CHAPTER ITI

THEORETICAL CONSIDERATION

The computer e calculatlon that will be

developed in this stu method to calculate oil

reserve and can r ulated oil reserve using

Monte Carlo meth bric method for oil reserve

calculation and Monte :Mf;f," _ or' ob aining the uncertainty
of output. are necessar tistical relationship between
input. variables and

hip of values of input variables

in space will kﬁﬁ*ﬂf - bign. For the statistical

J

relat.ionship befween 1nput varlables, procedure for incorporating this

statistical ﬂluﬁjsﬁapﬂﬁjﬂéﬁ\%’m@d The incorporation
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spatial Scorrelation will be discussed and will be accomplished by using
turning bands method. This method is a numerical method for generating
random variables following desired statistical properties in space of

input. variables.



Topics invc‘alving developmnent. of the computer program for oil
reserve calculation using Monte Carlo si'millation' with inéorpdration of
st.at.iétical relationship between input, variables and spatial correlation
are as follows:

1. 0il reserve estimation by Vélume’(.ric met.hod,

~r

2. Monte Carlo simulation and oil reserve calculation using

e

Monte Carlo simulation,

3. - ‘er@tion by considering
statistical relationgh ‘éah |t i1 put: yariables,
NN
: : \ "N
4. : fentdc , rese e estimabion by considering spatial

‘correlation of an

0il Reserve Estimatic

0il reserve ¢ at.ion by 2 ngbhod is explained in

., Vw————.‘ ‘

several petroleumn a-:-lh': : Amyx, Bass, and Writing
(1960, Nind (1964}, ‘Jd 1strom et al (1967 4 chkey (1981), and so on.
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N =7758 Ah, R, R, £ (1 - Sw)/Bm,, ' (3.1
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where
7758 = conversion constant
N = oil initially in place, stock tank barrel or barrel at
‘standard condit.ion
A = area of reservoir, acre
hz = gfoss thickness, foot “
R, =
R, = |
~ # = porosi ~‘wa\ -;_al rock matrix
= ion'of the voids filled with
interstitial ‘
B, = initial ; m i} S a\ % ,ior, reservoir barrels -

All ; "'—__I' he Equat.ion (3.1) will

become available a?j;r the discovery well h.%im-en drilled.
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factors:
1. reservoir fluid density and viscosity,

2. gas solubility,
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3. shape of the relative permeability curve,

4. reservoir pressure,

5. presence of a connate water phase,

6. amount. of gas cap and its method of expansion,
7. rates of withdrawal and pressure drawdown,

8. type of geological structure.
The oil reserve eal Obt ATl Y modifying Equatlon (3.1) as
NR = » 7 NN, B/ Box’ (3.92).

where

N, = oil ¥es (reeovesable Wstock tank barrels,

E he oil in place that will

R

I

Both resel‘% éﬂ“ are involved in the
‘- {1 '
determination of thegrgeoverable fragtion of the oil initially in place

o resemﬂ‘LIEJ’J VIEJ‘VIﬁW g1n3
AIAIDIAHAIANNAY, | e o

of reservoir rock, porosity, water saturation, and so on, obtained from
any interested field are used in Equation (2.2). These geological data

will be sampled from various points in a reservoir. The important
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problem is that data for oil reserve calculation obtained from the
“interested field will have uncertainty in their values. The uncertainty
of these data is possibly due to £wo causés. Firstly, the deposition
‘ of reservoir rock occured naturally. Therefore, the geological
chafacteristié_s in each location in the reservoir is likely t;)' be

~r

different from one another causing the values of rock and fluid

/o be different.. Secondly,
’ﬁlues of these data. Values

1y, e.g., some variables
\ r ariables are obtained by

using an averaging prg€e ‘ l 1 value of input varlables

properties obtained from

measuring process nay-Gause U

of most variables c/

cannot. be measured

causes the uncertaint reserve.

@ ﬂ{;‘; 4 | 3 %
It. is 11kely that, f,, ‘,;;L’ thiclkmess in each position within

a reservoir are 5— Same—due=to= logte-sbruetire of an reservoir and

i .
there is also unomuinty in values o measur@i thickness.
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Uncertainty in the recovery factor is attributed to the nature of
the reservoir recovery mechanism and inability to precisely and accurately

specify the recovery factor value. The value of recovery factor may be
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determined from past experience in the area.

The 0il formation volump factor was obtalﬁpd f rom PVT analysis
and laboratory measurements of recombined fluid samples from the
reservoir. The uncertainty of this variable is due to difference in
composition of 0il under pressure at different position and erfors

introduced during measurement.s

in vﬁll input variables, the

resulting value of r i 4‘ also have uncertainty. Therefore,

. statistical meth . . n calculation of the reserve.
This will help in ss Sihg ripinty o \: calculated reserve value..
The statistical me’c.h PARE stud, as'sess uncertainty is Monte

Carlo simulation.

Monte Carlo Simu ; “Lr- Using Monte Carlo

T
Simulation. ' ' U

h!ﬂllﬂ thm SNEANS, s e il
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Analytical approach, combining of distributions by algebraic
means using stochastic parameters such as the mean, standard deviation,

skewness and other basic shape factors (or moment.s);
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2. Numerical approach, combining of variables by random

.selection of values from dist.ribut.i'ons.

In the analytical approach, the moments of the final distribution
are directly derived from those of the constituent data distributions via

addition and'ot,her algebraic operations in the traditional manner. The

advantage of this method lies V act, that computational time is low,

to treat complex problems.

>thod will use a random

\
‘ 1\&\ which many have any form.
3\\\\

- Q -\ uracy and skewness of basic

the main disadvantage being
The numerical meth
number generator and

v

Normally, several the€ lculations) are carried out,

o
o~
- "

the actual number debe

data distributions.

In this stid N ,ﬁ' used to solve the

reserve calculatioxmw c , -“‘ ing for a set of reserve

U

values, each of whicll s an equallyyp robable representation of the volume

dmmm@yﬂﬁnamﬁuﬂWﬂi \
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uncertainty of dependent, variables caused by uncertainty in values of
input variables. This method uses random numbers as an important, tool.

The input variables having uncertainty in their values are known as
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"random variable" and the problem that involving the random variables is
Inown as "probabilistic problem”. At present, the Monte Carlo method is
a well-known method. In addition to solving the probabilistic broblem,
it can also be used to solve a deterministic problem, e.g., calculation

of = , integration, and so on.

In the Monte Carlo had,l random numbers, the numbers
distributing evenly betusen © and /&aﬂ to be a tool for selecting

value of input vari

obtain set of values ‘alculating an outcome (in

this case it is oil s.of input variables

obtained from selec he calculated output are

called "a realization". i1l be performed repeatedly to

construct, probability density-funch 0il reserve.
Sy

Consider thed?

U

A, # h, and B, amesinput random variables. From their

respective d1guag u ﬂ n i ﬂﬂﬂ‘ﬂ lles would be selected
i RARIRTHUNATHY 1A

.rj he Equation (3.2), where

|
!
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Figure 3.1. Cumul j _ ) %‘ 1 Ol (CDF) and probability
density function (PBF A of itando Ber as a tool for obtaining
a realization.

Substitut jopr (3.2) yields a value of

-
-

\,

N.. S(Jbsequent. vaH EI‘ ed by repeating the

& ,I =t
i¥

simulation process @T additional fs of randomly sampled values of

the eight 1n@uﬂagﬂyl ﬂmiﬂ ﬂ:]ﬂim approaches true
o QR IRANTRS ST INE TR

The pr ooe', is repeated as many times as necessary “to build up the
desirved confidence 10' a1l for the il reserve distribution. The shope of

nrobability d.s’r) ibut.ion for the calculated —a ~jable will reflect its
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uncertainty. The narrp&wer the distribution, thé less uncertainty of the
“reserve values. 10n the other hand, a flat distribution with considerable
spreéd between ﬂhe upper and lower limits indicates a gréater uncertainty
in the réserve values. ' The flowchart of Monte Carlo method for oil

reserve calculation is shown in Figure 3.2.

Generally, use of :,;]: Gaylo simulation for oil reserve
calculation in each s inlih on oil reservoir will be assumed
to have uniform rock®a Gid \\\\\\\ . the whole o0il reservoir
has the same value cife ”,f ‘ Q§b\ right hand side of Equatlon
(3.2). This is ratéer ' ‘~H,ij__ﬂ f\\ﬁ enerally accepted that in
reality there is nofsugl fé,; 1578, homosepeous oil reservoir. To
_improve on this matﬂer 5JL—-—:? irgwill be divided into a finite

number of blocks in this. & lock is assumed to have uniform

e ; "
rock and fluid pioperties: & 308s on the right hand side

 of Equation (3.2) En be assigned to the b1k and the total il

e s o BN ﬂﬂﬂﬁvw BN
ARANTUNMINGINY
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Est imate distribut.ions

of input variables

select. a value for each
—> variable using random number

and respective distribution

I

af r obbai determined
Lo

ST
qwIshnIafmTImIg

standard deviation

Figure 3.2. Procedure for oil reserve estimation using Monte Carlo

simulation.
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Improvement. of Oil Reserve Estimation by Considering Statistical

”Relationship Between Two Input. Variables.

In the previous section it. has been shown that Monte Carlo
simulation can report, the uncertainty of calculated oil reserve. 1In the
Monte Carlo simulation random numbers, being the very importani’tool,

will be used to select the v

ariables from cumulat.ive

distribution function of ‘ So, the distribution of value
7 e

of a variable will d-iﬂﬁ-’# ;\;flfz::?‘ nty. In some case, values

of an input variable B Haye j\i' tical 7e1ationship with one

-~

another. At the se alue of one variable may not

of another variable.

X e ; :
The considerat, SF=the 8 st.ical relationship between two
input, variables fot

are illustrated by Wals , | McCray (1975).
] : l :

To nﬂxﬁ%hwﬁﬁ%;w‘ﬁﬁﬂlﬁ between two input,

variable 1nto Che calculationyg the curvesfitting is negessarily performed.
me et ST SRR AVLE T RLEL ...
deterministic relationship. However, the uncertainty of the statistical’
relationship should be considered. The random part should be assigned

into the relationship'repreéenting this uncertainty. Therefore, the



statistical relationship (for exampie, between porosity and water

_‘Saturation) can be expressed as follows:

28

Sw = A1 ﬁz + ,Azld + As + &, (3.3)
where A/, A,, and A, are constants and § is a random part.
Figure 3.3 shows the hip between porosity and water
saturation. !
4
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Figure 3.3. Relationship between porosity and water saturation.
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The statistical relét.ionship may consist of an exact ecuation

‘(solid curve) and random part. In this study the random part, will be

assumed to have a normal distribution with zero mean and a specified
(depending on data) standard deviation. A simulated value of water
saturation can be obtained as follows:

1. Obtaining a value of porosity by using its probability

g, ‘ @er saturation using the
exact part of the re Cas i “ &a '*e. D PEL3.) ,

3. Calcule \\\ ater sat.urat.lon using a
random nunber and & sg \\ on of the random part,

4. vobtaining \ wat.er saturat.ion by' addition

of the exact and randow pafh-of th er saturation.

In this N - 1 ,..__'—'m:m

‘;- using Monte Carlo

X : L - . ..
simulation will be B)(llf ied by porat.ing £his interrelation between

two input vazﬁﬁsgﬁ(ww jtuw :E]\ﬂr and the study of

effects of th]ﬂ relationship gn the calculated oil regerve will be

e QENRNTUNNINYAY
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Improvement of Oil Reserve Estimation by Considering Spatial Correlation

of an Input Variable.

Observations of geological variables sometimes show significant
statistical relationship in space which may be called spatial
correlation. The values of geologic informations at different.position

in a reservoir usually have di fevent, magnitude, e.g., the value of

porosity of porous medit 0 in differe peitions is usually dif ferent..
Though a variable h ‘erent, position, its values
may have some statisti xample, at t,x;o adjacent
points if the value e value at t,hé other point,

will tend to be hig ' _' W er a. . the other hand, for two points

that, are far away fr gkhery” ue at. one point would have less

- ‘
J
accomplished by usm%.’rm ning bands met.hod The parameter representing

i o G ML T LTI RS s i
o R TIR TNY AE meoen

in the pgst few years in mining and hydrology. The algorithm mvolves

Simulatio} ' input variable will be

the generation of a series of one-dimensional random processes along

lines radiating from a coordinate origin and their subsequent projection
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and combination at arbitrary points in space, yielding discrete values
or realizations of the random variable. An important advantage of the

method lies in its computat.ional efficiency.

In this study, the spatial correlation will be inéorporated in
0il reserve calculation program and the study of effect of this spatial

correlaiton of an input variable

hp calculated 0il reserve will be

investigated.

1. Spatial cglfrg ﬁ

£
2. The turning

(V8]

. Spectha ~esentatio o-dimensional process.
S )

] gy 1
1. Spatis J Sorre | al o — j;

ﬁauﬂwﬁ;ﬂ? Wmﬂ ?n be explained as

follows (Journel and Huijbreghs, 19785 Horn, 1988) .

QW'WMTI‘??U!J?M’WEI']QH

Let X = (X,s XppeeesX) represent. a point in n-dimensional

space R, Zix: be a random variable corresponding to point x, and

a random function is definded as the set {[x,Z(x)11X e R"}. Note that,



32

a random function may also be called a stochastic process.

Spatial correlation of a variable can be characterized by
covariance function. The covariance function is a statistical property
of a variable that imply the distribution of values of variable in space.

The covariance function is defined as e

“ §{;‘-,) mex,), . (3.4

where EL 1 is an

variable which

(3.5)

A sto8h: rocess ] 3 _3 ond order stationary

. e i |H‘
process if the foldow 1‘:

II
|
W

1) The gngan is constapt, at any point in space Rs

ﬂ'lJEJ’J‘VIEJ‘VIﬁWEJ’]ﬂ‘i

["’(X)] =  mEx) = v R (2.6)

AWIRNNITU URINYINY

2) The covariance function depends only on the vector

1
u-'

difference (x, - X,) and not on each particular vector X,s X,°

T T T - - T S T (3.7
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The second order stationary process is usually used for

"spatial correlation simulation due to the simplicity of the calculation.

A second-order stationary precess is isotropic if the
covariance function does not, depend on the direction h = x, - x, of the

distance vector, but only on the vector length thi. Then we can write

€3.8)

where r = thi.
To ob any input variable, the
et o ~ | , \
process of fitting Gical /Govaria U ctlon or model to an

used in the hydrologyﬁand
geological enginﬁigj ~such 4 }a‘a aussian model, and

ese modelfﬁdepends on the

wmmmﬁﬁﬂTWﬂﬂﬁﬂﬂﬂﬂi
TGN NI T - ™

PQUdthﬂ of the exponential model is as follows:

|
exponent.ial model. iISelec,1¢'

cir) = o expi-bri, (3.9



where

r "= .distance
b = (correlation length) ™’
o’ = variance of the process.

Shape of the exponential model is shown in Figure 3.4.

COVARIANCE
/1

VARIANCE

DISTANCE

Figure 3.4. An example of an exponential covariance function model.

34
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Realizations of a random variable having spat.ial correlation
must have their distribution in spaée cdrfesponding to covariance
function and having uncertainty of its values corresponding to its

probability density function.

There is a method that is popular in geology and hyai'ology

that. can determine realizati

h block with less time consumption

turning bands method for
———

called turning bands metl]
determining the pro nlti-dimensional space

will be described in study the turning bands

method will be use ns in a two-dimensional

space with desired

2. The Turning B&i ‘f{a.

The :'V;_A_;___,_«_______ hod. nerat.e random field (or

variable) in t,wo-di.unsin 1%81 'es'ri‘bed are In this study it is

assumed that, ﬂelu E]ji’ﬂoﬁﬁlﬁﬁeﬂﬁﬂ)ﬂ-ﬁder stationary and

isotropic. It. is also assumed that the £govariance C@) of the field to

T SRR TR

Let P represent. the two-dimensional field to be simulated

by generating values at discrete points as shown in Figure 3.5. Choose

VA AR O
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an arbitrary origin O in R and generate lines corresponding to direction
vectors u which are uniformly distributed on the unit circle. The angle

8, is uniformly distributed between O and 2 x.

Along each line i, generate a second-order stationary

uni-dimensional discrete process having zero mean and covariance

dinate on line i. Onto line i,
&&ield where we want to'generate

, | —
values, and assign i > coOrrespondimngivalues of the

function ¢, (L), where &is t e

orthogonally project th‘“

uni-dimensional discr \\\ 1nt of the region having
. . Frer .
locat.ion vector x, :i s\\\ fxom line i will be z ¢ .,

where Cm = X U

B m tor x onto line i, u, the

Lhe inner product of the

vectors x, and u,. For each line generate a

uni-dimensional r ;:f"'“"'_ Siig HE lcovariance funct.lon.

| I
Then at every pointml of the Teg: ere are L assigned values

g6 B ) = zﬂ)uﬁﬁtwﬂﬂ%"wﬂnrﬂnﬁ uni-dimgnsional

realizations. qlr'l-‘mally, assigg to the point N the value z_(x,) given by

qRIANN 38 SJ‘WTJWEI']@ 3

- o S N E Z, KU, (3.10)



37

ﬂﬂEJ’J‘VlEJ‘VI‘iWEI’]ﬂ‘i

Figure 3.5, S Pmatlc represgntation of the two-dimepsional field P and

- L APOAND T UM ANEDAT
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The assigned lines are assumed to be uniformed distributed
‘in two-dimensional space, as taken from a uniform distribution on the
unit circle. In three dimensions, Journel and Huijbregts (1978).
suggested that a group of 15 iines; Joining f..he midpoints of the opposite
edges of a regular icosahedron, ié adequate for typical appliéétions.

S

For two-dimensional fields, Mantoglou and Wilson (1982) suggested that

4-16 lines should be suffi ing on the accuracy desired.

T

The uni-da \\ ction C,( 2:) obtained has
to be corresponding : —~d . sariance function. 1In

obtaining ¢ (&), t

§r red. Take two points of the

field having 1oc_ati TS & ' ; ¢, respe ively. The simulated values

LY

corresponding to these quation (3.10) and the

covariance function of 5 eld ié (Mantoglou and Wilson,

1982) S ]

) —y

C (r) (X2 m.) C, (h.w du, (3.11)

ﬂ‘NU’JVIEJ"m PINT

o ARIDIN NN INYAE

Orthogonal axes (x,y) is defined in the plane of the field,

with origin at point x, and the y axis in the direction of the vector
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hi= xz—xl as shown in Figure 3.6.

AuEInenineIns
RIANTUURINGIAY

Figure 3.8. Definition sketch for the two-dimensional case, showing unit

circle (after Mantoglou and Wilson, 1982).
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In polar coordinates we can write h.u = r sin © and du = de.

“Equation (3.11) then becomes

; 2rn
(1/21:_)I c, sin 6) de
0

= B,k g

© (r)
S

dg ’ et A3 AT

Il
S
b5
a
R

5 (rz =) :2)1/2

where

Subst. it v —f Ty AT ler to preserve the known

f - (% /2) C(r). (3.13)

:

.l FI - r .
This ,t.ion rela e Lwo-dimensional covariance function

Cry to the ﬁﬁﬂﬂwwm ﬁujuong the turning bands

lines. = Th: 18 an int.egral equation in wwzh c n;> (s ot be directly

2T UL AN WL,

expression for the spectral density function of the uni-dimensional
process as a function of the radial spectral density function of the

two-dimensional process is used. The line process can then be generated
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easily using a spectral method.

3. Spectral Representation of a Two-Dimensional Process.

If the covariance function C(h) of the two-dimensional
process is continuous and tends to zero fast enough as |h1——>cij, it can

be expressed as a Fourier integsral given by (Mantoglou and Wilson, 1982)

(3.14)

where i now represe 18 a vector of frequencies

(wave numbers), dw ner product. of the vectors
h and w. The non-negati w,,W,) is the spectral

density function of the tug=diilens] process and is given by the

Fourier transform ',:‘;;i-‘"

,ll
i

W

ﬂum%ﬂé’ﬁmﬂﬁ e
PIAIATUAMINYAE

If the field is isotropic, then Stw) = S(w), in which w = lwl.
The Fourier transform Equations (3.14) and (3.15) then becomes (Mantoglou

and Wilson, 1982)
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w .
ey = o? ].-ffw')Jo(w) aw, ' (3.16)
_ L :
fan = /@) J c(rJ (wr)r dr, (3.17)
0 _

~
-

where r = thi, J () is a Bessel function of the first kind of order

= 2= (W)I(J'z s (3.18)

ﬂ'LlEJ’J VI‘EWITW BIN3
i Q R P S LAY TR 1

circle ¢ .- If the two-dimensional isotropic covariance function C(r) is
known, we can use Equation (3.17) to calculate the corresponding radial

spectral density function. The exponential scheme two-dimensional
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covariance functions C(r) and its radial spectral density function, f(w)

‘are shown in Equations (3.9) and (3.19), respectively, which this f(w)

is related to the spectral density function S(w) of the two-dimensional

process through Equation (3.18) (Mantoglou and Wilson, 1982):

Fan = G/bBHIL + (wh>1%73, o (3.19)
where
B o=
From Man il so! (19 pectral representat.ion of
the uni-dimensional
(3.20)
The Pssent.lal ,_s [‘L_, The- inozuka and Jan (1972) is that a
random process i:;  simulased Oy o ser ““—“-'— osine functions with
I R
random frequency (QF wave number), and the uni-dimensional process on

s £ bﬁmﬂﬁwmwmm
azw:mﬂ%mwﬁmmﬂ

where ;{k are independent, random angles uniformly distributed between O
and 2%, w_= (k-1/2) Aw, and w’ =w, + 3%, fork=1,...,M. It has

been assumed that the Spectral density function S (w) is insignificant
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outside the region [- Q , Q@ 1. The discretization frequency Aw is
defined as Aw = @ /M, where M is the number of harmonics used. The
frequency éw is a small random frequency added in order to avoid

- periodicities and is uniformly distributed beﬁween - Aw’/2 and + Aw’)z,

where Aw’ is a small frequency, Aw’<< Aw.

number_of harmonics L Eicire 37 o imensional spectral density
for the exponential 1£¢ LURCLIO x\\\\ some line i is shown. The
frequency increment, F .,"'J SMA igh to ensure that a

sufficient degree of ACY, ! 7?' ained, while the number of harmonics

the spectral tail.

-

: "
rom . a ‘ Ny

must, be evaluated indardiscrete fashion along line i. Assuming that a

cotan, sl A LA ] EJYJQ 4 LA T I PR B
o RV LN T B o e o

effect of projecting the random information from the line to the field

the line process Z (2: )

grid. It is quite possible that the same discréte line value will be

projected to two neighboring points in the real field when, in fact; two
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differen£ values are theoretically called for. This problem can persist,
“in lines at an angle to the field grid and can never be fully eliminated
. with a discrete line process. A pragmatic rule of thumb (Mantoglou and
Wilson, 1982) is to choose AL< min(Ax,, Ax,, Ax,) for three-dimensional
space. This reduces the effect of gross errors the type shown in Figure

~

3.8.

4.5
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k

Figure 3.7. General form of a line spectrum indicating choices of

harmonic number M and frequency range Q (after Tompson et al., 1989).
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Discrete Process

Z{%)

A .
7 line i

Figure 3.8. qﬁuginﬂnf m IE]e’lﬂjs (after Tom’pson'
« - RININTUNMINIAY

In this study, £he spat.ial correlation of an input variable is

incorporated in oil reserve calculation to stud& effect, of this

correlation on calculated o0il reserve.
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