CHAPTER II

THEORY OF SUPERCONDUCTIVITY

Superconductivity was first discovered in 1911
by H. Kamerlingh Onnes in Leiden just three years after
he had first liquefied helium. In this chapter we will
review their early phenomﬁyo]oglcal description. Then
wo wil1 brlefly sketch the . v§§§51°n of the concepts of

Bardeen, Cooper.and Schrieffer. Some of these problens
f’r -

are collabora%;gg,&f

the further cha

our studies that we will cite in

2.1 THE BASICJPHENOQ

What Kamer 1ngh Onﬁeé observed was that the
JJ /N

electric resista e, vanish§§:§pméletely at a critical

el e ¢

temperature T : Thus perfeqf"cpnduct1v1ty is the first

property of. éuperconduct1v1ty Theiﬂext property to

¥
be dlscovered{mas perfect dlamagnet}sm by Meissner and

l

Ochsenfeld. They found that not only that a magnetic

field iseRcliuded) o @' superdonduéticr. that may be

explainediby the theory of perfect conductivity but is
alsc’ expbellid, from~a’t| normal ‘metal/lwhen] it Y is cooled
down?éﬁrough Tc' Fbr peffect conductivity prevents a
field from penetrating a superconductor by setting up
an eddy currents that just cancell the applied field.
But Meissner effect cannot be explained by perfect

conductivity which tends to trap flux in.



2.2 THE LONDON EQUATIONS

The two basic phenomena of electrodynamic
properties were described in 1935 by F. and H. London.
These two eduations governing the macroscopic électric
and magnetic fields are
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where A = 4& :
is a phenomeﬁ( /o

density of s
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continuously

Equati 2 :-_--L i perfect conductivity
ill accelerate the

superconducting e.l-g_eﬁ__‘i‘vnﬁ e (2.2) combined with
Ty '

(2.4)

this e ﬁ ﬁ 'Ejdﬁ WafJ etic field is

exponeﬁ g‘ls E‘ 3 1nft~[§;or of a sample

with qu vm‘eij EJ a Meissner
aﬁfjﬁ ﬁ 2.3) is defined as

a penetration depth.

A derivation of the London equations comes from
noting that the canonical. momentum P = mv + e?\/c, when
there is no applied field we expect that the net

momentum is zero at the ground state. The average



velocity, in the presence of a field, is
<Vs> = - eA/mc {2.5)
Let <ns> be the number density of electrons in the ground

state, Eq. (2.5) leads to

- A sy O 2 =-—A
JS = nse<v 3 nge’ A/mc A/Nec (2.6)

Taking the time derlvatléﬁ’ of Eq. (2.6) it leads to

. fﬂ’
(2.1), and taking the curl of Eg. (2.6) we obtain the Eq. (2.2)
|

Equatign’. .6) / is not “gauge invariance. That

+ ﬂf 1 4 this leaves the magnetic

nphanqu But it changes the current

in Eq. (2.6),}ﬂ§ylfhe mus& choose a2 unique gauge that

Eq. (2.6) mani s s’ the gauge invariance. The choice,

known as London éauge; reqaiﬁes ‘that V’A = O so that

szJs = 0 in- av01d1ng;gny bu:ld_up of charge density. For
s S -

changing Auéo X', scalar field fﬁ,ggtisfies Laplace

"equation é%g,= O. Thus the London gauge leaves both

V. 2 and YV x&" unchanged. o

2.3 THE GINZBURG-LANDAU THEORY

Inv19%50,! 6inzburg "and handaw had introduced a
complex pseudowave function’Y as an order parameter for
the superconducting electrons in such a way that the
local}density of superconducting electrons was given
by

ng o= 1y (%12 (2.7)

By using the variational principle with an assumed

expansion of the free energy in power ofﬂr andvvi, they



obtained the conditions

1 (hv s A) Y+ ,1{,,2 = "“‘Y (2.8)

2m#*

and J_ = e*h («y vy - YY) - I*fl e (2.9)
m*c

2m*
which are called the Ginzburg-Landau equations. Equation
(2.8) is analogous to Schfadlnger equation foi. a free

particle but without a nonriééar term and Eq. (2.9) is
the equation of -the supefcurrent as usual as in quantum
p—

mechanics qu;juf'r

* .
e = 2e is @

*

v " - x
cleJ of charge e and mass m . And
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1 . *
f a palr of electrons and m ,
ff ,\‘_ -

an arbitrary t= can be conveniently chosen twice

*
eejel&ctron, 1.e.m = 2m.
Y ‘fj

the mass of

-4 .'. & .f)’M +
With this formells@v it pfov1des an explanation

beyond the Lond ngbheory.?fhﬁse are nonlinear effects

—p

in the fieids strﬁnﬁﬁenoﬁﬁ&ﬂéo chiFge ng and spatial

X ; . = :
varlatlon% .:9an explain the

1ntermed1ate state of superconductors, that is the

J i
A’

interface betwyeen superconduction and normal domains

when an applied magnetic field is approximated to be a

critical “magnetic field.

The Ginzburg-Landau thebry 1s a lihiting form
of?the microscopic theory of Bardeen, Cooper and
Schrieffer‘(BCS), valid near Tc, in whichﬂfis directly
proportional to the gap parameter A . More‘physically,Y
can be thought of as the wave function in the center of

mass coordinate system of the Cooper pairs.



2.4 THE BCS THEORY (2)

The BCS theory evolved from the observation of
Cooper(3) that if a pair of electrons were slightly
excited from the Fermi sea, they could form a real

bound state provided that there was a weak attractive
potential. This statq\?&ﬁé’ lowest energy if the net
momentum is zero &tem has a bound state
by puttlng t roﬂs Qa Coopex pair, the
Fermi sea gr::aﬁf’g{- t~\ﬁ\ﬁsqaifable agalnst this

formation. Th a formalism for

handling such

*

ot ‘a 0 (2.10)

The smﬁﬁgji“ﬂﬁﬁﬂqﬂ ?fined by

% (2.11)

aciﬁjﬁfj e i) L

written as

- L= ok L 2 4-) s
where K is the momentum of the exchanglng phonon, that
is, the electrons in the states with momentum k and
By

k exchange by a phonon of momentum #£ to new states k +

% and K -% .



Next assuming that the ground state cén be only
occupied by, paired electrons, that is if the state k¢t
is occupied, so is ;ﬁi;and if ;Tis unoccupied, neither
is - kL. With this assumption the effective potential

is that connecting paired states, then Eq. (2.12) becomes

o * ok
= N Y F . N .
§3¥(n)c k+x,fq-%k§x,xc-klckf {2.13)

Introducing pair creation and-#finihilation operators
3 ;

*

b % and bi by

;i¢xbf = Lk %y (2.14)

Equation (2. 1%/}f3n terms ef these operatore is

/ Vi b’ 3)*' (2.15)

r
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The Hamiltonian treate& by Béﬁ is

H=2% lglb, b* +’{> == ¥ V.. BB 02, 16)
Fk k k_ k)kFR:l‘g—kkll LI S

1 f J"
Where €% ‘are:e les 5jfhe Fermi 1level

1‘}. 3 Pt
and the factori of 2 comes from the two particles in

the pair. The problem is then to solve for

eigenfunétions' and eigenvaluas of-this Hamiltonian.

Many-particle systems, suéh as, the.electron gas
in metals' at 1low temperatures, formed by particles
obeying Fe?mi—Dirac statistics are called Fernmi
superfluids. In fact fhe superfluidity of the electron
gas we call superconductivity. Therefore
superconductivity is the systems of superfluid systems.

Since Fermi systems can exhibit off—diagona1 long-range



1

order in two-body reduced density matrix and examples
of off—diagonal’long-range order in Fermi systems are
superconductivity in metals. We will study reduced

density matrices and off-diagonal long-range order in’

the next chapter.
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