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CHAPTER I
TION

To accommodate the i ps in the future, and to
—

provide a benchmark of inye 1 i s k Exchange of Thailand, the SET50

"s.

" B - e om the stock prices of
the top 50 companies on SET in tewms ge market capitalization, high liquidity
‘ : g the d of shares to minor
The component si £ o By Tndex are reviewed very six months in

v ' ave occurred stock market, such as
new listings or public if After re st R " meet the necessary

qualifications are selegted ! of 50 Index and others are

fric Brownian motion if and only
= pS(t)dt + oS(t)dW (1)
where W (t) is h Wiene w .o are constant. Médaling the price of
ymetric Brownian motion - J he effect of stock

A stochastic process S(t) I =
if S(?) satisfies a stochasti

SET50 Index by.gd0
revision. We will @velo the effect of stock
revision by changing u, o from constant functions to piecewise-constant functions
according to stock re{sﬁ period. Then W&fﬂl find arbltrage prices of futures,

e E AT T

In chapﬁr 2, we give some background to the readers who are still not familiar
with probability theory and stoch%tlc calculus whieh are topics ne ar
SRR R AENR -

Veqy useful for a review.

In chapter 3, we give explanation about stock index in overview, and SET50

Index is also described. In addition, the stochastic model of normal asset price are



explained from its beginning along with the physical meaning of the model. Later,
the geometric Brownian motion is explained. Finally, it is culminating at the end

by our developed model with its simulation for some parameters.

In chapter 4, the futures contract introduced; how it benefits, how it is used,
who uses it. Necessary mathen Al H ! re also explained. Ultimately,
we use these theorems to find of arbitrage price of futures.
Moreover, simulation of futurcs priceyis digcussed"lon o with its consistence to
our understanding aboutfu 5§ Gontra '

In chapter 5, we give somed asic o bpean option contracts. We

then later explain mathematieal t. . y for finding options

\‘ onsistent with real world

¥ ~\‘ $
\ \

prices. After findix rate the simulation

of SET50 Index options pe J 7- IS¢
situation. B
In chapter 6, we conclude | ‘5~‘F$

FWEJ’JVIEWI?WEJ’]ﬂ?
QW]Mﬂ‘iﬂJlHﬂTJﬂEI’]aH



CHAPTER 11

() is called a o —algebra
or o — field if

1. Qe F

2. if A€ F, thens

3. if A, € Fforn

The sets in F are called measti ) is called a measurable space.

Definition 2.2. Let 2 be a noil empty set ¢ jeld, Let P: F — [0,1]
be a measure such. n (O, F, wu robability space and
P, a probability m element of F are

called events. Ele :! its of

e S TN ANLINS. ...

F — measurable if

QW]Mﬂ‘iﬂd%dﬂﬂﬂ’mﬁl']aﬂ

for every Borel set B € B(R). If (2, F, P) is a probability space, then such a

function £ is called a random variable.



A notation for events such as {£ € B} will be used to substitute

{we:¢(w) € B}

Theorem 2.1. A randommoariable Ie ﬁ) induces a probability

measure Py on B de

Definition 2.4. Shol obability distribution

or the distribution o

Definition 2.5. Let £

set BCR

A J
then £ is said to 4"! randoimn vari olute conti L: us distribution and

fe is called the denszty of §

el UBARH TN G o
AR AN SAITINYa Y

th1n ¢ is said to have discrete distribution with values 1, xo, . .. and mass P {{ = x;}
at ;.

1f R — R is called a Borel function if f~'(B) € B(R) for any Borel set B




2.1.4 Expectation

Definition 2.8. A random variable ¢ : Q — R isin L' (2, F, P) if

|g P‘

Then

exists and is called t

Definition 2.9.

Given a probability space (Q,F ic process with state space S is a

collection of S-valued random - i.e. a stochastic process
Xisa collectirl { andom variable.
For a fixed w -?jf_
nge path o 7, the s- e space S is R which

an interval [0 T] or

N
called a realization, a

trajectory, or a sa

comes with the Borel o-algebra B (R), and the index set I

[0, 00) Two sto @c rocesses U= :t €I} and V tel}
on the sﬂ u EJ ’SJ d t E}ﬂ‘ﬂ ar 1ndependent

for all s, t

random Varlable Y the a‘a ra generated*by Y. denoted b
IR ile AN

ctel } the o- algebra generated by X, denoted by o(X), is the smallest
a-algebra which makes X (t) measurable for all t € I. A collection {F; : t € I}
of o-algebras on 2 is called a filtration if F, C F; for all s < t. A stochastic



process X = {X(t) : t € I} is said to be adapted to the filtration {F; : t € I} if
o(X(t)) C F forallt € I and we will call X an adapted process {X(t),F; : t € I}.
Every stochastic process X = {X(t) : t € I} is always adapted to the natural
filtration generated by X: {F; = o s <t}):t e I}. If a stochastic process

2.3.1 Defini

Definition 2.10.A W igr : 0dess+(or Eownidn MetioMbis a stochastic pro-
cess W (t) with valuggiin [R'd fingd fc 3 \

_ﬁuﬁ

txy—

AL INUNT Wﬂ’]“ﬂﬁy A

From t deﬁmtlon 2.10 we can show that

Qﬁﬂﬂﬂﬂ‘iﬂﬂﬂﬁ%ﬂ&ﬂﬁﬂ

e probability density of W (¢) which is the probability density of normal random

variable with mean 0 and variance t.



2.3.2 Increments of Brownian Motion

Proposition 2.2. For any 0 < s <t the increment W (t) — W(s) has the normal

distribution with mean 0 and variance t — s.

- 2 implic has stationary increments.
Proposition 2.4. For any 0 > . ﬁcr@ments

- W f"hg mﬁ'mh

are independent.

Theorem 2.5. A s ocess if and only if

4. the increment W (t) — [ distribution with mean 0 and

variance t — 5 for any <

Theorem 2.6. L2 .:‘ — oWy, s < 1)
be the ﬁltmtion' :, at rone if and only if the
:

following conditio ;j,l vold: :JJ

gmﬂﬁEQMHMﬁwﬂﬂﬂi
W’Tﬁ‘ s Neay

Theorem 2.7. With probability 1 the Wiener process W (t) is non-differentiable
at any t > 0.




2.4 Ito0 Stochastic Calculus

2.4.1 Ito Stochastic Integral: Definition

Definition 2.11. We shall call _

a random step process if there is a

(2.1)

where 7); is F;,-m rdom step processes

will be denoted by

Definition 2.12. M3, of
the form (2.1) is de

Proposition 2.8. For Ir,—- ep ‘ : the stochastic integral
I(f) is a square integrable rane .....;;.,..f able, f) € L?, such that

ﬁ':' v~..""-¥-t

The stocha
feM, We Willﬂten sses F,I] h can be defined as
li

the following.

b |
o [‘H om step process

|dt

%%%Eﬂﬂﬂ

)

‘|f

Tl Eﬁ?{ "Wﬁﬂ‘ﬁﬁ Ty e

FRTRENS

lim F

n—oo

Also we will say that the sequence of random step processes fi, fa, ... approximates f in M?2.



Definition 2.14. We call I(f) € L? the Ito stochastic integral (from 0 to oo) of
fe M?*it
lim B (|1(f) — I(f,)’) = 0,

n—oo

for any sequence fi, fo,... € M2,
in M?, i.e. such that (2.2) is

a step processes that approximates f

in place of I(f).

Proposition 2.9. Fowsany f < M7 integra. I(f) € L* ewists, is

: satisfies

unique (as an element

‘ 0 -
‘:\u define the Ito Stochas-

We defined the It Stochasti

tic Integral over finite tix

Definition 2.15. For'a > space of all stochastic

y
processes f(t),t > 0 such

The Tt Stochastic

LI‘

We will also write

mplaceﬂr@iﬁl’ll"fléﬂﬁﬂﬁl’lﬂi

2.4.2 Stochastlc leferelflal and Ito«Formula

A AN D TN SN 8.

a.é‘. continuous paths and can be represented as

£(T) = £(0) + /0 Ta(t)dt—i— /O Tb(t)dW(t) (2.3)
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where b(t) is a process belonging to M2 for all T > 0 and a(t) is a process adapted
to the filtration F; such that

and to call d&(t)

Theorem 2.10 (It pose that F(t,z) is a
Ous/ ), [ (t, ), and F,.(t,x)
forallt > 0 and x . _' me the process b t)F,(t,x) belongs to

M2T for all T > 0.

ir(e.e0) = (7 (O dr MO (0

Theorem 2.11 (Exister ; F : stochastic differential equa-
tion). Let T > 0 and Y [0 B R AR i AN O,T] x R™ — R™™ pe

real-valued function.

| |c(" e, R" ¢t € [0,7] (2.4)

for some constant C, | ;;ﬁ:!r uch that
|b(t, z) — B+ et o) —e(t ) < Ple—ylwy e RyTE [0,7) (2.5)

F- A

for some consta 'IP ch 28 ndependent of the

o — algebra Fim) o:! erated by W(s)(-),s = 0 and such mﬂ

E(|Z[]
theﬂ %JC&J?%WEJ VI?W Al

t) =b(t, X(¢ dt+c‘tX te 0,77, XOZZU (2.6)

ﬁﬂ:ﬂm ﬂ?ﬁﬂm& W HHARY -
B[ [ ok <o



CHAPTER III

characteristics of SET50 Inde lich i K ex will be introduced, and later
because we will develop our SET50 Tudex metrlc Brownian mo-
tion, a geometric B

SET50 Index mo

Itimately, we will developed

stock market. Many
indices are cited by news or fi 5l ""_ s and are used as benchmarks,

to measure the performa Setas! i S 1 funds!.

3.1.1 Types of indf

Stock market indice global stock index

includes (typica VA

or traded. Two exﬁples are ] obal . A national index

;' J ey are domiciled

represents the performance of the stock market of a given nation-and by proxy,

reflects i 1n the of i t regularly quoted
market i ﬁ g]tlo Q §W gsﬂ ﬁe companies

listed on atlon s largest stock exchanges such as the American SP 500, the

ARSI TR IR T

A mutual fund is a professionally-managed type of collective investment scheme
that pools money from many investors to buy stocks, bonds, short-term money
market instruments, and/or other securities.
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index, represents the stocks of nearly every publicly traded company in the United
States, including all U.S. stocks traded on the New York Stock Exchange (but not
ADRs or limited partnerships), NASDAQ and American Stock Exchange. Russell

Investment Group added to the fa i}l indices by launching the Russel Global

performance of specific sectors

of the market. Some exan es include e REIT which tracks more

than 80 American real estate invest - ' Morgan Stanley Biotech
, ! >

Index which consists of rican fizms Wlogy industry. Other

indices may track compa offadcert size, a certa 0 type of management, or

even more specialized crigériagone/indexipublished by Lir eekly News tracks

stocks of companicgithat sell pr “and services based on the Linux operating

SET50 Index, the first

l ‘.

large-cap index of Thailagd to provide
. I

investment in The Stock
stockprices of the top 50 listed
companies on SET in terms of large‘m * zation, high liquidity and com-

esfto minor sharehold-

ers (Free Float) -"iﬂ——_' z g erlying index for

the derivative iﬁste 7 .m

. AUEANNI NN
Ok PR IRV AN/ AR LT R

bage date which is 16th August 1995. The SET50 Index had set at 1000 points on
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Index Portfolio Characteristics

Number of constituents 50
Market Cap (Mil.Baht) 6,552,125
D Mil Baht)

Company Size by Matk

Average 131,042
Largest i 939,119
Smalle g § — 15119

Mediq =y | Sy, 58,189
Table 3. LgdfidexPoutfolio Characteristics onvdél Jan 2011

the base date.

Py Qi

SET50 Index = ¢ = o PuQu 1000
o i—o PioQio

where :

P;; = the price of the i #listed A

Qi = the amount of the /& listed &
Py, = the price of the i*" Jistac* f’c‘ ai;-
Q.o = the amount of the i 11

In addition, the 'rde alug-of the component

StOCkS Changes O Cl11¢ TO cConversion or convertiplie - ponas.—c¢c :l ( Slng Of Warrants’

A5 A
or issuing of new-share: ntestocks.

U Index Launch  16th éugust 1995

QRSN ST INYAY

Table 3.2: SET50 Index’s Fact
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3.2.2 Base Adjustment Methodology

In the event of any increase or decrease in the current market value due to reasons

other than fluctuations in the stock market such as public offering, changes in

x BMVj,
(&

where _
BMYV, = Base Market Va justi
CMVy = Current Market a,. e adi
BMYVy = Base Market value after ad
CMVy = Curren M "

We will explainshew this formularis rererth

A ¥

Day 1 Supp y—
-II

Assumption: There dre initially 3 com stocks Tlisted in S !I 50 Index. However

there should be 50 sto ks but for the 81mp11(:1ty of explanatlon we will neglect the

e A AT S WA S

Stock B 3(M)OO shares, par = THB 00, market prlce = THB160

ﬁ‘lﬁﬁmﬁ‘iiﬁﬂwﬁﬁ?ﬁﬂﬂ
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Current market value (CMV)
Base market value (BMV)
Zz 0 Pthzt
Y onOQzO o

SET50 Index = x 1000

J0) + (120 x 200, 000)
(120 x 200,000

x 1,000

The market prices 1B 17 0, and THB110,

respectively. The s

T T
000) i o A*&\L ({10 x 200, 000) x 1,000

SET50 Index =

PbDas
- (120

),00  °

85,000,000
~ 83,000, uf“ '

=1,024 ﬁ" A

Ui s

Day 3 Stock R bedelisted on Day 4)
HB 110. THB 170 and THB
120, respectively. In a 1t10n stock D is a newly listed stock this day, with 150,000
shares a ﬁ ET50 Index.
The SETH ﬁﬂ mBm? m:zjﬁ njrjs on the end-

of-da; pro s by employing the closing price of that stock on that tradlng day.
Yy y Yy ?

ARIANN T UNIINYIAY

1
The market prices stocks A, B and C change to
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The index then becomes

Current market value (CMV')
Base market value (BMV)
(110 x 100, 000) + (170 x 300, 000) + (120 x 200, 000)

SET50 Index = x 1,000

x 1,000

(140 x 150, 000)
- (120 x 200, 000)

= 80,104, 650

Day 3 Market price chang
The market prices of stocks A, ;.E‘“-" ) char ‘FHB120, THB170, and THB130,

— —=
X thcn D

respectively. The second days T

: T
4 C’U/f' market o we =
SET50 Index = { |
-

| (120" 100, 000) ’ )% 150,000)
§'500, 000 il!
= Al
104,650 < 10
ANTAINYNINYINT
However, by supposing that the mérket prices of stgeks A, B, and D réniain the

TRIRINUHBIANLIRE-

thqn price movements ther words, even if we chan e stocks

x 1,000

in the list of SET50 Index but if their price do not move, with base adjustment
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index value remains the same.

Current market value (CMV')
Base market value (BMV)
(110 x 100,000) + (170 x 300,000) +

SET50 Index =

% 1,000
(140 x 150, 000)

x 1,000
Any variable whose valtie cha over SN an ur tain way is said to follow
a stochastic proce S astic pr s68can bokcla od as discrete time or
continuous time. A disgretost el 7 s one where the value of the

variable can change only a I D time Whereas a continuous-time
stochastic process is one whdi %- Alges ' ca ‘place at any time. Stochastic

ble or discrete variable. In a

processes can also be classil rg E“:"#. '

continuous-variable p ofany value within a

certain range, thereas in a discrote-varis ’ S‘i n discrete values
are possible. . .m
oL AP VTN e

3.3.1 The Marjt(BIProperty
value of a# rlable is relevant for predicting the future. The past history of the

var1ab1e and the way that the resgnt has emerged<tom the past are frrelevant.
SR YN R B e Ko

price of IBM stock is $100 now. If the stock price follows a Markov process, our
predictions for the future should be unaffected by the price one week ago, one

month ago, or one year ago. The only relevant piece of information is that the
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price is now $100. Predictions for the future are uncertain and must be expressed
in terms of probability distributions. The Markov property implies that the prob-
ability distribution of the price at any particular future time is not dependent on

the particular path followed by the

efficiency. This states that th ‘ pounds all the information
contained in a record of past prices. arket efficiency were not
true, technical analysts ' ke abave-a by interpreting charts
of the past history of s is very | tle evidence that they are in
fact able to do this. /[ | |

It is competitio 1 1t weak-form market

efficiency holds! ing the stock market closely.

Trying to make : 7 re a stock price, at any
given time, reflects th afdfmdtion i pasf rlces". Sup -'o\’ hat it was discovered
that a particular pa terﬁ in gtock @.k -,_.' ;i\ \1 chance of subsequent
steep price rises. Invest s Bl _ ol buy a‘,..- tock as soon as the pattern
was observed, and dema ‘fogp A r @12‘ mediately rise. This would lead

to an immediate rise in 1ts priceand the observed effect would be eliminated, as

- -!!
would any profitable tradin .-J % ‘_'; & #a- I s

Consider a variablmhat follows a Markov stochastic pro@s. Suppose that its

current value is 10 ani.that the change in 1ts value during 1 year is N (0, 1), where

o’ VaELZU 817 ﬂﬂﬂ‘i 4 A e T

of the Varla e during 2 years?

’ﬂ%ﬁﬁﬁﬂ PIU PN O AR

pr bablhty distributions are independent. When we add two independent normal

distributions, the result is a normal distribution where the mean is the sum of the
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means and the variance is the sum of the variances. The mean of the change during
2 years in the variable we are considering is, therefore, zero and the variance of
this change is 2. Hence, the change in the variable over 2 years has the distribution
N(0,2). The standard deviation of the distribution is V2.

Consider next the change in f{ :; \ le duping 6 months. The variance of

equals the variance of the

change during the second

6 months - that the variance of the
change during a 6-month.pe j, tibé ‘A Fqu he standard deviation
it \ e change in the value of

A similar argumen ; at the probability distribution for the change in

the value of the varia iig 3 monghs is N(0, 0.2 . generally, the change

The process followed by he‘ righ é— We :, sen considering is known as a

Wiener process or Browman, 0t # -- lar type of Markov stochastic

process with a mean cha , an 0 per year. It has been
used in physics t0£ ,,E?::‘Zf?fff?f’?f“""’“ﬁ‘:r o a large number

Br

. , ,
With formal dition 2.10 on page 6, a Wiener proce (t) can be proved

of small molecular shoc rownian motion.

to satisfies Markov pllrfperty and accordin to proposition 2.2, we can see that

?;zzez;ﬁﬁm ﬂﬁ;ﬁﬁﬂ AN} e it

VT. These e consistent with the aarher dlscussmn in this section. I f ct, the

) mﬁﬁlﬂﬂiﬁfﬂw
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3.3.4 Generalized Wiener Process

The mean change per unit time for a stochastic process is known as the drift rate

and the variance per unit time is known as the variance rate. The basic Wiener

process, W (t), that has been developed s a drift rate of zero and a variance
rate of 1.0 with year as a unit of time. = rate of zero means that the
expected value of W (t) at any future | : 0. The variance rate of 1.0

means that the varianee-of-the change in' in ; i 1 of length T" equals T'.

A generalized Wien : i () can bedefined in terms of dW (t)

(3.1)

I the two components on the
right-hand side sepas el a dt bern at «, as an expected drift
erm, uaﬁion isdX(t) =adt,

e, we get

Then in a period of time of length. 7", the v increases by an amount a7’

The b dW (t) term on the rig de of equation (3.1) can be regarded as
= <A

r

adding noise or variability he amount of this noise or

variability is b tifigs a Wiener process. A Wiener process hasa siandard deviation
T )
of 1.0. It follows ﬁf_ t 1dard.deviation of b.

In a unit time interval, chang e o (t)_mgiven by the propo-

sition 2.2 and the equatlon (3.1) as

AUt anppdnNs
ol a@mmmﬁmm

X(t+1) t)=a+bW(1
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Thus the change in the value of X in a unit time interval, X (¢t + 1) — X (¢), has a

normal distribution with

) satisfying
' M a dt with X(0)=0

ul
Figure 3.1: G@tlerahzed Wiener process with a = 0.3 and b = 1.5.

AULINYNINYINS

3.3.5 Geometric Brownlan Motion

TR NI TINe

l"’An investment asset is an asset that is held for investment purposes by signif-
icant numbers of investors. Stocks and bonds are clearly investment assets. Gold
and silver are also examples of investment assets.
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However, this model fails to capture a key aspect of the investment asset prices.
This is that the expected percentage return required by investors from the asset
is independent of the asset’s price. If investors require a 14% per annum expected

return when the asset price is $10, the eteris paribus, they will also require a

Clearly, the assumption H 1t expoected drift rate is inappropriate and
needs to be replaced by the assuimnpti . “thevexpected return (i.e., expected
drift divided by the asset puiee fant. IF'S #)is the investment asset price
at time ¢, then the expeged duift.rate in S(#) shot d sumed to be uS(t) for
ed rate of return on

1€ ‘-.

If the volatility of ghe ags P s atways z¢ 0, the , model implies that

some constant paraf

the investment asse

dBUB At

s - T
i )

This shows that whe rige orows at a contin-
uously compou iyf =

In practice, of . o t volatility. An investor is just
as uncertain of theﬂrcentage return when the stock price imE)O as when it is $10.
This suggests that the'" stemdard deviation ofithie change in a short period of time

ofy LK) ”ﬁ B Wﬂﬂeﬂ’%

qu ) dt+oS(t

% WW@@&@W&% %’48% %Eﬂ@s&}w

astgeometric Brownian motion. The variable o is the volatility of the asset price.

The variable p is its expected rate of return.



23

3.3.6 Main Result

As we explained, some specialised stock indices choose a specific group of stocks
to calculate these indices. For example, Russell 3000 Index considers stocks of

3,000 publicly held US companie ex considers stocks of the top 50

listed companies on The Stock E: 1"' : ‘ a’ 7 . Some of these stock indices
have the regulations that ¢ nside 0 ocks for every time period.
7 ce Russell 3000 Index

»\ er, stochastic model,

This is called reconstilubion-or-sto
rebalances its indic ) Index revises its list
every six months. '

From now on we
futures , and Eur C ¥ os of other i itk T similar properties
s ] 'x in this chapter and
the following chap ers. 4l afto) =Visior hi h ens every six months in
7 o ol ary according to this
time period. As well as fh aXpect te eturn olatility of the stock index,
o, must be varied ac ing melp ) n we propose the more re-
alistic model including tk -  of-stock ‘y hanging u, o from constant
functions to piecewise- consta WW o to stock revision period. How-

ever, the discontinuit od stochastic differential

equation‘ The ) c‘{-"l"ii7-1':1':7.1:-1r-‘ii"ri-inT.'il'iir-vi.r-v-‘imq.'-n-i--:‘r es Wlth a llneaI‘

.il'

function and pr rbse t

dS(t) = p()S(t )dt+0( )S(t)dw (1 )m

AU EJ’J‘VIEWI‘?WEﬂﬂ‘i

(3.2)

,0<t<05—¢

IRIaNnIN AR Y
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Similarly,

01 ,0<t<05—c¢

o(t) = q o ,0.5(i—1)+6§t30.5i—6

Oit1—=0i (4
2e (t

and p;, 0; are constan

From what w 5 the expected rate of
return of the stock indes Oy ' < rev sionand before the i stock
revision. Likewise, a- i vola gl ( ‘~ K ine fter the i — 1** stock
revision and beforé the ¢ < :_ ioris The func ((t —0.50+€) + p
) it values, p; and fi;4q.

Similarly, The furic 1on 28 (i) : Suse interpolate between two

Theorem 3.1. The uni
1000 s

initial condition S(0) =

et F

]
with £(0) = 0. (3.3)

A

Proof. According, to th L, x) = 1000e” and

é‘( ) be Ito pro u“ll-l-ﬂlyl-‘.--:i’lﬂmll-h

e (u

¥

Then, according to t]ie finition 2.16 of It ocess on page 9, a(t) and b(t) in

=B NN AR
amaﬂﬁ*ﬁ’m ciiaehIHYBL



25

To use Itd formula, we find Fy(t, z), F,(t,z), and F,.(t,x).

Then, by It6 formula F(t, &(¢)

P

dF(t,€(t) = (Ft(tgt p—

_ (10

= p(t) 1000
= p(t)F

2> dt + Fu(t, £(t))b(t)dW (t)

000e* e (t)dW (t)

Thus F(t,£(t)) is a s |

and satisfies initial condit,

F(0,6(0)) = .{_,EE;*‘}‘F ’

L
g

Next, we will s V_

‘-ll
vy

J (t &(t)) = 1000e
— 1000e/o u(t)ﬁzdﬂrfo (t)dw (t)

" omf'l L ANENINEADS. .. .

equation (3.2) to the equation (2. 6)‘

ﬂmmmmumfmmaﬂ

()| +lo@)z] < (|p@)] + o (@)]) (2] + 1)

< (KkQT(IukI) s (i) ) (ol + 1)

1<k<2T
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Then we get the inequality (2.4).
Next we will prove the inequality (2.5).
Let t € [0,T].

Theorem 3.2. The unic
1000 s

y initial condition S(0) =

o(s)dW (s) (37)

where r is risk-fréc interest rate. )

‘y R A .

Proof of the t"" e of 1 the proof of the
[
theorem 3.1. ' | 7

4The proof of this gan.be done by Glrsan "heorem which tells how stochastic

processes
Gk LT
zero risk, in¢ludi fault risk risk-free rate e esents interest that an
investor would expect from an abs tely risk-free investment over a gl perlod
t1 stor.
SRR T T e
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Simulation

According to [3], one of the simplest time discrete approximations of an It process

is the Fuler approximation, or the Fuler — Maruyama approximation. We use

forn=0,1,2,...,

By the iterative scheme 3.8) Ve f.;-! 041,000 approximations of sample paths

VW=
|"

of the SDE (3.2) during the time {0-1] when S{fg),= 0,V = 500, ¢ = 0.05

, and

ﬂuaq unIwgans

035‘- 055<§095

PARINTUHRAT NG 8-

ex in 1 ye Our unit time is a year.) and the 1 year interval is discretized
into 500 intervals. We consider the values of SET50 Index at the terminal time

(or at the end of 1 year.) from the figure 3.2. Then, we obtain histogram and it
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Figure 3.2: Simulationfof the 1000 sample paths of SET50 Index in 1 year
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Figure 3.3: Histogram of the terminal values
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is shown in the figure 3.3. From the histogram we see that SET50 Index values at
the end of 1 year tend to be slightly higher than its initial value, 1,000, since the

expected rate of return, p, is slightly above zero in this case.

4

AULININTNEINS
AR TUNNINGAY




CHAPTER IV

A derivative can be de

i s/éose value depends on (or
o — (

derives from) the value of oth : yasic. 1 slying variables. Very often the

variables underlying deriyativesfare the prices trad ' ’».- A stock options, for
example, is a deriva yliOscalily of ndent o price of a stock. However,

derivatives can be dependen al a riable, fr price of hogs to the

nportant in finance.
hanges through out the
world. For Thailand, derivatiyes n 4_}'; .‘ Teasi akes more role in the business

Taffhe: - atives such as agricultural
futures contract for Jasmi rubber and SET50 Index

futures and options.

In this chapter we take :;.-13_5;:,-{.;.33'5 ok lﬁ_t' warkets and provide overview
of how they are.used by hedgers, speculators, and arbitragedis, Finally, we will
consider some 1 1 I-ﬂ utures price over

P

) ﬁjﬁ
A futures ly tu uEJ Yl j meﬁjﬁ:ﬁ]rnnjct ) is a stan-

dardized contract between two partics to buy or sel spec1ﬁed asset ( vranges

QAL AN TN

the price that is quoted for immediate (spot) settlement (payment and delivery).

the developed stoc tic meo m

The contracts are traded on a futures exchange. Futures contracts are not
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direct securities like stocks, bonds, rights or warrants. They are still securities,
however, though they are a type of derivative contract. The party agreeing to buy
the underlying asset in the future assumes a long position, and the party agreeing

to sell the asset in the future assumesia short position.

be currencies, secut finarcial’i ents anc angible assets or referenced
items such as stocki

price of the future ssion on the exchange
is called the settlemey the exchange.

A futures contract gi S t] ‘the obligation to ake or take delivery under

the terms of the contract. [ ¥ vords, Hof lies of a futures contract must

fulfill the contract on the lelivers the underlying asset

to the buyer, or, if it is a cash=settled futur ‘ontract, then cash is transferred
P ITe

from the futures trader who-sustaincd a 10ss 4 » one who made a profit. To

older of a futures position
,"=J or buying back
e fumes position and its

exit the commitmer
has to offset ‘[
(covering) a shortEJsim :
contract obligations.

Futures rntracts";lﬂxchan e-traded deérivatives. The exchange’s clearing

WEAVE FHBA AR

also provi(ﬁ a mechanism for settlement.

AAFATANNING 1Y

Derivatives markets have been outstandingly successful. The main reason is that

house ac

they have attracted many different types of traders and have a great deal of lig-
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uidity. When an investor wants to take one side of a contract, there is usually no
problem in finding someone that is prepared to take the other side.

Futures traders are traditionally placed in one of two groups: hedgers, who
use derivatives to reduce the risk that. ce from potential future movements
in a market variable and speculat » Vj to make a profit by predicting
market moves and opening a der Vbl ed to the asset on paper,
while they have no pract

@0 U E L ]
the underlying asset. In other '

take or make delivery of

exposure to the asset
in a long futures or the opPosite ¢ foct . s contract.
Hedgers typically ing e‘ d S of a commodity or the
owner of an asset oz se S« ‘ certain influences s an interest rate.
For example, in trad 7 ots,
and Live

it easier for them to plan.

tracts for the crops

K ﬁey Pro ‘(‘) ' ‘ w: tee a certain price, making

arly,

a 'J,-‘I

bﬁy{%ﬁ) V ted cost for feed.

An example that Has hoth hedga,ﬁﬁ culatl 1otions involves a mutual

fund or separately managed m‘ ..,,

performance of a stock index Swcieas cir=as-the=Si —; 50 Index. The Portfolio manager

often equitizes cash 1nﬂaws'rfkaﬁr‘§és‘y.“ md cost-effective manner by investing in

cover their feed costs, so't

(opening long) SE®50 Index futures. gains the portfolio exposure to the index
which is consiste nw— ,}Lﬁl without having
to buy an appropriii pro bort dual 50 stocks just yet. This

also preserves balanced diversification, maintains a higher degree of the percent of

assets inves d in the ﬂ;z&t and helps redu(ﬂ-ﬁ*ackln error in the performance of
the fund 1%5] ij it sw (gje t mount of shares

of every 1rﬂv1dual position within the fund or account can be purchased), the
ortfolio manager can close the cofcract and mak rchases of each Thdividual
LGN R
“The social utility of futures markets is considered to be mainly in the trans-
fer of risk, and increased liquidity between traders with different risk and time

preferences, from a hedger to a speculator, for example.
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4.3 Main Result: Pricing SET50 Index Futures

A fundamental implication of asset pricing theory is that under the no-arbitrage

assumptions® the fair price of a derivatives security (futures or options contract)

function at the maturity d b€ unc or 8 risk ' robability measure. In fact,
valuing derivatives reduces to eomy uti ﬁwith respect to the prob-
ability measure. In te ot pri g futtires wllowing theorems are
neccessary. : ,

Theorem 4.1 (S.

sumptwns n a futures

market, the no-arbi date T', denoted by

FT(t,5(t)), must satigfy v ! 'j'

where the expectation ig £ 1 ;" wetitral probability measure Q condi-

(4.1)

. ¢ .Ef"'r 4 -'.I"‘ .. . .
Relation (4.1) tells that the no-arb ires price today is an unbiased
estimator of the spot price a at-the Haturityic he contract where we consider

under the risk-neu - i ) vailable today.

According '&F}______Z ; 1- lie solution of the
partial differential a : | . .m
s T 1 2FT FT
6tl'+ —o?(t)x 28 +(r+u( ))xa——O

U gm TN i

An exmnatlon will be given

formula.

t it is necessary to introduc

SALURIANYNALL,

at‘ime T has to be zero. In other words it basically states that it is not possible
to get something for nothing.
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Theorem 4.2 (H.Jin [6], Feynman—Kac Formula). Let X (t) be the n-dimensional

Ito process satisfying the stochastic differential equation

dX(t) = a(t, X (t))dt +b(t, X (t))dW(t), X(t)==z (4.3)
Then {
(4.4)
where V1, a, b are kno tial differential equation.
(4.5)
defined for all real , "1 ) \ e terminal condition
GEORONE” )/ /= B\ \

1 1;1 4 1 and (3.7) to find

Theorem 4.3 (Determination of Fﬁf e

T ven and fixed maturity

date T ,the no-arbitrage J €5 ; e ‘ ‘v“: urity date T', which is de-
noted by FT(t,S(t)) and sa sﬁes ,‘J. & . (4. he closed-form solution

where B(T —

Proof. From the.re S Q, its stochastic
process, S(t), foi ?“' 1:! ce, Eg [S(T)|Fi,
which in this prove will on ying the theorem 4.2 (Feynman—
—Kac formula).

k)
parmg equation ( we get a(t, S(t

and b(t, S(t)) = o(t)S(t)Also, we can sholeat E[S(T)|F ) where
- ﬁ WA W E}#h g

.’IJ—.’I?

A wfammmﬁm J

has markov property from [7].)

2y is risk-free interest rate.
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Note that o (S(t)) = o ({S(t) = S(t)}) means that S(¢) can be anything as long
as it is measurable. In summary, from this equality we can find the futures price
, E[S(T)|F], by applying Feynman-Kac formula to find the value of f(¢,z) =

E[S(T)|S(t) = ).

ntial equation that follows and the

0<t<T (4.6)

Let 7 =T —t and f(t,

Then, substitute

From its terminal condition [f(#;z) = z, ‘ = 0. We get ordinary

differential equation
N

According to fun amental theorem of calculus,

ﬂugéﬁmﬂﬂﬁm N3
ammﬂ;fmwmamaa

B(1y) =170 —I—/ (s)ds

T—To
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Substitute B(7) = B(T —t) into f(t,z) = 2P~ We get
F(t,) = wer @O+ w9

0

We will give the explicit ¢ : ige futures price on day ¢t = 0

with maturity date 7', I -__n___

Example 4.4.

1. Fort=0 and® 0. . | for seme'ir € N.
Explicit form of J, :
plotted on the gmp be

7|.d

+e€)) ;otherwise

E[O5zT—e 052T+e] forsomezTe \

ﬂMEJs’WI%lmw ALk

+6/'Ln—|'ﬂlnl &ZT_G ,UZT—F,U/

Qﬁﬂﬁﬁﬂ‘imuﬁﬂmﬂaﬂ

2. Fort=0 an
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4.3.1 Simulation

We now show the relationship between the function B(T" — t) in the theorem 4.3
and time, ¢, in the figure 4.1 when u(t), and T" are known. Here we assume that

T =145, ¢ = 0.05, ju; = 0.15,

2 55 1\‘ 3= 0.1. Then,
%

In the figure 4.2 we fthd avolution of it : prices obtained from the

,“

]
Figure 4.1: The I tionship between 5(1.45 — )andt enT = 145, € =
0.05, p1 =0.15, po ‘02 and p3 = 0.1.

UL INUN I BART ..

0.05, py = 15 o = 0.2, and ug = 0.1 like before when S(t) is varied from

el TR e "@éfﬁfs

Otice in the figure 4.1), and from the theorem 4.3

FT(t,S(t) = S(t)ePT—Y
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if B(T —t) >0, BT > 1. Then, FT(t,S(t)) > S(t). This is consistent with
our intuition; suppose that we expect the SET50 Index during the time ¢ to T
to perform well (In other words, the rate of return is positive (u(t) > 0).). We

must expect its value in the future ti o be higher than its value at time t.

On the other hand if we expect the during the time ¢ to T" not to
pect SET50 Index value in

the future time, T, to be han its i FT(t,S(t)) < S(t)).

=Tit 5(t))

Futures Prices

' 800
Spot Prices, Sit)

Figure 4.2: Evolutio amofers T = 1.45, ¢ =
e —————————————————————
0.05, py = 0.15,, =02 "and fig = 0-1: Y]

] g
AUEINENINEINS
RIAINIUNRIINYIAL



CHAPTER V

Options are fundament

t from fu&ct& An option gives the
- o ——

holder of the option t i do something,-but the holder does not have
to exercise this right. ast. in la Tutur -

the two parties have

committed thems ot mg to enter into a

forward or futures comfracy whereas | e purc | requires an up-front
payment.
In this chaptes , what terminology

rems used as tools to

)del in the past chapter.

ptions.

Finally, we find prices il SET IV n

In finance, an opti t egtablishes a contract

between two pa -*, “concerning the buying fan {"’J areference price.
The buyer of the o -I on g gation,
specific transaction l

transaction if so requftﬂby the buyer.

IR ‘ma wﬁwmw

th@ holder the right to sell an asset by a certain date for a certain price. The date

to engage in some

e seller incurs the -!J ligation to fulfill the

n the asset, while

specified in the contract is known as the expiration date or the maturity date. The

price specified in the contract is known as the exercise price or the strike price.
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Options can be either American or European, a distinction that has nothing
to do with geographical location. American options can be exercised at any time
up to the expiration date, whereas Furopean options can be exercised only on the

expiration date itself. Most of the opti t are traded on exchanges are Amer-

ican. However, European option are gener sier to analyze than American

options, and some of the p \., s of & fion are frequently deduced

Call Options

Consider the situation

ll option with a strike
price of $100 to -

spose that the current

stock price is $98, t 10 » e of the ion is in 4 months, and the price

o ilad e A .
nb .Bgfffoj‘-‘ C at has a market value of

¥ __' _e_'g the oses the whole of the initial

exercise. (There is no

less than $100.)

investment of $500. If the sto K-price 15 above $100 on the expiration date, the
= = J..FJJF 21

or example, e stock

option will be exercised rice is $115. By

exercising the op ﬂ*""""’“’:‘“‘”“."".—.‘mﬂf for $100 per share.

If the shares ares 7 315 per share, or
$1,500, ignoring tr‘ actions costs 1€ al cost of the option is taken
into account, the net proﬁt to the investor is $1 000.

Figur to purchase
one shar;ﬁ ﬁﬁqmg m i EJ ﬁsﬁo ant to realize

that an m\mtor sometimes exerc1ses an option and makes a loss overall. Suppose

o i ar R IR L (L AR T

1d realize a loss overall of $300 when the initial cost of the option is taken into

account. It is tempting to argue that the investor should not exercise the option
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in these circumstances. However, not exercising would lead to an overall loss of
$500, which is worse than the $300 loss when the investor exercises. In general,
call options should always be exercised at the expiration date if the stock price is

above the strike price.

Profit ($)

30~

stock price ($)

=5

Figure 5.1: Profit from buyir one share of a stock.

Option price = $5; strike price =

Put Options

Whereas the pu er of a call option ir ice will increase,

the purchaser o “Tput : e, Consider an investor
T "
who buys a Europ put option with a strike price of $70/to sell 100 shares of a

certain stock. Suppo* that the current stoc rice is $65, the expiration date of
the opti e is $7. The
initial mE u‘ﬂ;ﬂ m}ﬁﬂﬁ ﬂ\ﬂﬁl mvﬁ be exercised
only if the ock price is below $70 gn the explratlon date. Suppose tha e stock

m&ﬁﬁ IR IR N ﬁ“ Bl

$1 per share, or $1,500. (Again, transactions costs are ignored.) When the $700

initial cost of the option is taken into account, the investor’s net profit is $800.
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There is no guarantee that the investor will make a gain. If the final stock price
is above $70, the put option expires worthless, and the investor loses $700. Figure
5.2 shows the way in which the investor’s profit or loss on an option to sell one

share varies with the terminal stoc

his example.

A Profit ($)

30

20r

10+

tock price ($)

Figure 5.2: Profit from b !

Option price = $7; strike pric "'E{"f:"' o

one share of a stock.

-
There are two sides to - is the investor who has
taken the long pos :! on '(i‘e. as bo he option). On fl: e other side is the

investor who has take a short position (i.e., has sold or written the optlon The

writer of ien rece s later. The
writer’s ﬂ ugj ﬁre erse o ﬂfo \ET 1 ion. Figures

5.3 and 5. how the variation of t e profit or loss with the final stock prlce for

TRIB SHATINY 8 8

. A long position in a call option

2. A long position in a put option
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A Profit ($)

—

110 120 1
0 N | } \ i 1 ?0 >
. L o 2\, Terminal
stock price ($)

-10

-20

Figure 5.3: Profit fro ifin ODE ’ one share of a stock.

It is often useful to char i€ 2 Euraopes n in terms of its payoff to the
purchaser of the optlon The inittal-cost-of: option is then not included in the
calculation. If K rike price and S al price of the underlying

asset, the payoff from a I osition in a Furopean call optiorLis max(S(T)—K,0)

This reflects t "I act the ercised 1"' S(T) > K and will

not be exercised if S(T") < K. The payoff to the holder of a short position in the

E“””“ﬂ“ﬁm 9 ﬂm WENT
Wﬁ Mmmw o mﬁﬁfﬁ

—max(K — S(T = min(S

Figure 5.5 illustrates these payoffs.
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Profit ($)

Terminal
stock price ($)

>

-10

Figure 5.4: Profit N ¢ share of a stock.
Option price = $7;

Paypff 4

ﬂuﬂqwﬂﬂhwbﬂni
?ﬂ FIRIRHAINEG Y-
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5.1.3 Index Options

Many different index options currently trade throughout the world in both the over-
the-counter market and the exchange-traded market. The most popular exchange-
traded contracts in the United States a e.on the S&P 500 Index (SPX), the
S&P 100 Index (OEX), the Nasda 100 Ir y v and the Dow Jones Industrial
Index (DJX). All of these frade ¢ ! tions Exchange. Most of
the contracts are European. An ex n is@tract on the S&P 100,

7' _ 0 times the index at
the specified strike price. ', fleme 7 i ‘6 -, rather than by delivering
: ‘ \L "\N call contract on the

». the value of the index is
992, the writer of the - 080) % 100 = $1,200. This
f the day on which exercise

ally wait until the end of a

5.2 Main Result: dex Options

SET50 Index options is E e the following theorems

to find call optipns:price. As previously described in --==ana-, / .3, the fair price
of a derivatives %. 3 1‘# ent time can be

represented by the expected valt ied payoff f!ﬁtion at the maturity

date under a risk-neutral probability measure.

¢ o g
Theorem. 5.1 (S. [5)) edno-arbitrage ds ions in a futures
market, I@%ﬂﬂjﬂﬁﬁg zﬂﬂﬁﬂﬁpected payoff
of the call option under the risk neugral measure Q. ge no-arbitrage op&.o‘@ls price

AR IRIATUHRIINY TR

C(T,t,8(t), K) = e " T=Y Eg [max (0, S(T) — K)|F (5.1)
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Lemma 5.2.

/t (L / ® 2yt 7

=t t1
where Z is a standard normal random_variable and o(t) is defined like in the

equation 3.2.

Proof. Let At = t2_t1

and t] =1, —I—]At 0: 1, .. j wn [t1,ta].

/ ® (AW (t)

t1

a normal random variable)

By the sum of indépende ) ¥5), the last equlity is
i 7=0 't

true. Next, we will sh?v that Y, ' v When ~ N(0, f . Let Fy, (z) be

WMﬁﬁq?wﬂmﬁwswnﬁ

_oo o r- .
0 O i
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s—p 2
1 T e 22;?:_0 02(t?)At
lim Fy,(xz) = lim —/ ds

Lemma 5.3. S(T) >

where

K is a real constant and Z is a standard normal -rando:

Proof. Let Z be & stande

| iy
S(T) > K < S(t)e ru(s) =t dst [l o (AW () 5 f¢ (Use the equation (3.6).)

[ - 7

ﬁ]ﬁ)?Use the lemma (5.2).)
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Lemma 5.4. Eg[I|F] = ®(d)

where

® is a cumulative distribution function of the standard normal distribution.

In(£5)
and
Proof.
Eg[I|F]
(Lemma 5.3)
________ 7, .
O
Lemmaﬂ ‘HSEJ? IWNINYINT
where

Qﬁﬂﬁﬁﬂ‘imﬂﬂﬁ“f’mma&l

ft r+ (s —U Sds—ln
fTa2(s)ds
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and I is defined as in previous lemma which is

1 if S(T) > K

Proof.

EqlS(T)I1F]

S(t)el merr—5
S(t)eftT wu(s)+r—2
o

s)+r—=

S(t)el

S(t)eli meortr=57
V2

_ S( )eft u(s)-i-?"—g 2 3 gs4- 1 f ,,;*‘ﬁr— ..rﬂ#'l

3"

_ S(t)e‘ft _‘ H:ﬂ?—__ﬂﬂrﬁ.—-
— S(t)eftT u(s)+

y [0 (dQ)

ﬂ uﬂ me&mﬁ WS o

strike pmce

QW']@W‘%WNWWW%WQH

wre

S(t)eftT us)+

St nls) = T5ds — In(g)

ftT o2(s)ds

d1 =
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and
T
d2 = d1 —+ / 0'2(8)d8
t

Proof. We omit writing the risk neutral measure Q and the filtration F; in this

proof to avoid confusion about notations. Tro 1 the equation (5.1), we obtain

~ K)

(8

(5.2)

where [ is the indi

From the equation (5.2 :-- LR nd E[I(S(T)] and E [I]

rmp H:,c_; A \ O

in this equation. We

—
":’_J

Next we will consider SET50dndex put of s which are European put options.

27 _T' A
Theorem 5.7 (S.Ruji ). Under the wssumptions in a futures
market} the pu 07 me-n-.mm‘f = e empected payoﬁ
of the put optio inde , hi age options price
S I
on day t with mat 1! y date T" and excereise price Ik, denoted by P(T,t,S(t), K),

must satisfy

AHANENINEIRT

Next WgNﬂl use the similar ste[? as we use to ﬁgEuropean call op&'jls price

WIS I AL N ELIAE.

(513; However, the random variable I will be differently defined.
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Lemma 5.8. S(T) < K & Z < —d;

where

T (s
B [+ p(s) — Zds — In(g)

d1 =

rfr 02(s)ds

Iii d normal random variable.

K is a real constant and Z s a

Proof. Let Z be a standa, '“

d; here is the same as it revier fefined in the lemma 5.3.

Lemma 5.9. Eg[I|F;] =

where
® is a cumulatjve distribufion function: i norgal distribution.
ond J |
‘o 1 if S@p< K
ﬂuﬂﬂﬂﬂ‘iﬂ@?\‘ﬂ’lﬂﬁ
Proof. Al

QRIASrIMANgNaE
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Lemma 5.10. Eg[S(T)I|F,] = S(t)el #+rdsd(—d,)

where

and I is defined as in . lem @ which is

Proof.
Eg[S(T)1]F]
= S(If
_j;l
= S(t) (I =0if S(T') > K and lemma 5.8.)
S(t )eft pu(s)+r— ‘s) s f*‘{M
) van - ::e"‘f.?‘_ A 2
S(t)eftT” 2

W [ 32V 26 vt 5 Ir Z(S)ds
ftTﬂ(r :.‘" NGy T
_ S(t)e l 7 o) ansy, (Let r=y— / aQ(S)ds.)

mwm TR :w e

= (1) nrr- e fT”2<s>ds ¢ 2d;r:

W9 aﬂﬁm%maﬂmaa

m s)+rds(1)(
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Theorem 5.11. The no-arbitrage European SET50 Index put options prices with

strike price K is

P(T,t,5(t), K) = —S(t)e) "OPd(—dy) + Ke T (~d,)

where

and

Proof. We omit writi ) ;\x filtration F; in this
proof to avoid co equatio 3), we obtain

(5.4)
B [IS(T)]
where [ is the indicator at is
A%
|
From the equation (5.4), e apply lemma 5. 9 d 5.10 to find E [1 )] and E [I]

IR NEINT

Corollaryq 12. From both the theorem 5.6 and 5.11, we have the relation in the

ARTAIDIMANIANEA Y
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5.2.1 Simulation

We end this chapter by showing the evolution of the options prices obtained from

the closed-form solution of call option prices in the theorem 5.6 and put option

and
t <1.025
1.475
From the V__——— R"#' e higher when the
spot prices are higher. ition=since the call option

il
contracts buyer ha !l ) 8 (850 points in this

case). If we expect theiperformance to make pofit /loss (p ) of these different

i ;iﬂﬁﬁ! a mm HHNT e

contract is; we all like to buy the v@able asset at t&low prlce On th ¢ ntrary,

The other point we want to make here is that at the maturity date the options

rights to buy the asset at the agreed DE:

prices can be found by looking at its payoff functions; notice both the figure 5.6
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and 5.7 when the time ¢ = 1.475. Comparing to (a) and (c) in the figure 5.5, we
can see that in the options prices on maturity date behave like payoff functions.
We can see it more clearly if we change the view we look at these two figures from

the figure 5.6 and 5.7 to their front vi he figure 5.8 and 5.9).

N\

W'(

w
fou]
=1
)
&
=]

Call Options Prices, CIT t,5(t),K)

0

=
=]

Put Options Price, C(T .t S(t) K}

m - ] s ' I
ARSI A Y
A qT e reasorg\at wé can find options prices from payoff functions comes natu-

rally. The payoff functions of option contracts buyer exhibit the financial benefits

we get from holding the option contracts in each circumstance (when spot price of



o7

the underlying asset on the maturity date varies). Also,when we buy goods, it will
be fair if its price is equal to its value. The concept can be applied to our situation
here since the payoff function is the financial value of the option contract at the

maturity date, so its price on this

t. the payoff function.

4
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CHAPTER VI

Ol—"l

lex res tmg(é cedure called stock revision

\"‘\.::.:L;ﬁ ET50 Index from the
% d-form solutions for no-

“"n..
options under the no-

\’\,

aters ! spot prices, S(t), ma-
! %) y
vy

turity date, T', expectedfratg offref .k ) H\

interest r. Also, these prices are disten Ur Lion. Moreover, one can

By the characteristic
or index reconstitution
geometric Brownian moti
arbitrage prices of 'S
arbitrage assumptio tures prices and the
SET50 Index options p :

d risk free rate of

use our model to predicy S / 1 ‘ if the model parameters are

be completed is to estimate t

estimated using histo e next work that could
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