m   and *

2 0.m     

It is emphasized that the equation (3.29) implicitly defines ˆ
yf  in terms of 

* * * * *
x 2 1 2 1 2{ , , , , }f m m   , i.e. * * * * *

x 2 1 2 1 2
ˆ ˆ ( , , , , )y yf f f m m   . Its derivative with respect to those 

quantities can be obtained by taking implicit differentiation of (3.29) and results are 

given by 

p* * p* *

ˆ ˆ 1
ˆ/

y y y y

y y

f f
f

     
            f u f u

                                                               (3.33) 

Terms on the right hand side of (3.33) can be found in Appendix A. By taking 

derivative of (3.30)-(3.32) with respect to * *
2 1ˆ ,  u   and *

2  along with the implicit 

function * * * * *
x 2 1 2 1 2

ˆ ˆ ( , , , , )y yf f f m m    defined by (3.29), it leads to a system of linear 

equations for *pk   

*
p* p* * *

ˆ ˆ

ˆ ˆ
y yp

y y

f f
f f

     
   

      

Γ Γ Γ Γ+ k
f f u u

                                                                (3.34)
 
 

where  1 2 3
T

   Γ  and entries of matrices p*/ Γ f , ˆ/ yf Γ  and */ Γ u  are given 

explicitly in Appendix A. The gradient matrix *pk  can therefore be obtained by solving 

a system of linear equations (3.34). 
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*
y1f  *

y2f  

3.2.2 Member Containing Interior Inflection Point 

Let’s consider, next, a simply-supported member subjected to the end force 
*

x 2f  and the non-zero end moments { 1 2ˆ ˆ,m m } with the same direction as shown in 

Figure 3.3. The deformed shape of the member possesses a double curvature with an 

inflection point located at an interior point z   (0, 1)  . The bending moment 

disappears at z   (0, 1)   and 1 2ˆ ˆ( ) ( ) < 0m m   for 1 z  [0, )  and 2 z  ( ,1]  . The 

moment-dependence function  m̂ , for this particular case, is discontinuous at z  

and takes different values on both sides of the inflection point. For 1 2ˆ ˆ > 0,  < 0m m , 

 ˆ 1m    for z  [0, )   and  ˆ 1m   for z  ( ,1]   and for 1 2ˆ ˆ < 0,  > 0m m , 

 ˆ 1m   for z  [0, )   and  ˆ 1m    for z  ( ,1]  . For this particular case, 

the function F  appearing in equations (3.21)-(3.23) is weakly singular at the location 

of the inflection point and all involved singular integrals must be treated specially and 

differently from the previous case as described below. 

  

 

 

 

 
 

Figure 3.3 Simply-supported member subjected to end force and two non-zero end 

moments with the same direction 

At the inflection point, the bending moment vanishes and this leads to the following 

condition: 

 z 0d
d
  


                                                                                                                              (3.35) 

Inflection point 

z 
 x* *

x1f  

*
1m  

*
1  

*
2  

*
2u  

*
2m  

*
x 2f  

 y* 
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where z  is the rotation of cross section at the inflection point. By substituting the 

condition (3.35) into (2.16) along with the constant C  obtained in (3.7), it leads to 

   

   

* * * * * *2 * * *
z z x2 1 2 1 2 2 x2 2 z 2 z

*2
x2 * * *

2 z x2 2 z

ˆ ˆ ˆˆ( , , , , , , ) 2 cos cos 2 sin sin

ˆ ˆ
ˆ ˆ                                            cos 2 cos 2 sin 2 sin 2   0

2

y y

2
y

y

f f m m m f f

f f
f f

     

 
     
 
 

      

     
 (3.36) 

By combining (3.14) and (3.36) yields 

   

   

* * * * * *2 * * *
y z x2 1 2 1 2 1 x2 1 z 1 z

*2
x2 * * *

1 z x2 1 z

ˆ ˆ ˆˆ( , , , , , , ) 2 cos cos 2 sin sin

ˆ ˆ
ˆ ˆ                                            cos 2 cos 2 sin 2 sin 2   0

2

y y

2
y

y

f f m m m f f

f f
f f

     

 
     
 
 

      

     
 (3.37) 

By using the relations (3.36) and (3.37), a set of three governing nonlinear algebraic 

equations (3.21)-(3.23) for the rotation, the displacement in the y-direction and the 

displacement in the x- direction can be re-expressed as   

1

ˆ ˆ ˆ ˆ(  , ; , ) (  , ; , ) 1
*

z 2

*
z

* *
z z x2 y z z x2 yF f f d F f f d

 
   
  
 
 



                                                              (3.38) 

   
2

1

0 0
ˆ ˆ ˆ ˆsin 1 (  , ; , ) sin 1 (  , ; , ) 0

*
z

*
z

* *
z z x2 y z z x2 yF f f d F f f d

             
  
 
 



                   (3.39) 

   
1

0 0
ˆ ˆ ˆ ˆ ˆcos 1 1 (  , ; , ) cos 1 1 (  , ; , )

*
z 2

*
z

* * *
z z x2 y z z x2 y 2F f f d F f f d u

 



          
              

  
        (3.40) 

where the constant   is defined by   = 1 for * *
1 2ˆ ˆ, 0m m   and   = 1 for * *

1 2ˆ ˆ, 0m m   

and the function zF  is defined by   

z
1ˆ ˆ(  , ; , )*

z x2 y
z z

F f f
i j




 


                                                                                                 (3.41) 

   ˆ ˆˆ 2 cos cos 2 sin sin  *2 *
z 2 x2 z y zi m f f                                                                (3.42) 

    z z
1 ˆ ˆ ˆ ˆcos 2 cos 2 sin 2 sin 2  
2

*2 2 *
z x2 y x2 yj = f f f f                                     (3.43) 
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It is apparent from (3.41) that the function zF  appearing in (3.38)-(3.40) is 

weakly singular at the inflection point of order 1/ z  . To remove such inverted 

square-root singularity, the change of variable  z      is utilized and the 

governing equations (3.38)-(3.40) now become 

     
1 2

* * *
1 2 1 2 2 2

0 0

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , , , 1 0x y z z x y z x yf f F f f d F f f d     
 

                              (3.44) 

      

     

1

2

* 2 *
2 2 1 2 0 2

0

2 *
0 2

0

ˆ ˆ ˆ ˆ, , , , sin 1 , , ,

ˆ ˆ                                   sin 1 , , , 0

x y z z z x y

z z x y

f f F f f d

F f f d

       
      













         

     

          (3.45) 

       

     

1

2

* * 2 *
3 2 1 2 2 0 2

0

2 * *
0 2 2

0

ˆ ˆ ˆ ˆˆ, , , , , cos 1 1 , , ,

ˆ ˆ ˆ                                         cos 1 1 , , , 0

x y z z z x y

z z x y

f f u F f f d

F f f d u

        
        













         

     

 (3.46) 

where  *
1 1 z     ,  *

2 2 z      and the function F  is defined by 

*
z x2

ˆ ˆ(  , ; , )yF f f
i j





 

 


                                                                                                 (3.47) 

     * 2 2
2

ˆ ˆ2 cos cos 2 sin sin  x z z y z zi f f                                            (3.48) 

       *2 2 * 2
x 2 z z x 2 z z

1 ˆ ˆ ˆ ˆcos2 cos 2 2 sin 2 sin 2 2  
2

2
y yj = f f f f                   (3.49)   

It is clear that the two relations (3.36) and (3.37) equations implicitly define 

ˆ
yf  and z  in terms of * * * * *

x 2 1 2 1 2{ , , , , }f m m   , i.e. * * * * *
x 2 1 2 1 2

ˆ ˆ ( , , , , )y yf f f m m    and 

* * * * *
z z x 2 1 2 1 2( , , , , )f m m    . To obtain derivatives of ˆ

yf  and z  with respect to 
* * * * *

x 2 1 2 1 2{ , , , , }f m m   , the implicit differentiations of (3.36) and (3.37) have been taken 

and this results in a system of linear equations  
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p* * p* *
yz yz yz       

             

Γ Γ Γa a
a f u f u

                                                                   (3.50) 

where 
T

yz y z    Γ ,  ˆ T

y zf    a  and entries of matrices /yz Γ a , p*/yz Γ f  

and p*/yz Γ u  are presented in Appendix B. The system of linear equations (3.50) can 

be solved to obtain p*/ a f  and */ a u .  

Similarly, by taking derivative of (3.44)-(3.46) with respect to * *
2 1ˆ ,u   and *

2  

along with implicit functions * * * * *
x 2 1 2 1 2

ˆ ˆ ( , , , , )y yf f f m m   and * * * * *
z z x 2 1 2 1 2( , , , , )f m m     

defined by (3.36) and (3.37), it leads to a system of linear equations for *pk   

*
p* p* p* * * * *+ pz z

z z

              
                      

Γ Γ Γ Φ Γ Γ Γ Φ Φ
Φ Φ

 
 

a a+ k
f a f f u a u u u

              (3.51)
 
 

where 1 2 3

T
     Γ ,   1 2

T
Φ    and entries of matrices p*/ Γ f , / Γ a , / Γ Φ , 

/ z Φ  , */ Γ u  and */ Φ u  are given explicitly in Appendix B. The gradient matrix *pk  

can therefore be obtained by solving a system of linear equations (3.51). 

3.3 Local Force-displacement Relation for Generic Element 

 

 

 

 

 

 

Figure 3.4 Schematic of undeformed and deformed shape of generic member and     

the local coordinate system {x, y} and co-rotational coordinate system {x*, y*} 
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Let’s consider a generic member with its undeformed and deformed 

configurations shown in Figure 3.4 and let {x, y} and {x*, y*} denote the local 

coordinate system of the member in the undeformed state and its co-rotational 

coordinate system of the deformed member, respectively.  

Now, let’s define 1 1 1 2 2 2
ˆ ˆ ˆ ˆˆ ˆ{ , , , , , }l
x y x yf f m f f mf  and  1 1 1 2 2 2ˆ ˆ ˆ ˆ, , , , ,l u v u v  u  as 

a vector of normalized end forces and moments and a vector of normalized end 

displacements and rotations observed in the  ,x y  system, respectively, and define 

 * * * * * * *
1 1 1 2 2 2

ˆ ˆ ˆ ˆˆ ˆ, , , , ,x y x yf f m f f mf  and  * * * *
2 1 2ˆ , ,u  u  a vector of normalized end forces 

and moments and a vector of normalized end displacements and rotations observed in 

the  * *,x y  system, respectively. The normalized displacement *u  can be obtained in 

terms of lu  via the geometric consideration and results are given by 

*
1 1                               (3.52) 

*
2 2                                              (3.53) 

*
2 2 1 2 1ˆ ˆ ˆ ˆ ˆ(1 ) ( ) 1u u u cos v v sin                              (3.54) 

where   is the chord rotation defined by 

2 1 2 1ˆ ˆ ˆ ˆ(1 ) ( ) 0u u sin v v cos                                            (3.55) 

The normalized force and moment vector lf  in the local  ,x y  system can be 

readily related to a force and moment vector f * in the  * *,x y  system through 

standard coordinate transformation:  

  *l  f T f                                                     (3.56)     

where a transformation matrix  T  is given by 
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 T  =

0 0 0 0
0 0 0 0
0 1 0 0 0 0

0 0 0 0
0 0 0 0

0 0 1 0 0 0

c s
s c

c s
s c

 
 
 
 
  
 
 
 

 

 

 

 

                                    (3.57) 

in which  c cos 
 and  s sin  . Since the member, when observed from the 

 * *,x y  system, is identical to the simply-supported member,  f * and u* can be 

related by the relation f * = f *(u*) obtained in section 3.1. Combining equation (3.56), 

f * = f*(u*) and  * * lu u u  leads to the force-displacement relation in the local 

coordinate system:  

      * *l l l l  f f u T f u u                                 (3.58) 

The relation (3.58) allows the end forces and moments to be computed for a given end 

displacements and rotations in the local coordinate system. By applying Taylor’s 

series expansion to the nonlinear function lf , it leads to the best linear approximation 

in the neighborhood of a given displacement vector 0lu : 

      0 0 0l l l l l l l l  f u f u k u u u                                 (3.59) 

where lk  is the local element tangent stiffness matrix of the member given by 

*
* *    l   

 
  



T uk f Tk

u u
                                             (3.60)  

where matrices 

T , 



u

 and 
*


u
u

 are given in Appendix C.  

3.4 Global Force-displacement Relation for Generic Element 
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Let  be an angle indicating the orientation of the undeformed generic 

member with respect to the global coordinate system; more specifically,   is an angle 

between the local x axis of the member and the global X  axis of a structure. Also, 

let’s define 1 1 1 2 2 2
ˆ ˆ ˆ ˆˆ ˆ{ , , , , , }g g g g g g g
x y x yf f m f f mf  and  1 1 1 2 2 2ˆ ˆ ˆ ˆ, , , , ,g g g g g g gu v u v  u  as a vector 

of normalized end forces and moments and a vector of normalized end displacements 

and rotations observed in the  ,X Y  system, respectively. The force vectors gf  and 

lf  and the displacement vectors gu  and lu can be related by following standard 

coordinate transformations: 

g T lf Q f  ;     l gu Qu                                                (3.61) 

where Q is the transformation matrix given by 

Q  = 

cos sin 0 0 0 0
sin cos 0 0 0 0
0 0 1 0 0 0
0 0 0 cos sin 0
0 0 0 sin cos 0
0 0 0 0 0 1

 
  
 
 
 
 
 
 

 
 

 
 

              (3.62) 

From the force-displacement relation in the local coordinate system (3.58) along with 

(3.61), the force-displacement relation for a member in the global coordinate system 

can be obtained as   

   g g g T l g f f u Q f Qu                                             (3.63) 

The relation (3.63) allows the end forces and moments of a member in the global 

coordinate system to be computed once the end displacements and rotations in the 

global coordinate system are known. Again, by applying Taylor’s series expansion, 

the best linear approximation of gf  in the neighborhood of a vector 0gu  takes the 

form 

      0 0 0g g g g g g g g  f u f u k u u u                                (3.64) 
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where gk  is the global element tangent stiffness matrix of the member given in terms 

of lk by 

  g T lk Q k Q                                                                      (3.65)  

3.5 Load-displacement Relation for Structure 

Let a given structure be discretized into m straight and prismatic members and 

let P and U be a force vector collecting all nodal loads and a displacement vector 

collecting all nodal degrees of freedom of the structure. By enforcing static 

equilibrium and continuity at all nodes, the force vector P can be directly related to all 

global element force vectors 1gf , 2gf , …, gmf  and the displacement vector U can 

be directly related to all global element displacement vectors 1gu , 2gu , …, gmu  via 

standard direct assembly procedure, i.e. 

1 2 3  Direct assembly of { , , ,..., }g g g gmP f f f f                                              (3.66)  

1 2 3  Direct assembly of { , , ,..., }g g g gmU u u u u                                              (3.67)  

By applying the relation (3.63) for all members along with (3.66) and (3.67), it leads 

to the load-displacement relation for a structure: 

( )P P U                                        (3.68) 

For a given displacement vector U, the relation (3.68) ensures that the load vector P 

can be computed. More specifically, the relation (3.67) is utilized first to disassemble 

U into 1gu , 2gu , …, and gmu ; next, the relation (3.63) is applied for all members to 

compute 1gf , 2gf , …, and gmf ; and, finally, the relation (3.66) is utilized to 

assemble 1gf , 2gf , …, and gmf  into P. By applying Taylor’s series expansion to 

(3.68), the best linear approximation of  P in the neighborhood of a vector U0 takes 

the form 

      0 0 0T  P U P U K U U U                                            (3.69) 



33 
 

where TK  is the structure tangent stiffness matrix that can be obtained by a direct 

assembly of 1gk , 2gk , …, and gmk , i.e. 

1 2 3  Direct assembly of { , , ,..., }T g g g gmK k k k k                                              (3.70)  

The best linear approximation (3.70) plays an important role in the Newton-Raphson 

iterative scheme to determine the displacement vector U for a given load vector P. 

3.6 Determination of Internal Forces 

Once the displacement vector U is solved, the internal resultant forces at any 

cross section of any member can readily be obtained by following procedures 

indicated below. First, the force and displacement at both ends of a member in the co-

rotational coordinate system, i.e. f * and u*, are obtained from the last converged 

iteration. Next, the displacements u  and v  and the rotation   at any cross section 

S  (0, L) can be computed from the relations (3.18)-(3.20). Finally, by introducing a 

fictitious cut at S  and then considering equilibrium of the left portion (see its free 

body diagram in Figure 3.5), it leads to expressions for the bending moment m , the 

internal force resultant in the x*-direction xf   and the internal force resultant in the y*-

direction yf  at the cross section S  as   

 

 

 

 

 

 

 

Figure 3.5 Free body diagram of a left portion of member resulting from a cut at S  
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*
1

ˆ ˆ
x xf = f      (3.71) 

*
1

ˆ ˆ
y yf = f      (3.72) 

 * * *
1 1 1

ˆ ˆˆ ˆ ˆˆ x ym = m f v f u         (3.73) 

where ˆ 2
x xf = f L / EI , ˆ 2

y yf = f L / EI , m̂ = mL / EI  and = S / L . The axial force 

resultant, denoted by n , and the shear force resultant, denoted by s , can subsequently 

be obtained as follows: 

ˆ ˆˆ cos sinx yn = f f       (3.74) 

ˆ ˆsin cosx ys = f f       (3.75) 

where ˆ 2n = nL / EI  and ˆ 2s = sL / EI . 

 



CHAPTER IV 

SOLUTION PROCEDURE 

 

In this chapter, components essential for the solution procedure and the 

development of an in-house computer code (e.g. numerical integration, procedure to 

determine the end forces and moments due to the prescribed end displacement and 

rotations in the co-rotational coordinate system, nonlinear solver by Newton-Raphson 

method, etc.) are briefly discussed.   

4.1 Numerical Integration 

All integrals involved in the key governing equations are relatively complex 

and cannot directly be integrated to obtain regular functions. Nevertheless, integrands 

of all integrals, after performing variable transformations for the case of double-

curvature members, are well-behaved and contain no singularity within their range of 

integration. In the present study, standard Gaussian quadrature (e.g. Hamming, 1987; 

Chapra and Canale, 1990) is employed to accurately and efficiently evaluate those 

involved integrals.  

4.2 Procedure to Determine *f  for Prescribed *u   

Determination of *f  for a given *u  is a crucial step in the evaluation of load 

residuals in Newton-Raphson iteration (e.g. Hamming, 1987; Chapra and Canale, 

1990) and it requires to solve a system of nonlinear algebraic equations (3.29)-(3.32) 

for a single curvature member and (3.36)-(3.37) and (3.44)-(3.46) for a double 

curvature member. Procedures based on Newton-Raphson iteration are implemented 

to achieve this particular task as indicated below. 

1) Start by choosing an appropriate initial guess *( )kf  with k = 0 

2) Evaluate the residual  ( )
1 2 3

k    Γ for a single curvature member and 

( )
1 2 3

k      Γ  for a double curvature member at *( )kf and given *u  
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3) Check convergence  ( )k TolΓ  or ( )k TolΓ . If it is satisfied, stop the 

iteration; otherwise, go to step 4)  

4) Obtain the gradient matrix */ Γ f  or */ Γ f  at *( )kf  and given *u  

5) Solve a system of linear equations  ( ) *( 1) *( )
*0 k k k

  


ΓΓ f f
f

 or 

 ( ) *( 1) *( )
*0 k k k

  


ΓΓ f f
f

 to obtain *( 1)kf  and then go to step 2) 

The above procedures can also be presented in a form of a flowchart as shown in 

Figure 4.1.  

No

Yes

( ) ( ) and   k kΓ

*/ Γ f */ Γ f
*( )kf *u

 

 

( ) *( 1) *( )
*

( ) *( 1) *( )
*

0   

      

0

k k k

k k k

or






  




  



ΓΓ

ΓΓ

f f
f

f f
f

*f

( )

( )

< 

  

< 

k

k

Tol

   or 

Tol Γ



 k*f

 

Figure 4.1 Flowchart of procedures to determine for given *f  for a given *u  
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4.3 Solution Procedure by Newton-Raphson Method  

To solve a system of nonlinear algebraic equations P = P(U) for a given P, 

Newton-Raphson method is utilized. Procedures to obtain the solution U* +U for 

the given load vector P*P where U* is a converged displacement vector associated 

with P* from the previous step, P is the prescribed load increment in the current 

step, and U is the displacement increment to be determined, are summarized as 

follows: 

1) Start by choosing an appropriate initial guess ( )kU  with k = 0 

2) Obtain the total displacement vector ( ) * ( )k k  U U U  

3) Disassemble ( )kU  to obtain the global end displacement vector for each 

member ( )g ku  

4) Obtain the local end displacement vector for each member ( )l ku  from the 

first relation of (3.61) 

5) Obtain the end displacement vector in the co-rotational coordinate system 

for each member *( )ku  from the relations (3.52)-(3.55) 

6) Utilize procedures presented in the section 4.2 to determine the force 

vector *( )kf  for each member from the known *( )ku  

7) Compute the gradient matrix *pk  for each member using results obtained 

from sections 3.1 and 3.2 

8) Obtain local force vector ( )l kf  and  local element tangent stiffness matrix 
( )l kk  for each member using the relations (3.56) and (3.60), respectively 

9) Obtain global force vector ( )g kf  and  global element tangent stiffness 

matrix ( )g kk  for each member using the relations (3.61) and (3.65), 

respectively 

10) Assembly global force vector ( )g kf  and  global element tangent stiffness 

matrix ( )g kk  for all members to obtain  ( )kP U  and  for ( )T kK  
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11) Compute load residual vector  ( ) ( )k k R = P + P P U  and check 

convergence from ( ) /k Tol R P + P . If it is satisfied, ( )kU  becomes the 

solution and the iteration is terminated; otherwise, go to step 12) 

12) Update the displacement increment ( 1)kU  by solving a system of linear 

algebraic equations ( ) ( ) ( 1)k T k kR = K U  and then go to step 2) 

The above solution procedures can be presented clearly in a form of a flowchart as 

shown in Figure 4.2. 

 



39 
 

   Initial guess            with k=0( )kU

     Obtain ( ) * ( )k k  U U U

     Disassemble          to( )kU ( )g ku

       Obtain          from (3.61)( )l ku

 Obtain          from (3.52)-(3.55)*( )ku

 Utilize procedure in Section 4.2
      to determine   *( )kf

   Compute gradient         using results 
    obtained from section 3.1 and 3.2

*pk
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Figure 4.2 Flowchart of solution procedures by Newton-Raphson method 
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4.4 Structure of Implemented Computer Code  

The implemented in-house computer code consists of three main parts 

including input routine, processing routine and output routine as shown in Figure 4.3. 

In the input routine, essential data including the geometry of the structure (i.e. 

nodal coordinates and member connectivity), constraints against movements, cross 

sectional properties (i.e. area A and moment of inertia I), Young’s modulus E, and 

nodal load data and number of load steps, must be provided. 

The processing routine involves the complete nonlinear analysis. The given 

load data is sub-divided into several load steps and, for each load step, the nodal 

displacement vector is obtained using the procedure shown in the section 4.3. The 

routine is terminated when all load steps are considered. 

The output routine is implemented to capable of post-processing the reactive 

forces, internal forces at any point within the structure, and the deformed shape of a 

structure. Once nodal displacements and rotations are solved, quantities of interest 

within the member can readily be computed. For instance, the displacement and 

rotation at any interior point of a member can be obtained using the relations (3.21)-

(3.23) and all internal forces can be obtained by using the method of sections along 

with the enforcement of equilibrium in the deformed state. 

 

 

 

 

 

 

 

Figure 4.3 Structure of implemented in-house computer code 
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CHAPTER V 

NUMERICAL RESULTS 

 

In this chapter, numerical results for various examples are presented to 

demonstrate the efficiency and accuracy of the current technique. The formulation and 

implementation are tested by comparing the predicted solutions with those from a 

reliable finite element code. For numerical experiments of the first two problems, a 

series of meshes is adopted to construct the approximate solutions with the primary 

aim to show no dependency of numerical solutions on the level of discretization. The 

last two examples, a one-story portal frame and a multi-story frame, are considered to 

demonstrate capability of the proposed technique to treat structures consisting of 

multiple members.      

5.1 Cantilever Beam Subjected to Two Moments and Axial Force 

Consider a cantilever beam of length 2L, Young’s modulus E, moment of 

inertia I, and cross sectional area A. The beam is subjected to two opposite 

concentrated moments, 1.5M at the mid-span and M at the tip, and the axial force P at 

the tip of beam as shown schematically in Figure 5.1(a). In the analysis, three meshes 

consisting of 2, 4 and 8 elements are adopted as shown in Figure 5.1(b). 

 

 

 

 

 

Figure 5.1 (a) Schematic of cantilever beam subjected to two moments and axial 

forces and (b) three meshes adopted in the analysis. 
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The deformed shapes of the beam for I/AL2 = 0 (inextensible case), 0.5, 1 

with 2P̂ PL 0.2/ EI   and m̂ ML/ EI {2,4,6}   are shown in Figure 5.2 along with 

results obtained from the reliable FEM package. To ensure the accuracy of the 

benchmark solution, a sufficiently fine mesh (confirmed by a convergence test) is 

utilized to generate such reference solution. It is evident that results obtained from the 

current technique are identical for all three meshes and they exhibit excellent 

agreement with the benchmark solution for all three values of normalized moment m̂  

considered. It should be noted that the predicted solutions exhibit mesh independent 

due to the use of exact governing equations in the evaluation of load residuals in the 

Newton-Ralphson iterative scheme. This crucial feature allows the reduction of 

number of elements used in the analysis to save the computational resources. It is also 

important to point out that using inextensibility assumption ( = 0 or A →∞) in the 

modeling can lead to results of significant difference from those for the more realistic, 

extensible case ( > 0 or A is infinite). 
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Figure 5.2 Deformed shapes of cantilever beam subjected to two moments                

and axial force with P̂ 0.2  

 = 0    (FEM) 
  = 0.5 (FEM) 
  = 1    (FEM) 
 esh-1 
 esh-2 
 esh-3 
 

m̂ = 2  

m̂ = 4  
m̂ = 6  

Y/L  

X/L  



43 
 

5.2 T-Frame Subjected to Moments and Axial forces 

Next, let’s consider a T-frame consisting of a single column and two beams as 

shown schematically in Figure 5.3(a).  The beams and the column are of the same 

length L, Young’s modulus E, the moment of inertia I and the cross-sectional area A. 

The given frame is subjected to three concentrated moments {M1, M2, M3} and the 

axial forces P at the beam ends. In the analysis, the three moments are chosen such 

that M1 = M2 and M3 = –2.5M1 and three meshes consisting of 3, 6 and 12 members 

are adopted as shown in Figure 5.3(b).   

The deformed shapes of the T-frame obtained from the analysis are reported in 

Figure 5.4 for I/AL2  {0, 0.5, 1}, 2P̂ PL 0.2/EI   and 1m̂ M L / EI {2, 6}   

along with results obtained from the FEM. Again, numerical results obtained from all 

three meshes are highly accurate (as compared with the benchmark solutions) and, 

again, exhibit mesh independence. For this particular structure, only three members 

(two beams and one column) are sufficient in the discretization. Similar to the 

previous case, the extensibility condition strongly influences the deformed shape of 

the structure. 

 

 

 

 

 

 

 

 

Figure 5.3 (a) T-frame subjected to three concentrated moments and axial forces and 

(b) three meshes adopted in the analysis 
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Figure 5.4 Deformed shapes of T-frame subjected to three concentrated moments and 

normalized axial force P̂ 0.2  

5.3 Propped Cantilever Beam Subjected to End Loads 

Next, let’s consider a propped cantilever beam of length L, Young’s modulus 

E, the moment of inertia I and the cross sectional area A as shown in Figure 5.5(a). 

The beam is fully fixed at the left end whereas the right end is restrained against the 

movement in the vertical direction and subjected to the end moment M and axial 

compressive force P. Due to the beam configuration and loading conditions, only one 

member is needed in the discretization as shown in Figure 5.5(b). 

The deformed shapes of the beam obtained from the analysis are reported in 

Figure 5.6 for I/AL2 = 0.005 and different values of 2P̂ PL /EI  and 

1m̂ M L / EI . Again, to validate the computed solutions, converged results obtained 

from the FEM are plotted in the same graph. It is evident from this set of results that 

highly accurate numerical solutions are obtained with use of a single member in the 

discretization. It is also worth noting that the displacement and rotation at any interior 

point can readily be obtained via the post-processing equations (e.g. equations (3.18)-

m̂ = 2  

m̂ = 6  
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 esh-1 
 esh-2 
 esh-3 
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(3.20)) once all unknowns at both ends of the member are determined. Results of such 

post-process are also reported in Figure (5.6) and, again, they are in very good 

agreement with the FEM solution. It can also be concluded from this set of results that 

increase of the axial compressive force P for a fixed end moment M results in the 

larger displacement and rotation. 

 

 

 

 

   

Figure 5.5 (a) Propped cantilever beam subjected to end moment M and axial 

compressive force P and (b) mesh used in the analysis 
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Figure 5.6 Deformed shapes of propped cantilever beam subjected to end moment and 

axial compressive force 
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In addition, the axial force, the shear force and the bending moment along the 

member are obtained and reported along with those generated by the linear elastic 

analysis in Figures 5.7, 5.8, and 5.9, respectively. It is evident that results obtained 

from the proposed technique show significant deviation from the linear solution and 

such difference increases as the magnitude of applied loads becomes larger. This is 

due mainly to that the deformed configuration of the member at larger loads is 

significantly different from the undeformed configuration and this also boosts the 

influence of the axial-bending interaction. In particular, the axial force and shear force 

obtained from the linear analysis are constant throughout the member (due to that 

equilibrium is enforced in the undeformed state) whereas those obtained from the 

large displacement and rotation analysis vary nonlinearly along member due to the 

significant change of the member axis. This similar trend was also observed in the 

case of the bending moment. In addition, as the compressive force P increases for a 

fixed moment M, the bending moment within the member becomes larger and this 

behavior cannot be predicted from the linear analysis.  
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Figure 5.7 Normalized axial force diagram of propped cantilever beam subjected to 

end moment and axial compressive force 
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Figure 5.8 Normalized shear force diagram of propped cantilever beam subjected to 

end moment and axial compressive force 
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Figure 5.9 Normalized bending moment diagram of propped cantilever beam 

subjected to end moment and axial compressive force 
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5.4 One-story Portal Frame Subjected to Horizontal and Vertical Forces 

Let’s consider, next, a one-story portal frame consisting of two columns and 

beam as shown in Figure 5.10(a). The beam and the two columns are of the same 

length L, Young’s modulus E, the moment of inertia I and the cross sectional area A. 

The frame is fully fixed at the base and subjected to a horizontal concentrated force P 

and two identical vertical forces V at the top of the column. In the analysis, the frame 

is discretized into three members (i.e. two columns and one beam) as shown in Figure 

5.10(b) and the horizontal and vertical forces are chosen to be sufficiently large, i.e. 

P̂ PL2/EI = 15 and V̂ VL2/EI = –5, to ensure that the structure undergoes the large 

displacement and large rotation. 

 

 

 

 

 

 

 

 

 

Figure 5.10 (a) One-story portal frame subjected to both horizontal and vertical forces 

at the top of columns and (b) mesh used in the analysis 

The deformed shapes of the frame for I/AL2 = 0 (inextensible case),  

I/AL2  {0.005, 0.001} (extensible case), P̂ 15  and V̂ 5   are shown in Figure 

5.11 along with the benchmark solutions generated by the FEM. Interior points 

obtained from the post-process and the location of the inflection point in each member 

are also reported. It is evident that results obtained from current technique are almost 

indistinguishable from those obtained from the FEM. In addition, results for the 

extensible case exhibit significant deviation from those for the inextensible case. 
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Figure 5.11 Deformed shapes of one-story portal frame subjected to both horizontal                   

and vertical forces at the top of columns 

Again, to demonstrate the behavior of the internal forces developed within this 

particular frame under the given applied forces, diagrams of the axial force, the shear 

force and the bending moment for three members (i.e. members AB, BC and CD) 

obtained from the current technique are reported in Figures 5.12-5.13 along with those 

from the linear elastic analysis. It is apparent from this set of results that the axial 

force and shear force predicted by the current technique possess highly nonlinear 

variation along all three members and are very different from those obtained from 

linear elastic analysis which are found constant within each member. For the bending 

moment, the discrepancy between results obtained from the two techniques is 

obviously less than the axial and shear forces; however, this level of difference is still 

sufficiently large to indicate the incapability of the linear analysis to model structures 

under large displacement and rotation.    
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Figure 5.12 Normalized axial forces diagram for member AB of one-story portal 

frame subjected to both horizontal and vertical forces at the top of columns 
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Figure 5.13 Normalized shear forces diagram for member AB of one-story portal 

frame subjected to both horizontal and vertical forces at the top of columns 
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Figure 5.14 Normalized bending moment diagram for member AB of one-story portal 

frame subjected to both horizontal and vertical forces at the top of columns 
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Figure 5.15 Normalized axial force diagram for member BC of one-story portal frame 

subjected to both horizontal and vertical forces at the top of columns 
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Figure 5.16 Normalized shear force diagram for member BC of one-story portal frame 

subjected to both horizontal and vertical forces at the top of columns 
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Figure 5.17 Normalized bending moment diagram for member BC of one-story portal 

frame subjected to both horizontal and vertical forces at the top of columns 
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Figure 5.18 Normalized axial force diagram for member CD of one-story portal frame 

subjected to both horizontal and vertical forces at the top of columns 
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Figure 5.19 Normalized shear force diagram for member CD of one-story portal 

frame subjected to both horizontal and vertical forces at the top of columns 
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Figure 5.20 Normalized bending moment diagram for member CD of one-story portal 

frame subjected to both horizontal and vertical forces at the top of columns 

5.5 Multi-Story Frame Subjected to Lateral and Vertical Forces 

As a final example, let’s consider a more complex boundary value problem 

associated with a multi-story frame subjected to the lateral forces P and vertical forces 

V as shown in Figure 5.15(a). All columns and beams are assumed prismatic and have 

the same length L, moment of inertial I, cross sectional area A and Young’s modulus 

E. The base of the frame is fully restrained against both the displacement and rotation. 

In the analysis, the frame is discretized into only 12 members consisting of eight 

columns and four beams as shown in Figure 5.15(b). 

The deformed shapes of the frame for three values of the extensibility 

parameter I/AL2  {0, 0.001, 0.005} and a fixed level of applied loads V̂ 0.1  

and P̂ 2  are shown in Figure 5.16. Results are shown at all nodes and certain points 

within the member (resulting from the post-process). The magnitude of both the 

lateral and vertical loads is chosen to be sufficiently large simply to demonstrate the 

capability of the current technique to accurately model highly geometric nonlinearity. 

Results for all three cases are compared with those obtained from the FEM and good 
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agreement between those solutions is observed. In addition, with the high level of 

applied loads (or, equivalently, structure undergoing large displacement and rotation), 

the extensibility parameter  significantly affects the deformed shape of the frame. In 

particular, as  increases, the structure experiences more severe displacement.  

 
  
 
 
 
 
 
 

 

 

 

 

Figure 5.21 (a) Multi-story frame under lateral forces P and vertical forces V and (b) 

mesh used in the analysis 

-1.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

 

Figure 5.22 Deformed shapes of multi-story frame under lateral and vertical forces 
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CHAPTER VI 

CONCLUSSIONS AND REMARKS 

 

An efficient and accurate semi-analytical technique based upon the co-

rotational formulation and the direct stiffness strategy has been developed for the 

large displacement and rotation analysis of two-dimensional, linearly elastic, 

extensible frames. The mathematical model has been constructed based on the exact 

kinematics among the displacement, rotation and curvature. A direct integration 

technique has been employed to transform a set of governing nonlinear ordinary 

differential equations into an equivalent set of nonlinear algebraic equations 

governing the end forces and displacements for a simply-supported member. Essential 

results for this particular member have been established and used as a basis along with 

the co-rotational technique to form the force-displacement relation and element 

tangent stiffness matrix in the local coordinate system. Standard coordinate 

transformations and the assembly procedure have been adopted to derive the load-

displacement relation and the corresponding tangent stiffness matrix for a structure. 

The crucial features of the proposed technique include that (i) the tangent stiffness 

matrices are obtained exactly from the exact governing equations; (ii) the residual 

load vector is evaluated exactly from the exact governing equations; and (iii) the 

direct stiffness strategy is adopted to treat frames of general geometry and arbitrary 

nodal loads.  

An in-house computer code has been successfully implemented for both single 

and double curvature members. Standard Gaussian quadrature has been adopted to 

evaluate all involved integrals and Newton-Raphson method has been used to 

construct a solution of a system of nonlinear algebraic equations. To verify both the 

formulation and implementation, extensive numerical experiments for various frame 

structures have been performed and computed solutions are compared with those 

obtained from a reliable finite element package. Results from such verification 

indicate that the proposed technique yields highly accurate numerical solutions; in 
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particular, such solutions are comparable to the analytical solution without refining 

the discretization. 

Due to the high accuracy of the developed technique and its vast capabilities 

to treat structures of general geometry, it offers an attractive alternative to be 

employed in the analysis of two-dimensional frames undergoing large displacement 

and rotation. In addition, it can also be used to generate accurate benchmark solutions 

for comparison purposes. As the final remark, the current investigation is still 

restricted to structures made of linearly elastic materials and this limitation narrows its 

applications to a class of structures undergoing large deformation beyond the linear 

regime, e.g. in the collapse and failure analysis under severe loading conditions. 

Extension of the current technique to incorporate the material nonlinearity and the 

inertia effect to predict dynamic responses should significantly enhance the modeling 

capability and, at the same time, poses very challenging research problems. 
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APPENDICES 



 

APPENDIX A 

 

The matrices p*/y f , ˆ/y yf   and  */y u on the right hand side of 

equations (3.33) can be expresses as  

p* * **
1 22

ˆ ˆ ˆ
y y y y

x m mf

    
  

    f
      ;       * * * *

2 1 2ˆ
y y y y

u
    

       u
                           (A.1) 

Similarly, the matrices p*/ Γ f , ˆ/ yf Γ and */ Γ u on the equations (3.34) can be 

expresses as 

1 1 1
* **
1 22

2 2 2
p* * **

1 22

3 3 3
* **
1 22

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

x

x

x

m mf

m mf

m mf

   
 

  
   
 

   
    
   

Γ
f

                                                                                     (A.2) 

 

31 2

ˆ ˆ ˆ ˆ

T

y y y yf f f f

  
  

     

Γ                                                                                       (A.3) 

1 1 1
* * *
2 1 2

2 2 2
* * * *

2 1 2

3 3 3
* * *
2 1 2

ˆ

ˆ

ˆ

u

u

u

 

 

 

   
    
   

      
   
 
   

Γ
u

                                                                                       (A.4) 

All entries appearing in (A.1)-(A.4) are given explicitly by 

1*
2

ˆ
y

xf


 


                                                                                                                 (A.5) 



63 
 

 
 

*
1*

1

ˆ2
ˆ
y m

m


 


                                                                                                             (A.6) 

*
2*

2

ˆ2
ˆ
y m

m





                                                                                                               (A.7) 

1*
1

Cy







                                                                                                                  (A.8) 

2*
2

Cy







                                                                                                                 (A.9) 

1By

yf





                                                                                                                (A.10) 

*
2

*
1

31
*
2

1
ˆ 2x

F d
f





 


  
                                                                                              (A.11) 

   *
2

*
1

0 32
*
2

1 sin
cos sinˆ 2x

ε
F F d

f






    


  

                                                  (A.12) 

   *
2

*
1

02 33
*
2

1 cos 1
cosˆ 2x

ε
F F d

f






   

      
                                                (A.13) 

*
2

*
1

3 *1
2*

2

ˆ
ˆ

F m d
m





 


 
                                                                                                (A.14) 

 
*
2

*
1

3 *2
0 2*

2

ˆsin 1 + 
ˆ

ε F m d
m





  


                                                                            (A.15) 

 
*
2

*
1

3 *3
0 2*

2

ˆcos 1 + 1
ˆ

ε F m d
m





  


                                                                      (A.16) 

*
2

*
1

31 1
ˆ 2y

F d
f





 


 
                                                                                                 (A.17) 
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 *
2

*
1

0 32 1 sin
ˆ 2y

ε
F F d

f






 


  

                                                                         (A.18) 

 
 *

2

*
1

0 33
1 cos 1

sin cosˆ 2y

ε
F F d

f






    

      
                                        (A.19) 

3
*
2

1
û


 


                                                                                                                (A.20) 

1
1*

1

F



 


                                                                                                           (A.21) 

  *2
1 1 1*

1

1 sinF ε 



  


                                                                                      (A.22) 

  *3
1 1 1*

1

1 cos 1ε F 



     
                                                                             (A.23) 

1
* *
2 2

1
m̂








                                                                                                           (A.24) 

  *
2 22

* *
2 2

1 sin
ˆ
ε
m










                                                                                           (A.25) 

  *
2 23

* *
2 2

1 cos 1
ˆ

ε
m






    


                                                                                  (A.26) 

31 2 1 2
* * * * * *
2 1 1 1 2 2

ˆ
0

ˆ ˆ ˆ ˆ ˆ ˆ
yf
u m m m u u
    

     
     

                                                            (A.27) 

Where the functions F , 1F ,  , 1A , B , 1B , 1C , 2C , 0ε , 1ε  and 2ε  are given by 

1F
i j




                                                                                                          (A.28)                                

   2* * * *
2 2 2 2

ˆ ˆˆ 2 cos cos 2 sin sin  x yi m f f                                                     (A.29)                   

    *2 * * *
x2 2 x2 2

1 ˆ ˆ ˆ ˆcos 2 cos 2 sin 2 sin 2  
2

2
y yj = f f f f                                     (A.30) 
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1
1 1

1F
i j




                                                                                                        (A.31)                                

   2* * * * * *
1 2 2 2 1 2 1

ˆ ˆˆ 2 cos cos 2 sin sin  x yi m f f                                                  (A.32)                   

    *2 * * * * *
1 x2 2 1 x2 2 1

1 ˆ ˆ ˆ ˆcos 2 cos 2 sin 2 sin 2  
2

2
y yj = f f f f                                 (A.33) 

     * * * *
2 2 2 2

ˆ ˆ2 cos cos cos 2 cos 2 sin 2 sin 2x yf f                            (A.34) 

     * * * * * * *
1 2 1 x2 2 1 2 1

ˆ ˆA 2 cos cos cos 2 cos 2 sin 2 sin 2yf f                      (A.35) 

     * * * *
2 2 2 2

ˆ ˆ2 sin sin cos 2 cos 2 sin 2 sin 2y xf f                              (A.36) 

     * * * * * * *
1 2 1 2 1 x 2 2 1

ˆ ˆ2 sin sin cos 2 cos 2 sin 2 sin 2yf f                        (A.37) 

 * * * *2 2 * * *
1 x2 1 1 x2 1 x2 1

ˆ ˆ ˆ ˆ ˆ ˆC 2 sin 2 cos sin 2 2 cos 2y y yf f f f f f                            (A.38) 

 * * * *2 2 * * *
2 x2 2 2 x2 2 x2 2

ˆ ˆ ˆ ˆ ˆ ˆC 2 sin 2 cos sin 2 2 cos 2y y yf f f f f f                            (A.39) 

 *
0 2

ˆ ˆcos sinx yε f f                                                                                        (A.40) 

 * * *
1 2 1 1

ˆ ˆcos sinx yε f f                                                                                     (A.41)    

 * * *
2 2 2 2

ˆ ˆcos sinx yε f f                                                                                     (A.42) 
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The entries of matrices /yz Γ a , p*/yz Γ f and p*/yz Γ u  from equations 

(3.54) can be expresses as  

ˆ

ˆ

y y

zyyz

z z

zy

f

f





  
        

  

Γ
a

                                                                                               (B.1) 

* **
1 22

p*

* **
1 22

ˆ ˆ ˆ

ˆ ˆ ˆ

y y y

yz x

z z z

x

m mf

m mf

   
          

   

Γ
f

                                                                                     (B.2) 

* * *
2 1 2

p*

* * *
2 1 2

ˆ

ˆ

y y y

yz

z z z

u

u

 

 

   
     
    
 
    

Γ
u

                                                                                     (B.3) 

Similarly, the matrices p*/ Γ f , / Γ a , / Γ Φ , / z Φ , */ Γ u and */ Φ u on 

the equations (3.58) can be expresses as 

1 1 1
* **
1 22

2 2 2
p* * **

1 22

3 3 3
* **
1 22

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

x

x

x

m mf

m mf

m mf

   
 

  
     

   
 
   
   

Γ
f

                                                                                     (B.4) 
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31 2

31 2

ˆ ˆ ˆ

T

y y y

z z z

f f f

  

   
          
    

Γ
a

                                                                                      (B.5) 

 
31 2

1 1 1

1 2 2

2 2 2

T

  

  

  
     
    
 
   

Γ
Φ

                                                                                         (B.6) 

 

1 2

T

z z z

 
  

  
     

Φ                                                                                                 (B.7) 

1 1 1
* * *
2 1 2

2 2 2
* * * *
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3 3 3
* * *
2 1 2

ˆ

ˆ

ˆ

u

u

u

 

 

 

   
    
   

  
    

    
    

Γ
u
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1 1 1
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2 1 2
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2 2 2
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2 1 2

ˆ

ˆ

u

u

  
 

  
 

   
     
    
    

Φ
u

                                                                                      (B.9) 

All entries appearing in (B.1)-(B.9) are given explicitly by 

1*
2

Aˆ
y

xf





                                                                                                                (B.10) 

2*
2

Aˆ
z

xf





                                                                                                               (B.11) 

*
1*

1

ˆ2
ˆ
y m

m


 


                                                                                                           (B.12) 
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*
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ˆ
z m

m


 


                                                                                                         (B.13) 

1*
1

Cy







                                                                                                                (B.14) 

2*
2

Cz







                                                                                                                (B.15) 

1Bˆ
y

yf





                                                                                                                (B.16) 

2Bˆ
z

yf





                                                                                                                (B.17) 

Cy z
z

z z 
 

 
 

                                                                                                     (B.18) 

1 2

1
* 3 3

0 02

1 2 D 1 2 D
ˆ 2 2H Hx

d d
f

    
   


  

                                                                (B.19) 

   

   
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2
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* 3
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3
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Where the functions  , 1 , 2 , H , 1H , 2H , 1A , 2A 1B , 2B , 1C , 2C , Cz , D , E , L , M , 

N , 0ε , 1ε  and 2ε  are given by 

 2
z    ,  2

1 1 z     and  2
2 2 z                                             (B.42) 

H i j                                                                                                            (B.43.1)                                                      
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APPENDIX C 

 

From equations (3.59)-(3.62) and (3.64), the entries of matrices /  T , / u and 
* / u u  can be obtain as 

0 0 0 c 0
0 0 0 c 0
0 0 0 0 0 0

0 0 0 0 c
c 0 0 0 0
0 0 0 0 0 0

s
s

s
s

 

 

 

 



  
  
 

     
 
 
 

T                                                                    (C.1) 

* * * *ˆ ˆ ˆ ˆ/ / 0 / / 0s d c d s d c d   
     u

                                                (C.2) 

*
* * * *

* * * *

0 0
ˆ ˆ ˆ ˆ/ / 1 / / 0
ˆ ˆ ˆ ˆ/ / 0 / / 1

c s c s

s d c d s d c d

s d c d s d c d

   

   

   

  
 

   
  

   

u
u

                                               (C.3) 

where cosc  , sins   and * *
2

ˆ ˆ1d u   
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