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CHAPTER I

INTRODUCTION

To accommodate the issuing of index futures and options in the future, and to

provide a benchmark of investment in the Stock Exchange of Thailand, the SET50

Index was launched. This index is calculated, respectively, from the stock prices of

the top 50 companies on SET in terms of large market capitalization, high liquidity

and compliance with requirements regarding the distribution of shares to minor

shareholders

The component stocks in the SET50 Index are reviewed every six months in

order to adjust for any changes that have occurred in the stock market, such as

new listings or public offerings. After review, stocks that meet the necessary

qualifications are selected to become part of the SET50 Index and others are

removed. This procedure is called stock revision.

A stochastic process S(t) is called a Geometric Brownian motion if and only

if S(t) satisfies a stochastic differential equation dS(t) = µS(t)dt + σS(t)dW (t)

where W (t) is a Wiener process and µ, σ are constant. Modeling the price of

SET50 Index by geometric Brownian motion would not include the effect of stock

revision. We will develop the more realistic model including the effect of stock

revision by changing µ, σ from constant functions to piecewise-constant functions

according to stock revision period. Then we will find arbitrage prices of futures,

European call and put options on this index.

In chapter 2, we give some background to the readers who are still not familiar

with probability theory and stochastic calculus which are topics neccessary to

understand the rest of the thesis. For those who knew the topics, this chapter is

very useful for a review.

In chapter 3, we give explanation about stock index in overview, and SET50

Index is also described. In addition, the stochastic model of normal asset price are
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explained from its beginning along with the physical meaning of the model. Later,

the geometric Brownian motion is explained. Finally, it is culminating at the end

by our developed model with its simulation for some parameters.

In chapter 4, the futures contract is introduced; how it benefits, how it is used,

who uses it. Necessary mathematical theorems are also explained. Ultimately,

we use these theorems to find closed-form solution of arbitrage price of futures.

Moreover, simulation of the futures price is discussed along with its consistence to

our understanding about futures contract.

In chapter 5, we give some basic concepts for European option contracts. We

then later explain mathematical theorems that are necessary for finding options

prices. After finding SET50 Index options prices, we illustrate the simulation

of SET50 Index options prices and discuss how it is consistent with real world

situation.

In chapter 6, we conclude the result of the thesis.



CHAPTER II

Preliminaries

2.1 Probability Theory

2.1.1 Probability Space

Definition 2.1. A collection F of subsets of a non-empty Ω is called a σ−algebra
or σ − field if

1. Ω ∈ F

2. if A ∈ F , then Ac ∈ F

3. if An ∈ F for n = 1, 2, ..., then
∞⋃
n=1

An ∈ F

The sets in F are called measurable sets and (Ω,F) is called a measurable space.

Definition 2.2. Let Ω be a non empty set and F be a σ−field. Let P : F → [0, 1]

be a measure such that P (Ω) = 1. Then (Ω,F , P ) is called a probability space and

P , a probability measure. The set Ω is the sure event, and the element of F are

called events. Elements of Ω are denoted ω.

2.1.2 Random Variables

Definition 2.3. If F is a σ − field on Ω, then a function ξ : Ω→ R is said to be

F −measurable if

{ξ ∈ B} ∈ F

for every Borel set B ∈ B (R). If (Ω,F , P ) is a probability space, then such a

function ξ is called a random variable.
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A notation for events such as {ξ ∈ B} will be used to substitute

{ω ∈ Ω : ξ (ω) ∈ B}

Incidentally, {ξ ∈ B} is the inverse image ξ−1 (B) of a set.

2.1.3 Distribution

Theorem 2.1. A random variable ξ defined on (Ω,F , P ) induces a probability

measure Pξ on B defined by

Pξ (B) = P {ξ ∈ B} .

Definition 2.4. The measure Pξ in Theorem 2.1 is called the probability distribution

or the distribution or the law of ξ.

Definition 2.5. Let Fξ : R→ [0, 1] be defined by

Fξ (x) = Pξ ((−∞, x]) = P {ξ ≤ x}

The function Fξ is called the distribution function of ξ.

Definition 2.6. If there is a Borel function1 fξ : R → R such that for any Borel

set B ⊂ R

P {ξ ∈ B} =

∫
B

fξ (x) dx,

then ξ is said to be a random variable with absolute continuous distribution and

fξ is called the density of ξ.

Definition 2.7. If there is a sequence of distinct real numbers x1, x2, . . . such that

for any Borel set B ⊂ R

P {ξ ∈ B} =
∑
xi∈B

P {ξ = xi}

then ξ is said to have discrete distribution with values x1, x2, . . . andmass P {ξ = xi}
at xi.

1f : R→ R is called a Borel function if f−1 (B) ∈ B (R) for any Borel set B
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2.1.4 Expectation

Definition 2.8. A random variable ξ : Ω→ R is in L1 (Ω,F , P ) if∫
Ω

|ξ| dP <∞

Then

E (ξ) =

∫
Ω

ξ dP

exists and is called the expectation of ξ.

Definition 2.9. A random variable ξ : Ω→ R is in L2 (Ω,F , P ) if∫
Ω

|ξ|2 dP <∞

Then the variance of ξ can be defined by

V ar (ξ) =

∫
Ω

(ξ − E (ξ))2 dP

2.2 Stochastic Processes

Given a probability space (Ω,F , P ), a stochastic process with state space S is a

collection of S-valued random variables indexed by a set I, i.e. a stochastic process

X is a collection {X(t) : t ∈ I} where each X(t) is a S-valued random variable.

For a fixed ω ∈ Ω, a function X(ω) : I → S, X(t)(ω), is called a realization, a

trajectory, or a sample path of the process X. Usually, the state space S is R which

comes with the Borel σ-algebra B (R), and the index set I is an interval [0, T ] or

[0,∞) on R. Two stochastic processes U = {U(t) : t ∈ I} and V = {V (t) : t ∈ I}
on the same probability space are independent if U(s) and V (t) are independent

for all s, t ∈ I.

For a random variable Y , the σ-algebra generated by Y , denoted by σ(Y ), is

the smallest σ-algebra which makes Y measurable. For a stochastic process X =

{X(t) : t ∈ I}, the σ-algebra generated by X, denoted by σ(X), is the smallest

σ-algebra which makes X(t) measurable for all t ∈ I. A collection {Ft : t ∈ I}
of σ-algebras on Ω is called a filtration if Fs ⊆ Ft for all s ≤ t. A stochastic
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process X = {X(t) : t ∈ I} is said to be adapted to the filtration {Ft : t ∈ I} if

σ(X(t)) ⊆ Ft for all t ∈ I and we will call X an adapted process {X(t),Ft : t ∈ I}.
Every stochastic process X = {X(t) : t ∈ I} is always adapted to the natural

filtration generated by X: {Ft = σ({X(s) : s ≤ t}) : t ∈ I}. If a stochastic process

U is adapted to the natural filtration generated by a stochastic process V , we say

that U is adapted to the stochastic process V .

2.3 Brownian Motion

2.3.1 Definition and Basic Properties

Definition 2.10. A Wiener Process (or Brownian Motion) is a stochastic pro-

cess W (t) with values in R defined for t ∈ [0,∞) such that

1. W (0) = 0 a.s.;

2. the sample paths t 7→ W (t) are a.s. continuous;

3. for any finite sequence of times 0 < t1 < · · · < tn and Borel sets A1, . . . , An ⊂
R

P {W (t1) ∈ A1, . . . ,W (tn) ∈ An} =∫
A1

· · ·
∫
An

p (t1, 0, x1) p (t2 − t1, x1, x2) · · · p (tn − tn−1, xn−1, xn) dx1 · · · dxn

where

p (t, x, y) =
1√
2πt

e−
(x−y)2

2t

defined for any x, y ∈ R and t > 0 is called a transition density function.

From the definition 2.10 we can show that

fW (t)(x) =
1√
2πt

e−
x2

2t

is the probability density of W (t) which is the probability density of normal random

variable with mean 0 and variance t.
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2.3.2 Increments of Brownian Motion

Proposition 2.2. For any 0 ≤ s < t the increment W (t)−W (s) has the normal

distribution with mean 0 and variance t− s.

Corollary 2.3. Proposition 2.2 implies that W (t) has stationary increments.

Proposition 2.4. For any 0 = t0 ≤ t1 ≤ · · · ≤ tn the increments

W (t1)−W (t0), . . . ,W (tn)−W (tn−1)

are independent.

Theorem 2.5. A stochastic process W (t), t ≥ 0 is a Wiener process if and only if

the following condition hold:

1. W (0) = 0 a.s.;

2. the sample path t 7→ W (t) are continuous a.s.;

3. W (t) has stationary independent increments;

4. the increment W (t) − W (s) has the normal distribution with mean 0 and

variance t− s for any 0 ≤ s < t.

Theorem 2.6. Let W (t), t ≥ 0, be a stochastic process and let F = σ(Ws, s ≤ t)

be the filtration generated by it. Then W (t) is a Wiener process if and only if the

following conditions hold:

1. W (0) = 0 a.s.;

2. the sample path t 7→ W (t) are continuous a.s.;

3. W (t) is a martingale with respect to the filtration Ft;

4. |W (t)|2 − t is a martingale with respect to Ft.

Theorem 2.7. With probability 1 the Wiener process W (t) is non-differentiable

at any t ≥ 0.
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2.4 Itô Stochastic Calculus

2.4.1 Itô Stochastic Integral: Definition

Definition 2.11. We shall call f(t), t ≥ 0 a random step process if there is a

finite sequence of numbers 0 = t0 < t1 < · · · < tn and square integrable random

variables η0, η1, . . . , ηn−1 such that

f(t) =
n−1∑
j=0

ηj1[tj ,tj+1) (2.1)

where ηj is Ftj -measurable for j = 0, . . . , n− 1. The set of random step processes

will be denoted by M2
step.

Definition 2.12. The stochastic integral of a random step process f ∈ M2
step of

the form (2.1) is defined by

I(f) =
n−1∑
j=0

ηj(W (tj+1)−W (tj))

Proposition 2.8. For any random step process f ∈ M2
step the stochastic integral

I(f) is a square integrable random variable, i.e. I(f) ∈ L2, such that

E
(
|I(f)|2

)
= E

(∫ ∞
0

|f(t)|2 dt
)

The stochastic integral I(f) has been defined for any random step process

f ∈M2
step. We will extend I to a larger class of processes which can be defined as

the following.

Definition 2.13. We denote by M2 the class of stochastic processes f(t), t ≥ 0

such that

E

(∫ ∞
0

|f(t)|2 dt
)
<∞

and there is a sequence f1, f2, . . . ∈M2
step of random step processes such that

lim
n→∞

E

(∫ ∞
0

|f(t)− fn(t)|2 dt
)

= 0 (2.2)

Also we will say that the sequence of random step processes f1, f2, . . . approximates f in M
2.
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Definition 2.14. We call I(f) ∈ L2 the Itô stochastic integral (from 0 to ∞) of

f ∈M2 if

lim
n→∞

E
(
|I(f)− I(fn)|2

)
= 0,

for any sequence f1, f2, . . . ∈ M2
step of random step processes that approximates f

in M2, i.e. such that (2.2) is satisfied. We will also write∫ ∞
0

f(t)dW (t)

in place of I(f).

Proposition 2.9. For any f ∈ M2 the stochastic integral I(f) ∈ L2 exists, is

unique (as an element of L2, i.e. to within equality a.s.) and satisfies

E
(
|I(f)|2

)
= E

(∫ ∞
0

|f(t)|2 dt
)
.

We defined the Itô Stochastic Integral from 0 to∞. We will define the Itô Stochas-

tic Integral over finite time interval [0, T ].

Definition 2.15. For any T > 0 we will denote by M2
T the space of all stochastic

processes f(t), t ≥ 0 such that

1[0,T )f ∈M2

The Itô Stochastic Integral (from 0 to T ) of f ∈M2
T is defined by

IT (f) = I
(
1[0,T )f

)
We will also write ∫ T

0

f(t)dW (t)

in place of IT (f).

2.4.2 Stochastic Differential and Itô Formula

Definition 2.16. A stochastic process ξ(t), t ≥ 0 is called an Itô process if it has

a.s. continuous paths and can be represented as

ξ(T ) = ξ(0) +

∫ T

0

a(t)dt+

∫ T

0

b(t)dW (t) (2.3)
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where b(t) is a process belonging to M2
T for all T > 0 and a(t) is a process adapted

to the filtration Ft such that ∫ T

0

|a(t)| dt <∞ a.s.

for all T ≥ 0. For an Itô Process ξ it is customary to write (2.3) as

dξ(t) = a(t)dt+ b(t)dW (t)

and to call dξ(t) and the stochastic differential of ξ(t).

Theorem 2.10 (Itô formula). Let ξ(t) be an Itô process.Suppose that F(t,x) is a

real-valued function with continuous partial derivatives Ft(t, x), Fx(t, x), and Fxx(t, x)

for all t ≥ 0 and x ∈ R. We also assume that the process b(t)Fx(t, x) belongs to

MT
2 for all T ≥ 0. Then F (t, ξ(t)) is an Itô process such that

dF (t, ξ(t)) =

(
Ft(t, ξ(t)) + Fx(t, ξ(t))a(t) +

1

2
Fxx(t, ξ(t))b(t)

2)

)
dt+Fx(t, ξ(t))b(t)dW (t)

Theorem 2.11 (Existence and uniqueness theorem for stochastic differential equa-

tion). Let T > 0 and b(· , · ) : [0, T ] × Rn → Rn, c(· , · ) : [0, T ] × Rn → Rn×m be

measurable function satisfying

|b(t, x)|+ |c(t, x)| ≤ C(1 + |x|);x ∈ Rn, t ∈ [0, T ] (2.4)

for some constant C, (where |c|2 = Σ |cij|2) and such that

|b(t, x)− b(t, y)|+ |c(t, x)− c(t, y)| ≤ D |x− y| ;x, y ∈ R, t ∈ [0, T ] (2.5)

for some constant D. Let Z be a random variable which is independent of the

σ − algebra F (m)
∞ generated by W (s)(· ), s ≥ 0 and such that

E[|Z|2] <∞.

Then the stochastic differential equation

dX(t) = b(t,X(t))dt+ c(t,X(t))dW (t), t ∈ [0, T ], X(0) = Z (2.6)

has a unique t-continuous solution X(t)(ω) with the property that X(t)(ω) is

adapted to the filtration FZt generated by Z and W (s)(· ); s ≤ t and

E

[∫ T

0

|X(t)|2 dt
]
<∞.



CHAPTER III

Stochastic Model

The topic in this chapter will begin with overview of the stock index. Then, the

characteristics of SET50 Index which is a stock index will be introduced, and later

because we will develop our SET50 Index model from a geometric Brownian mo-

tion, a geometric Brownian motion will be described. Ultimately, we will developed

SET50 Index model from geometric Brownian motion.

3.1 Stock Index

A stock index is a method of measuring a section of the stock market. Many

indices are cited by news or financial services firms and are used as benchmarks,

to measure the performance of portfolios such as mutual funds1.

3.1.1 Types of indices

Stock market indices may be classed in many ways. A world or global stock index

includes (typically large) companies without regard for where they are domiciled

or traded. Two examples are MSCI World and SP Global 100. A national index

represents the performance of the stock market of a given nation-and by proxy,

reflects investor sentiment on the state of its economy. The most regularly quoted

market indices are national indices composed of the stocks of large companies

listed on a nation’s largest stock exchanges, such as the American SP 500, the

Japanese Nikkei 225, and the British FTSE 100. The concept may be extended

well beyond an exchange. The Wilshire 5000 Index, the original total market

1A mutual fund is a professionally-managed type of collective investment scheme
that pools money from many investors to buy stocks, bonds, short-term money
market instruments, and/or other securities.
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index, represents the stocks of nearly every publicly traded company in the United

States, including all U.S. stocks traded on the New York Stock Exchange (but not

ADRs or limited partnerships), NASDAQ and American Stock Exchange. Russell

Investment Group added to the family of indices by launching the Russel Global

Index. More specialised indices exist tracking the performance of specific sectors

of the market. Some examples include the Wilshire US REIT which tracks more

than 80 American real estate investment trusts and the Morgan Stanley Biotech

Index which consists of 36 American firms in the biotechnology industry. Other

indices may track companies of a certain size, a certain type of management, or

even more specialized criteria one index published by Linux Weekly News tracks

stocks of companies that sell products and services based on the Linux operating

environment.

3.2 SET50 Index

In 1995, The Stock Exchange of Thailand (SET) launched SET50 Index, the first

large-cap index of Thailand to provide a benchmark of investment in The Stock

Exchange of Thailand. It is calculated from the stockprices of the top 50 listed

companies on SET in terms of large market capitalization, high liquidity and com-

pliance with requirements regarding the distribution of shares to minor sharehold-

ers (Free Float). The index was initially designed to be an underlying index for

the derivative instruments.

3.2.1 Calculation Methodology

SET50 Index is market capitalization-weighted price index which compares the

current market value of all listed common stocks with their market values on the

base date which is 16th August 1995. The SET50 Index had set at 1000 points on
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Index Portfolio Characteristics

Number of constituents 50

Market Cap (Mil.Baht) 6,552,125

Company Size by Market Cap (Mil.Baht)

Average 131,042

Largest 939,119

Smallest 19,119

Median 58,189

Table 3.1: Index Portfolio Characteristics on 4th Jan 2011

the base date.

SET50 Index =
Current market value (CMV )

Base market value (BMV )
× 1000 =

∑50
i=0 PitQit∑50
i=0 Pi0Qi0

× 1000

where

Pit = the price of the ith listed stock at time t.

Qit = the amount of the ith listed stock at time t.

Pi0 = the price of the ith listed stock at base date.

Qi0 = the amount of the ith listed stock at base date.

In addition, the index will be adjusted when the market value of the component

stocks changes, e.g., due to conversion of convertible bonds, exercising of warrants,

or issuing of new shares for capital increase of the constituent stocks.

Information

Index Universe Common stocks on SET’s main board

Index Launch 16th August 1995

Base Date 16th August 1995

Base Value 1000 points

Table 3.2: SET50 Index’s Fact
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3.2.2 Base Adjustment Methodology

In the event of any increase or decrease in the current market value due to reasons

other than fluctuations in the stock market such as public offering, changes in

the number of component stocks, or stock revision, The SET50 Index will make

necessary adjustments to the Base Market Value in order to eliminate all effects

other than price movements from the index. The principle to do this is that

Index after Adjustment = Index before Adjustment.

CMVN
BMVN

=
CMV0

BMV0

BMVN =
CMVN
CMV0

×BMV0

BMVN =
CMVN

CMVN − Adjusted V alue
×BMV0

where

BMV0 = Base Market Value before adjustment

CMV0 = Current Market Value before adjustment

BMVN = Base Market value after adjustment

CMVN = Current Market Value after adjustment.

We will explain how this formular is used by the following example.

Day 1 Suppose that this is base date.

Assumption: There are initially 3 common stocks listed in SET50 Index. However

there should be 50 stocks but for the simplicity of explanation we will neglect the

number of listed stocks in SET50 Index.

Stock A 100,000 shares, par = THB100, market price = THB110

Stock B 300,000 shares, par = THB100, market price = THB160

Stock C 200,000 shares, par = THB100, market price = THB120
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SET50 Index =
Current market value (CMV )

Base market value (BMV )
× 1000

=

∑3
i=0 PitQit∑3
i=0 Pi0Qi0

× 1000

=
(110× 100, 000) + (160× 300, 000) + (120× 200, 000)

(110× 100, 000) + (160× 300, 000) + (120× 200, 000)
× 1, 000

=
83, 000, 000

83, 000, 000
× 1, 000

= 1, 000

Day 2 Market price change

The market prices of stocks A, B and C change to THB120, THB170, and THB110,

respectively. The second days Index then becomes

SET50 Index =
Current market value (CMV )

Base market value (BMV )
× 1, 000

=
(120× 100, 000) + (170× 300, 000) + (110× 200, 000)

83, 000, 00
× 1, 000

=
85, 000, 000

83, 000, 000
× 1, 000

= 1, 024

Day 3 Stock Revision (stock D will be listed and C will be delisted on Day 4)

The market prices of stocks A, B and C change to THB 110, THB 170 and THB

120, respectively. In addition, stock D is a newly listed stock this day, with 150,000

shares and closing price of THB140. When new stock is listed on the SET50 Index.

The SET will adjust the Base Market Value according to that changes on the end-

of-day process by employing the closing price of that stock on that trading day.
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The index then becomes

SET50 Index =
Current market value (CMV )

Base market value (BMV )
× 1, 000

=
(110× 100, 000) + (170× 300, 000) + (120× 200, 000)

83, 000, 00
× 1, 000

=
86, 000, 000

83, 000, 000
× 1, 000

= 1, 036.1

Then, the base Market Value for index calculation on Day 4 will be

BMVN = BMV0 ×
CMVN
CMV0

= 83, 000, 000× (110× 100, 000) + (170× 300, 000) + (140× 150, 000)

(110× 100, 000) + (170× 300, 000) + (120× 200, 000)

= 80, 104, 650

Day 3 Market price change

The market prices of stocks A, B and D change to THB120, THB170, and THB130,

respectively. The second days Index then becomes

SET50 Index =
Current market value (CMV )

Base market value (BMV )
× 1, 000

=
(120× 100, 000) + (170× 300, 000) + (130× 150, 000)

80, 104, 650
× 1, 000

=
82, 500, 000

80, 104, 650
× 1, 000

= 1, 030

However, by supposing that the market prices of stocks A, B, and D remain the

same as on the Day 3, we can see that base adjustment eliminates all effects other

than price movements from the index. In other words, even if we change the stocks

in the list of SET50 Index but if their price do not move, with base adjustment
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index value remains the same.

SET50 Index =
Current market value (CMV )

Base market value (BMV )
× 1, 000

=
(110× 100, 000) + (170× 300, 000) + (140× 150, 000)

80, 104, 650
× 1, 000

=
83, 000, 000

80, 104, 650
× 1, 000

= 1, 036.1

Day 4’s SET50 Index is equal to the value on Day 3.

3.3 Main Result: Stochastic Model

Any variable whose value changes over time in an uncertain way is said to follow

a stochastic process. Stochastic processes can be classified as discrete time or

continuous time. A discrete-time stochastic process is one where the value of the

variable can change only at certain fixed points in time, whereas a continuous-time

stochastic process is one where changes can take place at any time. Stochastic

processes can also be classified as continuous variable or discrete variable. In a

continuous-variable process, the underlying variable can take any value within a

certain range, whereas in a discrete-variable process, only certain discrete values

are possible.

3.3.1 The Markov Property

A Markov process is a particular type of stochastic process where only the present

value of a variable is relevant for predicting the future. The past history of the

variable and the way that the present has emerged from the past are irrelevant.

Stock prices are usually assumed to follow a Markov process. Suppose that the

price of IBM stock is $100 now. If the stock price follows a Markov process, our

predictions for the future should be unaffected by the price one week ago, one

month ago, or one year ago. The only relevant piece of information is that the
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price is now $100. Predictions for the future are uncertain and must be expressed

in terms of probability distributions. The Markov property implies that the prob-

ability distribution of the price at any particular future time is not dependent on

the particular path followed by the price in the past.

The Markov property of stock prices is consistent with the weak form of market

efficiency. This states that the present price of a stock impounds all the information

contained in a record of past prices. If the weak form of market efficiency were not

true, technical analysts could make above-average returns by interpreting charts

of the past history of stock prices. There is very little evidence that they are in

fact able to do this.

It is competition in the marketplace that tends to ensure that weak-form market

efficiency holds! There are many investors watching the stock market closely.

Trying to make a profit from it leads to a situation where a stock price, at any

given time, reflects the information in past prices. Suppose that it was discovered

that a particular pattern in stock prices always gave a 65% chance of subsequent

steep price rises. Investors would attempt to buy a stock as soon as the pattern

was observed, and demand for the stock would immediately rise. This would lead

to an immediate rise in its price and the observed effect would be eliminated, as

would any profitable trading opportunities.

3.3.2 Continuous-Time Stochastic Processes

Consider a variable that follows a Markov stochastic process. Suppose that its

current value is 10 and that the change in its value during 1 year is N(0, 1), where

N(µ, σ2) denotes a probability distribution that is normally distributed with mean

µ and variance σ2. What is the probability distribution of the change in the value

of the variable during 2 years?

The change in 2 years is the sum of two normal distributions, each of which

has a mean of zero and variance of 1. Because the variable is Markov, the two

probability distributions are independent. When we add two independent normal

distributions, the result is a normal distribution where the mean is the sum of the
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means and the variance is the sum of the variances. The mean of the change during

2 years in the variable we are considering is, therefore, zero and the variance of

this change is 2. Hence, the change in the variable over 2 years has the distribution

N(0, 2). The standard deviation of the distribution is
√

2.

Consider next the change in the variable during 6 months. The variance of

the change in the value of the variable during 1 year equals the variance of the

change during the first 6 months plus the variance of the change during the second

6 months. We assume these are the same. It follows that the variance of the

change during a 6-month period must be 0.5. Equivalency, the standard deviation

of the change is
√

0.5. The probability distribution for the change in the value of

the variable during 6 months is N(0, 0.5).

A similar argument shows that the probability distribution for the change in

the value of the variable during 3 months is N(0, 0.25). More generally, the change

during any time period of length T is N(0, T ).

3.3.3 Brownian Motion

The process followed by the variable we have been considering is known as a

Wiener process or Brownian motion. It is a particular type of Markov stochastic

process with a mean change of zero and a variance rate of 1.0 per year. It has been

used in physics to describe the motion of a particle that is subject to a large number

of small molecular shocks and is sometimes referred to as Brownian motion.

With formal definition 2.10 on page 6, a Wiener process W (t) can be proved

to satisfies Markov property2, and according to proposition 2.2, we can see that

Wiener processW (T )−W (0) is normally distributed, with mean ofW (T )−W (0) =

0 and variance of W (T )−W (0) = T . Hence standard deviation of W (T )−W (0) =
√
T .These are consistent with the earlier discussion in this section. In fact, the

process followed by the variable we have been considering is a Wiener process.

2Proof can be found in http://financelab.nctu.edu.tw/FinMath/%5BSC%5D3.5.ppt
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3.3.4 Generalized Wiener Process

The mean change per unit time for a stochastic process is known as the drift rate

and the variance per unit time is known as the variance rate. The basic Wiener

process, W (t), that has been developed so far has a drift rate of zero and a variance

rate of 1.0 with year as a unit of time. The drift rate of zero means that the

expected value of W (t) at any future time t is equal to 0. The variance rate of 1.0

means that the variance of the change in z in a time interval of length T equals T .

A generalized Wiener process for a variable X(t) can be defined in terms of dW (t)

as

dX(t) = a dt+ b dW (t) (3.1)

To understand equation (3.1), it is useful to consider the two components on the

right-hand side separately. The a dt term implies that X(t) has an expected drift

rate of a per unit of time. Without the b dW (t) term, the equation is dX(t) = a dt,

which implies that dX(t)
dt

= a. Integrating with respect to time, we get

X(t) = X(0) + at

Then in a period of time of length T , the variable X increases by an amount aT .

The b dW (t) term on the right-hand side of equation (3.1) can be regarded as

adding noise or variability to the path followed by X. The amount of this noise or

variability is b times a Wiener process. A Wiener process has a standard deviation

of 1.0. It follows that b times a Wiener process has a standard deviation of b.

In a unit time interval, the change in the value of X(t) is given by the propo-

sition 2.2 and the equation (3.1) as

dX(s) = a ds+ b dW (s)∫ t+1

t

dX(s) =

∫ t+1

t

ads+

∫ t+1

t

bdW (s)

X(t+ 1)−X(t) = a+ b(W (t+ 1)−W (t))

X(t+ 1)−X(t) = a+ b(W (1)−W (0))

X(t+ 1)−X(t) = a+ bW (1)
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Thus the change in the value of X in a unit time interval, X(t+ 1)−X(t), has a

normal distribution with

mean of X(t+ 1)−X(t) = a

standard deviation of X(t+ 1)−X(t) = b

variance of X(t+ 1)−X(t) = b2

Consequently, the generalized Wiener process given in equation (3.1) has an ex-

pected drift rate (i.e., average drift per unit of time) of a and a variance rate (i.e.,

variance per unit of time) of b2. A sample path is illustrated in Figure 3.1.

Figure 3.1: Generalized Wiener process with a = 0.3 and b = 1.5.

3.3.5 Geometric Brownian Motion

It is tempting to suggest that investment asset3 price follows a generalized Wiener

process; that is it has a constant expected drift rate and a constant variance rate.

3An investment asset is an asset that is held for investment purposes by signif-
icant numbers of investors. Stocks and bonds are clearly investment assets. Gold
and silver are also examples of investment assets.
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However, this model fails to capture a key aspect of the investment asset prices.

This is that the expected percentage return required by investors from the asset

is independent of the asset’s price. If investors require a 14% per annum expected

return when the asset price is $10, then, ceteris paribus, they will also require a

14% per annum expected return when it is $50.

Clearly, the assumption of constant expected drift rate is inappropriate and

needs to be replaced by the assumption that the expected return (i.e., expected

drift divided by the asset price) is constant. If S(t) is the investment asset price

at time t, then the expected drift rate in S(t) should be assumed to be µS(t) for

some constant parameter µ. The parameter µ is the expected rate of return on

the investment asset.

If the volatility of the asset price is always zero, then this model implies that

dS(t) = µS(t)dt

Integrating between time 0 and time T,

dS(t)

S(t)
= µdt

S(T ) = S(0)eµT

This shows that when the variance rate is zero, the stock price grows at a contin-

uously compounded rate of µ per unit of time.

In practice, of course, the asset price does exhibit volatility. An investor is just

as uncertain of the percentage return when the stock price is $50 as when it is $10.

This suggests that the standard deviation of the change in a short period of time

∆t should be proportional to the stock price and leads to the model

dS(t) = µS(t) dt+ σS(t) dW (t).

This model is the most widely used model of the asset price behavior and is known

as geometric Brownian motion. The variable σ is the volatility of the asset price.

The variable µ is its expected rate of return.
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3.3.6 Main Result

As we explained, some specialised stock indices choose a specific group of stocks

to calculate these indices. For example, Russell 3000 Index considers stocks of

3,000 publicly held US companies or SET50 Index considers stocks of the top 50

listed companies on The Stock Exchange of Thailand. Some of these stock indices

have the regulations that considers for a new list of stocks for every time period.

This is called reconstitution or stock revision. For instance, Russell 3000 Index

rebalances its indices once each year in June. Also, SET50 Index revises its list

every six months.

From now on we will only consider SET50 Index. However, stochastic model,

futures , and European options prices of other indices that have similar properties

can be obtained by similar methods we use for SET50 Index in this chapter and

the following chapters. Due to stock revision which happens every six months in

the case of SET50 Index, expected rate of return, µ, must vary according to this

time period. As well as the expected rate of return, µ, volatility of the stock index,

σ, must be varied according to this time period. Then we propose the more re-

alistic model including the effect of stock revision by changing µ, σ from constant

functions to piecewise-constant functions according to stock revision period. How-

ever, the discontinuity leads to the problem when we solved stochastic differential

equation. Then, we interpolate this two different constant values with a linear

function and propose the model

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t) (3.2)

where

µ(t) =


µ1 , 0 ≤ t ≤ 0.5− ε

µi , 0.5(i− 1) + ε ≤ t ≤ 0.5i− ε
µi+1−µi

2ε
(t− 0.5i+ ε) + µi , 0.5i− ε ≤ t ≤ 0.5i+ ε
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Similarly,

σ(t) =


σ1 , 0 ≤ t ≤ 0.5− ε

σi , 0.5(i− 1) + ε ≤ t ≤ 0.5i− ε
σi+1−σi

2ε
(t− 0.5i+ ε) + σi , 0.5i− ε ≤ t ≤ 0.5i+ ε

and µi, σi are constant for all i ∈ N.

From what we explained in the previous subsection µi is the expected rate of

return of the stock index after the i − 1th stock revision and before the ith stock

revision. Likewise, σi is the volatility of the stock index after the i − 1th stock

revision and before the ith stock revision. The function µi+1−µi
2ε

(t − 0.5i + ε) + µi

is what we use to interpolate between two possibly different values, µi and µi+1.

Similarly, The function σi+1−σi
2ε

(t− 0.5i+ ε) +σi is used to interpolate between two

possibly different values, σi and σi+1.

Theorem 3.1. The unique solution of SDE (3.2) with initial condition S(0) =

1000 is

S(t) = 1000e
∫ t
0 µ(s)−σ

2(s)
2

ds+
∫ t
0 σ(s)dW (s)

Proof. According to the theorem 2.10 (Itô formula), we let F (t, x) = 1000ex and

ξ(t) be Itô process such that ξ(t) satisfies

dξ(t) = (µ(t)− σ2(t)

2
)dt+ σ(t)dW (t) with ξ(0) = 0. (3.3)

Then, according to the definition 2.16 of Itô process on page 9, a(t) and b(t) in

the definition are µ(t) − σ2(t)
2

and σ(t) respectively. Somehow equation (3.3) can

be rewritten as

ξ(t) = ξ(0) +

∫ t

0

µ(s)− σ2(s)

2
ds+

∫ t

0

σ(s)dW (s)

ξ(t) =

∫ t

0

µ(s)− σ2(s)

2
ds+

∫ t

0

σ(s)dW (s) since ξ(0) = 0.
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To use Itô formula, we find Ft(t, x), Fx(t, x), and Fxx(t, x).

Ft(t, x) = 0

Fx(t, x) = 1000ex

Fxx(t, x) = 1000ex

Then, by Itô formula F (t, ξ(t)) is Itô process satisfying

dF (t, ξ(t)) =

(
Ft(t, ξ(t)) + Fx(t, ξ(t))a(t) +

1

2
Fxx(t, ξ(t))b(t)

2

)
dt+ Fx(t, ξ(t))b(t)dW (t)

=

(
1000eξ(t)(µ(t)− σ2(t)

2
) +

1000

2
eξ(t)σ2(t)

)
dt+ 1000eξ(t)σ(t)dW (t)

= µ(t)1000eξ(t)dt+ σ(t)1000eξ(t)dW (t)

= µ(t)F (t, ξ(t))dt+ σ(t)F (t, ξ(t))dW (t)

Thus F (t, ξ(t)) is a solution to

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t)

and satisfies initial condition S(0) = 1000.

F (0, ξ(0)) = 1000eξ(0)

= 1000 because ξ(0) = 0.

Next, we will show that

F (t, ξ(t)) = 1000eξ(t)

= 1000e
∫ t
0 µ(t)−σ

2(t)
2

dt+
∫ t
0 σ(t)dW (t)

is the only solution to the equation (3.2) by using the theorem 2.11. Compare the

equation (3.2) to the equation (2.6).

For t ∈ [0, T ],

|µ(t)x|+ |σ(t)x| ≤ (|µ(t)|+ |σ(t)|) (|x|+ 1)

≤
(

max
1≤k≤2T

(|µk|) + max
1≤k≤2T

(|σk|)
)

(|x|+ 1)
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Then we get the inequality (2.4).

Next we will prove the inequality (2.5).

Let t ∈ [0, T ].

|µ(t)x− µ(t)y| = |µ(t)| |x− y| ≤ max
1≤k≤2T

(|µk|) |x− y| (3.4)

|σ(t)x− σ(t)y| = |σ(t)| |x− y| ≤ max
1≤k≤2T

(|σk|) |x− y| (3.5)

Then from the inequality (3.4) and (3.5),

|µ(t)x− µ(t)y|+ |σ(t)x− σ(t)y| ≤
(

max
1≤k≤2T

(|µk|) + max
1≤k≤2T

(|σk|)
)
|x− y|

However, under risk neutral measure Q, SDE (3.2) is changed to 4

dS(t) = (µ(t) + r)S(t)dt+ σ(t)S(t)dW (t) (3.6)

where r is risk-free interest rate5.

Theorem 3.2. The unique solution of SDE (3.6) with initial condition S(0) =

1000 is

S(t) = 1000e
∫ t
0 r+µ(s)−σ

2(s)
2

ds+
∫ t
0 σ(s)dW (s) (3.7)

where r is risk-free interest rate.

Proof of the theorem 3.2 can be done by the similar step in the proof of the

theorem 3.1.

4The proof of this can be done by Girsanov Theorem which tells how stochastic
processes change under changes in measure.

5Risk-free interest rate is the theoretical rate of return of an investment with
zero risk, including default risk. The risk-free rate represents the interest that an
investor would expect from an absolutely risk-free investment over a given period
of time. Therefore, a rational investor will reject all the investments yielding sub-
risk-free returns.
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Simulation

According to [3], one of the simplest time discrete approximations of an Itô process

is the Euler approximation, or the Euler −Maruyama approximation. We use

this method to simulate sample paths of the SDE (3.2). Here, we consider the time

discretization

t = t0 < t1 < . . . < tn < . . . < tN = T

on the time interval [t, T ]; we also consider equidistant discretization time. Then,

ti = t0 + i
T − t
N

for i ∈ N and 0 < i < N

for some integer N large enough so that T−t
N
∈ (0, 1).

The Euler approximation, s = s(t), t0 ≤ t ≤ tN , satisfies the iterative scheme

s(tn+1) = s(tn) + µ(tn)(tn+1 − tn) + σ(tn) (W (tn+1)−W (tn)) (3.8)

for n = 0, 1, 2, . . . , N − 1 with initial value s(t0) = S(t0).

By the iterative scheme (3.8), we show 1,000 approximations of sample paths

of the SDE (3.2) during the time [0, 1] when S(t0) = 0, N = 500, ε = 0.05

µ(t) =


0.15 , 0 ≤ t ≤ 0.45

0.5t− 0.075 , 0.45 ≤ t ≤ 0.55

0.20 , 0.55 ≤ t ≤ 0.95

, and

σ(t) =


0.3 , 0 ≤ t ≤ 0.45

0.5t+ 0.075 , 0.45 ≤ t ≤ 0.55

0.35 , 0.55 ≤ t ≤ 0.95

SET50 Index starts at 1,000 points. Here, we simulate the movements of SET50

Index in 1 year ( Our unit time is a year.) and the 1 year interval is discretized

into 500 intervals. We consider the values of SET50 Index at the terminal time

(or at the end of 1 year.) from the figure 3.2. Then, we obtain histogram and it
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Figure 3.2: Simulation of the 1000 sample paths of SET50 Index in 1 year

Figure 3.3: Histogram of the terminal values
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is shown in the figure 3.3. From the histogram we see that SET50 Index values at

the end of 1 year tend to be slightly higher than its initial value, 1,000, since the

expected rate of return, µ, is slightly above zero in this case.



CHAPTER IV

Futures

A derivative can be defined as a financial instrument whose value depends on (or

derives from) the value of other, more basic, underlying variables. Very often the

variables underlying derivatives are the prices traded assets. A stock options, for

example, is a derivative whose value is dependent on the price of a stock. However,

derivatives can be dependent on almost any variable, from the price of hogs to the

amount of snow falling at a certain ski resort.

In the last 30 years derivatives have become increasingly important in finance.

Futures and options are now traded actively on many exchanges through out the

world. For Thailand, derivatives market increasingly takes more role in the business

sector and continuously lauched many types of derivatives such as agricultural

futures contract for Jasmine rice, Cassava, and Para rubber and SET50 Index

futures and options.

In this chapter we take the first look at futures markets and provide overview

of how they are used by hedgers, speculators, and arbitrageurs. Finally, we will

consider some mathematical theorems used as tools to calculate futures price over

the developed stochastic model in the past chapter.

4.1 Futures Contracts

A futures contract, or simply futures, (but not future or future contract) is a stan-

dardized contract between two parties to buy or sell a specified asset (eg.oranges,

oil, gold) of standardized quantity and quality at a specified future date at a price

agreed today (the futures price). This is in contrast with the spot price which is

the price that is quoted for immediate (spot) settlement (payment and delivery).

The contracts are traded on a futures exchange. Futures contracts are not
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direct securities like stocks, bonds, rights or warrants. They are still securities,

however, though they are a type of derivative contract. The party agreeing to buy

the underlying asset in the future assumes a long position, and the party agreeing

to sell the asset in the future assumes a short position.

The price is determined by the instantaneous equilibrium between the forces of

supply and demand among competing buy and sell orders on the exchange at the

time of the purchase or sale of the contract.

In many cases, the underlying asset to a futures contract may not be traditional

commodities at all that is, for financial futures, the underlying asset or item can

be currencies, securities or financial instruments and intangible assets or referenced

items such as stock indices and interest rates.

The future date is called the delivery date or final settlement date. The official

price of the futures contract at the end of a day’s trading session on the exchange

is called the settlement price for that day of business on the exchange.

A futures contract gives the holder the obligation to make or take delivery under

the terms of the contract. In other words, both parties of a futures contract must

fulfill the contract on the settlement date. The seller delivers the underlying asset

to the buyer, or, if it is a cash-settled futures contract, then cash is transferred

from the futures trader who sustained a loss to the one who made a profit. To

exit the commitment prior to the settlement date, the holder of a futures position

has to offset his/her position by either selling a long position or buying back

(covering) a short position, effectively closing out the futures position and its

contract obligations.

Futures contracts are exchange-traded derivatives. The exchange’s clearing

house acts as counterparty on all contracts, sets margin requirements, and crucially

also provides a mechanism for settlement.

4.2 Type of Futures Traders

Derivatives markets have been outstandingly successful. The main reason is that

they have attracted many different types of traders and have a great deal of liq-
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uidity. When an investor wants to take one side of a contract, there is usually no

problem in finding someone that is prepared to take the other side.

Futures traders are traditionally placed in one of two groups: hedgers, who

use derivatives to reduce the risk that they face from potential future movements

in a market variable and speculators, who seek to make a profit by predicting

market moves and opening a derivative contract related to the asset on paper,

while they have no practical use for or intent to actually take or make delivery of

the underlying asset. In other words, the investor is seeking exposure to the asset

in a long futures or the opposite effect via a short futures contract.

Hedgers typically include producers and consumers of a commodity or the

owner of an asset or assets subject to certain influences such as an interest rate.

For example, in traditional commodity markets, farmers often sell futures con-

tracts for the crops and livestock they produce to guarantee a certain price, making

it easier for them to plan. Similarly, livestock producers often purchase futures to

cover their feed costs, so that they can plan on a fixed cost for feed.

An example that has both hedge and speculative notions involves a mutual

fund or separately managed account whose investment objective is to track the

performance of a stock index such as the SET50 Index. The Portfolio manager

often equitizes cash inflows in an easy and cost effective manner by investing in

(opening long) SET50 Index futures. This gains the portfolio exposure to the index

which is consistent with the fund or account investment objective without having

to buy an appropriate proportion of each of the individual 50 stocks just yet. This

also preserves balanced diversification, maintains a higher degree of the percent of

assets invested in the market and helps reduce tracking error in the performance of

the fund/account. When it is economically feasible (an efficient amount of shares

of every individual position within the fund or account can be purchased), the

portfolio manager can close the contract and make purchases of each individual

stock.

The social utility of futures markets is considered to be mainly in the trans-

fer of risk, and increased liquidity between traders with different risk and time

preferences, from a hedger to a speculator, for example.
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4.3 Main Result: Pricing SET50 Index Futures

A fundamental implication of asset pricing theory is that under the no-arbitrage

assumptions1 the fair price of a derivatives security (futures or options contract)

at a current time can be represented by the expected value of its discounted payoff

function at the maturity date under a risk-neutral probability measure. In fact,

valuing derivatives reduces to computing the expectation with respect to the prob-

ability measure. In terms of pricing futures contracts the following theorems are

neccessary.

Theorem 4.1 (S.Rujiva [5]). Under the no-arbitrage assumptions in a futures

market, the no-arbitrage futures price on day t with maturity date T , denoted by

F T (t, S(t)), must satisfy

F T (t, S(t)) = EQ [S(T )| Ft] (4.1)

where the expectation is taken under a risk-neutral probability measure Q condi-

tioned on the information Ft.

Relation (4.1) tells that the no-arbitrage futures price today is an unbiased

estimator of the spot price at the maturity date of the contract where we consider

under the risk-neutral probability measure and the information available today.

According to the relation (4.1), we can show that F T is the solution of the

partial differential equation

∂F T

∂t
+

1

2
σ2(t)x2∂

2F T

∂x2
+ (r + µ(t))x

∂F T

∂x
= 0 (4.2)

with terminal condition F T (T, x) = x.

An explanation will be given but it is necessary to introduce Feynman-Kac

formula.

1If a portfolio requires a null investment and is riskless, then its terminal value
at time T has to be zero. In other words it basically states that it is not possible
to get something for nothing.



34

Theorem 4.2 (H.Jin [6], Feynman–Kac Formula). Let X(t) be the n-dimensional

Itô process satisfying the stochastic differential equation

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), X(t) = x (4.3)

Then

f(t, x) = E
[
e−

∫ T
t V (X(τ))dτψ(X(T ))|X(t) = x

]
(4.4)

where V, ψ, a, b are known functions is a solution to the partial differential equation.

∂f

∂t
+ a(t, x)

∂f

∂x
+

1

2
b2(t, x)

∂2f

∂x2
= V (t, x)f (4.5)

defined for all real x and t in the interval [0, T ], subject to the terminal condition

f(T, x) = ψ(x).

We then apply Feynman–Kac formula to the equations (4.1) and (3.7) to find

SET50 Index futures price.

Theorem 4.3 (Determination of Futures Prices). For given and fixed maturity

date T ,the no-arbitrage futures price on day t with maturity date T , which is de-

noted by F T (t, S(t)) and satisfies the equation (4.1), has the closed-form solution

F T (t, S(t)) = S(t)eB(T−t)

where B(T − t) = r(T − t) +
∫ T
t
µ(s)ds2.

Proof. From the relation (4.1) which under risk neutral measure, Q, its stochastic

process, S(t), follows (3.7), we will find SET50 Index futures price, EQ [S(T )|Ft],
which in this prove we will omit subscript Q by applying the theorem 4.2 (Feynman-

–Kac formula). Comparing equation (3.7) to (4.3), we get a(t, S(t)) = µ(t)S(t)

and b(t, S(t)) = σ(t)S(t). Also, we can show that E [S(T )|Ft] = f(t, S(t)) where

f(t, x) = E
[
e−

∫ T
t V (S(τ))dτψ(S(T ))|S(t) = x

]
is in the form as in the equation (4.4)

with V = 0 and ψ(x) = x.

f(t, S(t)) = E
[
e−

∫ T
t V (S(τ))dτψ(X(T ))|S(t) = S(t)

]
= E [S(T )|S(t)] (σ (S(t)) = σ ({S(t) = S(t)}) .)

= E [S(T )|Ft] (S(t) has markov property from [7].)

2r is risk-free interest rate.
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Note that σ (S(t)) = σ ({S(t) = S(t)}) means that S(t) can be anything as long

as it is measurable. In summary, from this equality we can find the futures price

, E [S(T )|Ft], by applying Feynman–Kac formula to find the value of f(t, x) =

E [S(T )|S(t) = x]. Then, solve partial differential equation that follows and the

futures price , E [S(T )|Ft], will be equal to f(t, S(t)).

∂f

∂t
+ (r + µ(t))x

∂f

∂x
+

1

2
σ2(t)x2∂

2f

∂x2
= 0 0 ≤ t ≤ T (4.6)

with terminal condition f(T, x) = x.

Let τ = T − t and f(t, x) = xeB(T−t).

∂f

∂t
= xeB(T−t)B′(τ)

∂τ

∂t
∂f

∂x
= eB(T−t)

Then, substitute these values to the equation (4.6). We get

−xB′(τ)eB(τ) + (r + µ(t)))xeB(τ) = 0

−B′(τ) + (r + µ(t)) = 0

B′(τ) = r + µ(t).

From its terminal condition f(T, x) = x, we get B(0) = 0. We get ordinary

differential equation B
′(τ) = r + µ(t)

B(0) = 0

According to fundamental theorem of calculus,∫ τ0

0

B′(τ)dτ =

∫ τ0

0

r + µ(t) dτ

B(τ0)−B(0) =

∫ τ0

0

r + µ(T − τ) dτ

B(τ0)− 0 = rτ0 +

∫ τ0

0

µ(T − τ)dτ

B(τ0) = rτ0 −
∫ T−τ0

T

µ(T − τ)d(T − τ)

B(τ0) = rτ0 +

∫ T

T−τ0
µ(s)ds.
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Substitute B(τ) = B(T − t) into f(t, x) = xeB(T−t). We get

f(t, x) = xer(T−t)+
∫ T
t µ(s)ds.

We will give the explicit form of the no-arbitrage futures price on day t = 0

with maturity date T , F T (0, S(0)).

Example 4.4.

F T (0, S(0)) = S(0)eB(T−t)

= 1000eB(T−0)

= 1000eB(T )

= 1000erT+
∫ T
0 µ(s)ds

1. For t = 0 and T ∈ [0.5(iT − 1) + ε, 0.5iT − ε] for some iT ∈ N.

Explicit form of
∫ T

0
µ(s)ds can be found from the area under the curve µ(t)

plotted on the graph between µ(t) and t.

∫ T

0

µ(s)ds =



µ1T ; if iT = 1

µ1(0.5− ε) + 1
2
2ε(µ2 + µ1) +

iT−1∑
n=2

(µn(0.5− 2ε)

+1
2
(2ε)(µn + µn+1) + µiT (T − (0.5(iT − 1) + ε)) ; otherwise

2. For t = 0 and T ∈ [0.5iT − ε, 0.5iT + ε] for some iT ∈ N.∫ T

0

µ(s)ds =µ1(0.5− ε) +

iT∑
n=2

(µn(0.5− 2ε)

+ ε(µn + µn−1) +
1

2
(T − 0.5iT − ε)(µiT + µ(T ))
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4.3.1 Simulation

We now show the relationship between the function B(T − t) in the theorem 4.3

and time, t, in the figure 4.1 when µ(t), and T are known. Here we assume that

T = 1.45, ε = 0.05, µ1 = 0.15, µ2 = 0.2, µ3 = 0.1. Then,

µ(t) =



0.15 0 ≤ t ≤ 0.45

0.5t− 0.075 0.45 ≤ t ≤ 0.55

0.2 0.55 ≤ t ≤ 0.95

−t+ 1.15 0.95 ≤ t ≤ 1.05

0.1 1.05 ≤ t ≤ 1.45

In the figure 4.2 we show the evolution of the futures prices obtained from the

Figure 4.1: The relationship between B(1.45 − t) and t when T = 1.45, ε =

0.05, µ1 = 0.15, µ2 = 0.2, and µ3 = 0.1.

closed-form solution in the theorem 4.3 with the parameters T = 1.45, ε =

0.05, µ1 = 0.15, µ2 = 0.2, and µ3 = 0.1 like before when S(t) is varied from

800 to 900. In this figure, we can see that before the futures contract expires

(T < 1.45), the futures price is higher than the spot price since B(T − t) > 0

(notice in the figure 4.1), and from the theorem 4.3

F T (t, S(t)) = S(t)eB(T−t)
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if B(T − t) > 0, eB(T−t) > 1. Then, F T (t, S(t)) > S(t). This is consistent with

our intuition; suppose that we expect the SET50 Index during the time t to T

to perform well (In other words, the rate of return is positive (µ(t) > 0).). We

must expect its value in the future time, T , to be higher than its value at time t.

On the other hand if we expect the SET50 Index during the time t to T not to

perform well enough (µ(t) makes B(T − t) < 0.), we expect SET50 Index value in

the future time, T , to be lower than its value at time t (F T (t, S(t)) < S(t)).

Figure 4.2: Evolution of the futures prices with the parameters T = 1.45, ε =

0.05, µ1 = 0.15, µ2 = 0.2, and µ3 = 0.1.



CHAPTER V

Options

Options are fundamentally different from futures contracts. An option gives the

holder of the option the right to do something, but the holder does not have

to exercise this right. By contrast, in a futures contract, the two parties have

committed themselves to some action. It costs a trader nothing to enter into a

forward or futures contract, whereas the purchase of an option requires an up-front

payment.

In this chapter we take the first look at options markets, what terminology

is used. Then, we will consider some mathematical theorems used as tools to

calculate options price over the developed stochastic model in the past chapter.

Finally, we find prices of both SET50 Index call and put options.

5.1 Option Contracts

In finance, an option is a derivative financial instrument that establishes a contract

between two parties concerning the buying or selling of an asset at a reference price.

The buyer of the option gains the right, but not the obligation, to engage in some

specific transaction on the asset, while the seller incurs the obligation to fulfill the

transaction if so requested by the buyer.

5.1.1 Types of Options

There are two basic types of options. A call option gives the holder of the option

the right to buy an asset by a certain date for a certain price. A put option gives

the holder the right to sell an asset by a certain date for a certain price. The date

specified in the contract is known as the expiration date or the maturity date. The

price specified in the contract is known as the exercise price or the strike price.
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Options can be either American or European, a distinction that has nothing

to do with geographical location. American options can be exercised at any time

up to the expiration date, whereas European options can be exercised only on the

expiration date itself. Most of the options that are traded on exchanges are Amer-

ican. However, European options are generally easier to analyze than American

options, and some of the properties of an American option are frequently deduced

from those of its European counterpart.

Call Options

Consider the situation of an investor who buys a European call option with a strike

price of $100 to purchase 100 shares of a certain stock. Suppose that the current

stock price is $98, the expiration date of the option is in 4 months, and the price

of an option to purchase one share is $5. The initial investment is $500. Because

the option is European, the investor can exercise only on the expiration date. If

the stock price on this date is less than $100, the investor will clearly choose not to

exercise. (There is no point in buying for $100 a share that has a market value of

less than $100.) In these circumstances, the investor loses the whole of the initial

investment of $500. If the stock price is above $100 on the expiration date, the

option will be exercised. Suppose, for example, that the stock price is $115. By

exercising the option, the investor is able to buy 100 shares for $100 per share.

If the shares are sold immediately, the investor makes a gain of $15 per share, or

$1,500, ignoring transactions costs. When the initial cost of the option is taken

into account, the net profit to the investor is $1,000.

Figure 5.1 shows how the investor’s net profit or loss on an option to purchase

one share varies with the final stock price in the example. It is important to realize

that an investor sometimes exercises an option and makes a loss overall. Suppose

that, in the example, the stock price is $102 at the expiration of the option. The

investor would exercise the option contract for a gain of 100×($102−$100) = $200

and realize a loss overall of $300 when the initial cost of the option is taken into

account. It is tempting to argue that the investor should not exercise the option
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in these circumstances. However, not exercising would lead to an overall loss of

$500, which is worse than the $300 loss when the investor exercises. In general,

call options should always be exercised at the expiration date if the stock price is

above the strike price.

Figure 5.1: Profit from buying a European call option on one share of a stock.

Option price = $5; strike price = $100.

Put Options

Whereas the purchaser of a call option is hoping that the stock price will increase,

the purchaser of a put option is hoping that it will decrease. Consider an investor

who buys a European put option with a strike price of $70 to sell 100 shares of a

certain stock. Suppose that the current stock price is $65, the expiration date of

the option is in 3 months, and the price of an option to sell one share is $7. The

initial investment is $700. Because the option is European, it will be exercised

only if the stock price is below $70 on the expiration date. Suppose that the stock

price is $55 on this date. The investor can buy 100 shares for $55 per share and,

under the terms of the put option, sell the same shares for $70 to realize a gain of

$15 per share, or $1,500. (Again, transactions costs are ignored.) When the $700

initial cost of the option is taken into account, the investor’s net profit is $800.
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There is no guarantee that the investor will make a gain. If the final stock price

is above $70, the put option expires worthless, and the investor loses $700. Figure

5.2 shows the way in which the investor’s profit or loss on an option to sell one

share varies with the terminal stock price in this example.

Figure 5.2: Profit from buying a European put option on one share of a stock.

Option price = $7; strike price = $70.

5.1.2 Option Positions

There are two sides to every option contract. On one side is the investor who has

taken the long position (i.e., has bought the option). On the other side is the

investor who has taken a short position (i.e., has sold or written the option). The

writer of an option receives cash up front, but has potential liabilities later. The

writer’s profit or loss is the reverse of that for the purchaser of the option. Figures

5.3 and 5.4 show the variation of the profit or loss with the final stock price for

writers of the options considered in Figures 5.1 and 5.2.

There are four types of option positions:

1. A long position in a call option

2. A long position in a put option
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Figure 5.3: Profit from writing a European call option on one share of a stock.

Option price = $5; strike price = $100.

3. A short position in a call option

4. A short position in a put option

It is often useful to characterize a European option in terms of its payoff to the

purchaser of the option. The initial cost of the option is then not included in the

calculation. If K is the strike price and S(T ) is the final price of the underlying

asset, the payoff from a long position in a European call option is max(S(T )−K, 0)

This reflects the fact that the option will be exercised if S(T ) > K and will

not be exercised if S(T ) ≤ K. The payoff to the holder of a short position in the

European call option is

−max(S(T )−K, 0) = min(K − S(T ), 0)

The payoff to the holder of a long position in a European put option is max(K −
S(T ), 0) and the payoff from a short position in a European put option is

−max(K − S(T ), 0) = min(S(T )−K, 0)

Figure 5.5 illustrates these payoffs.
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Figure 5.4: Profit from writing a European put option on one share of a stock.

Option price = $7; strike price = $70.

Figure 5.5: Payoffs from positions in European options: (a) long call; (b) short

call; (c) long put; (d) short put. Strike price = K; price of asset at maturity =

S(T )
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5.1.3 Index Options

Many different index options currently trade throughout the world in both the over-

the-counter market and the exchange-traded market. The most popular exchange-

traded contracts in the United States are those on the S&P 500 Index (SPX), the

S&P 100 Index (OEX), the Nasdaq 100 Index (NDX), and the Dow Jones Industrial

Index (DJX). All of these trade on the Chicago Board Options Exchange. Most of

the contracts are European. An exception is the OEX contract on the S&P 100,

which is American. One contract is usually to buy or sell 100 times the index at

the specified strike price. Settlement is always in cash, rather than by delivering

the portfolio underlying the index. Consider, for example, one call contract on the

S&P 100 with a strike price of 980. If it is exercised when the value of the index is

992, the writer of the contract pays the holder (992 − 980) × 100 = $1, 200. This

cash payment is based on the index value at the end of the day on which exercise

instructions are issued. (Not surprisingly, investors usually wait until the end of a

day before issuing these instructions.)

5.2 Main Result: Pricing SET50 Index Options

SET50 Index options is European options which we will use the following theorems

to find call options price. As previously described in the section 4.3, the fair price

of a derivatives security (futures or option contracts) at a current time can be

represented by the expected value of its discounted payoff function at the maturity

date under a risk-neutral probability measure.

Theorem 5.1 (S.Rujivan [5]). Under the no-arbitrage assumptions in a futures

market, the call option price must equal to the present value of the expected payoff

of the call option under the risk neutral measure Q. The no-arbitrage options price

on day t with maturity date T and excercise price K, denoted by C(T, t, S(t), K),

must satisfy

C(T, t, S(t), K) = e−r(T−t)EQ [max(0, S(T )−K)|Ft] (5.1)
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Lemma 5.2. ∫ t=t2

t=t1

σ(t)dW (t)
d
=

√∫ t2

t1

σ2(t)dt Z

where Z is a standard normal random variable and σ(t) is defined like in the

equation 3.2.

Proof. Let ∆t = t2−t1
n

and tnj = t1 + j∆t where j = 0, 1, . . . , n be a partition on [t1, t2].

∫ t2

t1

σ(t)dW (t) = lim
n→∞

n−1∑
j=0

σ(tnj )
(
W (tnj+1)−W (tnj )

)
= lim

n→∞

n−1∑
j=0

σ(tnj )W (tnj+1 − tnj ) (Proposition 2.2)

= lim
n→∞

n−1∑
j=0

σ(tnj )
√
tnj+1 − tnjZj (Property of a normal random variable)

= lim
n→∞

n−1∑
j=0

σ(tnj )
√

∆tZj

= lim
n→∞

n−1∑
j=0

Yj (Yj ∼ N(0, σ2(tnj )∆t.))

= lim
n→∞

Yn where Yn ∼ N(0,
n−1∑
j=0

σ2(tnj )∆t).

By the sum of independent normal random variables (
n−1∑
j=0

Yj), the last equlity is

true. Next, we will show that Yn
dist→ Y when Y ∼ N(0,

∫ t2
t1
σ2(t)dt). Let FYn(x) be

a cumulative distribution function of Yn.

FYn(x) =
1√
2π

∫ x

−∞

e−
(s−µ)2

2σ2

σ
ds

=
1√
2π

∫ x

−∞

e
− (s−µ)2

2
∑n−1
j=0

σ2(tn
j

)∆t√∑n−1
j=0 σ

2(tnj )∆t
ds
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lim
n→∞

FYn(x) = lim
n→∞

1√
2π

∫ x

−∞

e
− (s−µ)2

2
∑n−1
j=0

σ2(tn
j

)∆t√∑n−1
j=0 σ

2(tnj )∆t
ds

=
1√
2π

∫ x

−∞
lim
n→∞

e
− (s−µ)2

2
∑n−1
j=0

σ2(tn
j

)∆t√∑n−1
j=0 σ

2(tnj )∆t
ds (Apply dominated convergence theorem.)

=
1√
2π

∫ x

−∞

e
− (s−µ)2

2 limn→∞
∑n−1
j=0

σ2(tn
j

)∆t√
limn→∞

∑n−1
j=0 σ

2(tnj )∆t
ds (Continuity)

=
1√
2π

∫ x

−∞

e
− (s−µ)2

2
∫ t2
t1

σ2(t)dt√∫ t2
t1
σ2(t)dt

ds

= FY (x)

Lemma 5.3. S(T ) > K ⇔ Z > −d1

where

d1 :=

∫ T
t
r + µ(s)− σ2(s)

2
ds− ln( K

S(t)
)√∫ T

t
σ2(s)ds

K is a real constant and Z is a standard normal random variable.

Proof. Let Z be a standard normal variable.

S(T ) > K ⇔ S(t)e
∫ T
t r+µ(s)−σ

2(s)
2

ds+
∫ T
t σ(s)dW (s) > K (Use the equation (3.6).)

⇔
∫ T

t

r + µ(s)− σ2(s)

2
ds+

∫ T

t

σ(s)dW (s) > ln(
K

S(t)
) (Use the lemma (5.2).)

⇔
∫ T

t

r + µ(s)− σ2(s)

2
ds+

√∫ T

t

σ2(s)ds Z > ln(
K

S(t)
)

⇔ Z >
ln( K

S(t)
)−

∫ T
t
r + µ(s)− σ2(s)

2
ds√∫ T

t
σ2(s)ds

=: −d1
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Lemma 5.4. EQ[I|Ft] = Φ(d1)

where

Φ is a cumulative distribution function of the standard normal distribution.

d1 :=

∫ T
t
r + µ(s)− σ2(s)

2
ds− ln( K

S(t)
)√∫ T

t
σ2(s)ds

and

I =

1 if S(T ) > K

0 if S(T ) ≤ K

Proof.

EQ[I|Ft] = P (S(T ) > K)

= P (Z >
ln( K

S(t)
)−

∫ T
t
r + µ(s)− σ2(s)

2
ds√∫ T

t
σ2(s)ds

) (Lemma 5.3)

= P (Z <

∫ T
t
r + µ(s)− σ2(s)

2
ds− ln( K

S(t)
)√∫ T

t
σ2(s)ds

)

= Φ(

∫ T
t
r + µ(s)− σ2(s)

2
ds− ln( K

S(t)
)√∫ T

t
σ2(s)ds

)

= Φ(d1) where d1 :=

∫ T
t
r + µ(s)− σ2(s)

2
ds− ln( K

S(t)
)√∫ T

t
σ2(s)ds

Lemma 5.5. EQ[S(T )I|Ft] = S(t)e
∫ T
t µ(s)+r dsΦ(d2)

where

d2 := d1 +

√∫ T

t

σ2(s)ds

d1 :=

∫ T
t
r + µ(s)− σ2(s)

2
ds− ln( K

S(t)
)√∫ T

t
σ2(s)ds
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and I is defined as in previous lemma which is

I =

1 if S(T ) > K

0 if S(T ) ≤ K

Proof.

EQ[S(T )I|Ft]

=

∫ ∞
−∞

S(T )If(y)dy

=

∫ ∞
−d1

S(t)e
∫ T
t µ(s)+r−σ

2(s)
2

ds+
√∫ T

t σ2(s)ds y 1√
2π
e−

y2

2 dy (I = 0 if S(T ) ≤ K and lemma 5.3.)

=
S(t)e

∫ T
t µ(s)+r−σ

2(s)
2

ds

√
2π

∫ ∞
−d1

e
√∫ T

t σ2(s)ds y− y
2

2 dy

=
S(t)e

∫ T
t µ(s)+r−σ

2(s)
2

ds

√
2π

∫ ∞
−d1

e
− 1

2

(
y2−2
√∫ T

t σ2(s)ds y+
∫ T
t σ2(s)ds

)
+ 1

2

∫ T
t σ2(s)ds

dy

=
S(t)e

∫ T
t µ(s)+r−σ

2(s)
2

ds+ 1
2

∫ T
t σ2(s)ds

√
2π

∫ ∞
−d1

e−
1
2

(y−
√∫ T

t σ2(s)ds)2

dy

Let x = y −

√∫ T

t

σ2(s)ds.


=
S(t)e

∫ T
t µ(s)+r−σ

2(s)
2

ds+ 1
2

∫ T
t σ2(s)ds

√
2π

∫ ∞
−d2

e−
x2

2 dx

Let d2 = d1 +

√∫ T

t

σ2(s)ds.


= S(t)e

∫ T
t µ(s)+r−σ

2(s)
2

ds+ 1
2

∫ T
t σ2(s)ds 1√

2π

∫ ∞
−d2

e−
x2

2 dx

= S(t)e
∫ T
t µ(s)+r−σ

2(s)
2

ds+ 1
2

∫ T
t σ2(s)dsP (Z > −d2)

= S(t)e
∫ T
t µ(s)+r−σ

2(s)
2

ds+ 1
2

∫ T
t σ2(s)dsP (Z < d2)

= S(t)e
∫ T
t µ(s)+rdsΦ(d2)

Theorem 5.6. The no-arbitrage European SET50 Index call options prices with

strike price K is

C(T, t, S(t), K) = S(t)e
∫ T
t µ(s)dsΦ(d2)−Ke−r(T−t)Φ(d1)

where

d1 :=

∫ T
t
r + µ(s)− σ2(s)

2
ds− ln( K

S(t)
)√∫ T

t
σ2(s)ds

.
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and

d2 := d1 +

√∫ T

t

σ2(s)ds

Proof. We omit writing the risk neutral measure Q and the filtration Ft in this

proof to avoid confusion about notations. From the equation (5.1), we obtain

C(T, t, S(t), K) = e−r(T−t)E [max(0, S(T )−K)]

= e−r(T−t)E
[
(S(T )−K)+

]
= e−r(T−t)E [I(S(T )−K)]

= e−r(T−t)E [IS(T )]−Ke−r(T−t)E [I]

(5.2)

where I is the indicator random variable as previously define that is

I =

1 if S(T ) > K

0 if S(T ) ≤ K

From the equation (5.2), we apply lemma 5.4 and 5.5 to find E [I(S(T )] and E [I]

in this equation. We then complete the proof.

Next we will consider SET50 Index put options which are European put options.

Theorem 5.7 (S.Rujivan [5]). Under the no-arbitrage assumptions in a futures

market, the put option price must equal to the present value of the expected payoff

of the put option under the risk neutral measure Q. The no-arbitrage options price

on day t with maturity date T and excercise price K, denoted by P (T, t, S(t), K),

must satisfy

P (T, t, S(t), K) = e−r(T−t)EQ [max(0, K − S(T ))|Ft] (5.3)

Next we will use the similar steps as we use to find European call options price

that are rewriting the equation (5.3) and finding E[I] and E[I(S(T ))]. Then we

will substitute these terms into the equation that we derive from the equation

(5.3). However, the random variable I will be differently defined.
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Lemma 5.8. S(T ) < K ⇔ Z < −d1

where

d1 :=

∫ T
t
r + µ(s)− σ2(s)

2
ds− ln( K

S(t)
)√∫ T

t
σ2(s)ds

K is a real constant and Z is a standard normal random variable.

Proof. Let Z be a standard normal variable.

S(T ) < K ⇔ S(t)e
∫ T
t r+µ(s)−σ

2(s)
2

ds+
∫ T
t σ(s)dW (s) > K (Use the equation (3.6).)

⇔
∫ T

t

r + µ(s)− σ2(s)

2
ds+

∫ T

t

σ(s)dW (s) > ln(
K

S(t)
)

⇔
∫ T

t

r + µ(s)− σ2(s)

2
ds+

√∫ T

t

σ2(s)ds Z > ln(
K

S(t)
)

⇔ Z <
ln( K

S(t)
)−

∫ T
t
r + µ(s)− σ2(s)

2
ds√∫ T

t
σ2(s)ds

=: −d1

d1 here is the same as it is previously defined in the lemma 5.3.

Lemma 5.9. EQ[I|Ft] = Φ(−d1)

where

Φ is a cumulative distribution function of the standard normal distribution.

d1 :=

∫ T
t
r + µ(s)− σ2(s)

2
ds− ln( K

S(t)
)√∫ T

t
σ2(s)ds

and

I =

1 if S(T ) < K

0 if S(T ) ≥ K

Proof.

EQ[I|Ft] = P (S(T ) < K)

= P (Z < −d1) (Lemma 5.8)

= Φ(−d1)
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Lemma 5.10. EQ[S(T )I|Ft] = S(t)e
∫ T
t µ(s)+rdsΦ(−d2)

where

d2 := d1 +

√∫ T

t

σ2(s)ds

d1 :=

∫ T
t
r + µ(s)− σ2(s)

2
ds− ln( K

S(t)
)√∫ T

t
σ2(s)ds

and I is defined as in the previous lemma (the lemma 5.9) which is

I =

1 if S(T ) < K

0 if S(T ) ≥ K

Proof.

EQ[S(T )I|Ft]

=

∫ ∞
−∞

S(T )If(y)dy

=

∫ −d1

−∞
S(t)e

∫ T
t µ(s)+r−σ

2(s)
2

ds+
√∫ T

t σ2(s)ds y 1√
2π
e−

y2

2 dy (I = 0 if S(T ) ≥ K and lemma 5.8.)

=
S(t)e

∫ T
t µ(s)+r−σ

2(s)
2

ds

√
2π

∫ −d1

−∞
e
√∫ T

t σ2(s)ds y− y
2

2 dy

=
S(t)e

∫ T
t µ(s)+r−σ

2(s)
2

ds

√
2π

∫ −d1

−∞
e
− 1

2

(
y2−2
√∫ T

t σ2(s)ds y+
∫ T
t σ2(s)ds

)
+ 1

2

∫ T
t σ2(s)ds

dy

=
S(t)e

∫ T
t µ(s)+r−σ

2(s)
2

ds+ 1
2

∫ T
t σ2(s)ds

√
2π

∫ −d1

−∞
e−

1
2

(y−
√∫ T

t σ2(s)ds)2

dy

Let x = y −

√∫ T

t

σ2(s)ds.


=
S(t)e

∫ T
t µ(s)+r−σ

2(s)
2

ds+ 1
2

∫ T
t σ2(s)ds

√
2π

∫ −d2

−∞
e−

x2

2 dx

Let d2 = d1 +

√∫ T

t

σ2(s)ds.


= S(t)e

∫ T
t µ(s)+r−σ

2(s)
2

ds+ 1
2

∫ T
t σ2(s)ds 1√

2π

∫ −d2

−∞
e−

x2

2 dx

= S(t)e
∫ T
t µ(s)+r−σ

2(s)
2

ds+ 1
2

∫ T
t σ2(s)dsP (Z < −d2)

= S(t)e
∫ T
t µ(s)+rdsΦ(−d2)
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Theorem 5.11. The no-arbitrage European SET50 Index put options prices with

strike price K is

P (T, t, S(t), K) = −S(t)e
∫ T
t µ(s)dsΦ(−d2) +Ke−r(T−t)Φ(−d1)

where

d1 :=

∫ T
t
r + µ(s)− σ2(s)

2
ds− ln( K

S(t)
)√∫ T

t
σ2(s)ds

.

and

d2 := d1 +

√∫ T

t

σ2(s)ds

Proof. We omit writing the risk neutral measure Q and the filtration Ft in this

proof to avoid confusion about notations. From the equation (5.3), we obtain

P (T, t, S(t), K) = e−r(T−t)E [max(0, K − S(T ))]

= e−r(T−t)E
[
(K − S(T ))+

]
= e−r(T−t)E [I(K − S(T ))]

= Ke−r(T−t)E [I]− e−r(T−t)E [IS(T )]

(5.4)

where I is the indicator random variable as previously define that is

I =

1 if S(T ) < K

0 if S(T ) ≥ K

From the equation (5.4), we apply lemma 5.9 and 5.10 to find E [I(S(T )] and E [I]

in this equation. We then complete the proof.

Corollary 5.12. From both the theorem 5.6 and 5.11, we have the relation in the

following form

P (T, t, S(t), K)− C(T, t, S(t), K) = Ke−r(T−t) − S(t)e
∫ T
t µ(s)ds
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5.2.1 Simulation

We end this chapter by showing the evolution of the options prices obtained from

the closed-form solution of call option prices in the theorem 5.6 and put option

prices in the theorem 5.11 with the parameters K = 850, T = 1.475, r = 0.01, ε =

0.005, µ1 = 0.15, µ2 = 0.2, µ3 = 0.1, σ1 = 0.4, σ2 = 0.5, σ3 = 0.55. Then

µ(t) =



0.15 0 ≤ t ≤ 0.475

t− 0.325 0.475 ≤ t ≤ 0.525

0.2 0.525 ≤ t ≤ 0.975

−2t+ 2.15 0.975 ≤ t ≤ 1.025

0.1 1.025 ≤ t ≤ 1.475

and

σ(t) =



0.4 0 ≤ t ≤ 0.475

2t− 0.55 0.475 ≤ t ≤ 0.525

0.5 0.525 ≤ t ≤ 0.975

t− 0.475 0.975 ≤ t ≤ 1.025

0.55 1.025 ≤ t ≤ 1.475

From the figure 5.6, at the fixed time, the call option prices are higher when the

spot prices are higher. This is consistent with our intuition since the call option

contracts buyer have rights to buy the asset at the agreed price (850 points in this

case). If we expect the performance to make pofit/loss (µ(t), σ(t)) of these different

price assets to be the same in the future (in other words during the time [t, T ]),

then for him the higher the price of the asset at time t is, the more valuable the

contract is; we all like to buy the valuable asset at the low price. On the contrary,

the opposite is true for put option case since people like to sell the low price asset

at a high price; then it is better when the spot price is lower. See the figure 5.7.

The other point we want to make here is that at the maturity date the options

prices can be found by looking at its payoff functions; notice both the figure 5.6
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Figure 5.6: Evolution of the call option prices

Figure 5.7: Evolution of the call option prices
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and 5.7 when the time t = 1.475. Comparing to (a) and (c) in the figure 5.5, we

can see that in the options prices on maturity date behave like payoff functions.

We can see it more clearly if we change the view we look at these two figures from

the figure 5.6 and 5.7 to their front view (the figure 5.8 and 5.9).

Figure 5.8: Call Option Prices VS Spot Prices

Figure 5.9: Put Option Prices VS Spot Prices

The reason that we can find options prices from payoff functions comes natu-

rally. The payoff functions of option contracts buyer exhibit the financial benefits

we get from holding the option contracts in each circumstance (when spot price of
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the underlying asset on the maturity date varies). Also,when we buy goods, it will

be fair if its price is equal to its value. The concept can be applied to our situation

here since the payoff function is the financial value of the option contract at the

maturity date, so its price on this day is just the payoff function.



CHAPTER VI

Conclusions

By the characteristic of SET50 Index resulting from the procedure called stock revision

or index reconstitution, we have developed a model for SET50 Index from the

geometric Brownian motion. Moreover, we derive closed-form solutions for no-

arbitrage prices of SET50 Index futures and SET50 Index options under the no-

arbitrage assumptions. In addition, both the SET50 Index futures prices and the

SET50 Index options prices depend on parameters such as spot prices, S(t), ma-

turity date, T , expected rate of return, µ(t), volatility σ(t), and risk free rate of

interest r. Also, these prices are consistent with our intuition. Moreover, one can

use our model to predict SET50 Index in the future if the model parameters are

estimated using historical data of SET50 Index. Then, the next work that could

be completed is to estimate these parameters.
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