

การผลิตสารสกัดจากยีสต์ที่ใต้จากโรงงานเบียร์

นางขึ้นจิตศ์ พฤติภากร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต หลักสูตรเทคโนโลยีทางชีวภาพ บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย พ.ศ. 2528

ISBN 974-564-887-6

THE PRODUCTION OF EXTRACT FROM BREWER'S YEAST

Mrs. Chernchit Pudhipakorn (nee Tanaboriboon)

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Program Biotechnology
Graduate School

Chulalongkorn University

1985

Thesis Title The Production of Extract from Brewer's Yeast.

By Mrs. Chernchit Pudhipakorn (nee Tanaboriboon)

Program Biotechnology

Thesis Advisor Assistant Professor Surapong Navankasattusas, Ph.D.

Mr. Peter Mittman, Diplom - Braumeister.

Accepted by the Gradute School, Chulalongkorn University in partial fulfillment of the requirements for the Master's degree.

Thesis Committee

P. Physhenicket Chairperson

(Associate Professor Pairoh Pinphanichakarn, Ph.D.)

... S. Navankasatusas... Member

(Assistant Professor Surapong Navankasattusas, Ph.D.)

Pet luhueum Member

(Peter Mittmann, Diplom - Braumeister)

.. Nali Millubol ... Member

(Associate Professor Naline Nilubol, Ph.D.)

Copyright of the Graduate School, Chulalongkorn University

หัวข้อวิทยานิพนธ์ การผลิตสารสกัดจากยีสต์ที่ได้จากโรงงานเบียร์

ชื่อ นาง ขึ้นจิตศ์ พฤฒิภากร

อาจารย์ที่ปรึกษา ผู้ช่วยศาสตราจารย์ คร. สุรพงศ์ นวังคสัตถุศาสน์

มิสเตอร์ ปีเตอร์ มิทแมน

หลักสูตร หลักสูตรเทคโนโลยีทางชีวภาพ

ปีการศึกษา 2528

บทคัดย่อ

การศึกษาวิจัยนี้มีวัตถุประสงค์สำคัญคือ ทคลองผลิตสารสกัดของยีสต์ (yeast extract) จากยีสต์ที่ใช้แล้วของโรงเบียร์ในประเทศ เพื่อที่จะเป็นแนวทางในการผลิตขั้นอุตสาหกรรม การ ผลิตสารสกัดของยีสต์ มีขั้นตอนที่สำคัญคังนี้คือ การทำให้เชลแตก โดยการบ่มที่อุณหภูมิ 40—50 องศาเซลเซียส เป็นเวลา 48 ชั่วโมง แยกสารที่สกัดได้ออกจากชากเซลและทำให้เข้มขึ้นก่อน นำไปทำให้เป็นผงแห้ง ในการวิจัยนี้ได้ศึกษาถึงผลของอุณหภูมิที่ใช้ในการบ่มเพื่อทำให้เซลแตก ผลของการใช้เอนไซม์ปาเปน (papain) และเกลือร่วมกับแอลกอฮอลต่อปริมาณในโตรเจนที่สกัดได้ จากการทดลองพบว่า ผลของอุณหภูมิที่ใช้ในการบ่มร่วมกับการใช้เอนไซม์ปาเปน ทำให้ปริมาณใน โตรเจนเพิ่มขึ้น อุณหภูมิที่ใช้ในการบ่มคือในช่วง 40—50 องศาเซลเซียสและปริมาณเอนไซม์ที่เหมาะ สมในการผลิตสารสกัดของยีสต์คือ 0.1 เปอร์เซนต์ (โดยน้ำหนักแห้งของโปรตีนในยีสต์) สารสกัด ของยีสต์ที่ผลิตได้จะมีปริมาณในโตรเจน 10.86 เปอร์เซนต์ (ตามน้ำหนักแห้ง) และไวตามินบี 11.06 มิลลิกรัมต่อ 100 กรัม และสารสกัดของยีสต์ที่ได้สามารถนำไปใช้เลี้ยง <u>streptomyces</u> sp 190-1 เพื่อผลิตเอนไซม์กลูโคสไอโซเมอเรส (glucose isomerase) ได้ดี

Thesis Title The Production of Extract from Brewer's Yeast

Name Mrs. Chernchit Pudhipakorn (nee Tanaboriboon)

Thesis Advisor Assistant Professor Surapong Navankasattusas, Ph.D.

Mr. Peter Mittmann, Diplom-Braumeister

Program Biotechnology

Academic Year 1985

ABSTRACT

extract from spent brewer's yeast which is locally available. It is a preliminary development towards production of yeast extract as a local industry. Yeast was converted into yeast extract through many steps, namely, incubated yeast slurries at 40 - 50 C for 48 hours, separated extract from insoluble components then concentrated the product prior to spray drying. The effects of incubating temperature, addition of enzyme papain, sodium chloride and ethanol on the percentage yield of nitrogen were studied. It was found that incubating temperature and addition of enzyme papain increase the percentage yield of nitrogen. The appropriate incubating temperature and addition of enzyme papain were found to be 40 - 50 C, 0.01% based on dry weight of yeast protein, respectively. Yeast extract could be produced with 10.86% nitrogen based on dry weight of yeast protein, 11.06 mg/100 g riboflavin and can be used for glucose isomerase production.

ACKNOWLEDGEMENTS

The author wishes to express her profound gratitude to Assistant Professor Dr. Surapong Navankasattusas and Mr. Peter Mittmann for their continuous guidance, valuable suggestions and advice offered during the course of this research.

She also gratefully acknowledges Mr. Piya Bhirombhakdi,
Assistant Managing Director of Boon-Rawd Brewery Co., Ltd.; for providing facilities, support and assistance.

Appreciation is due to Assistant Professor Vichai Haruthaithanasan Head of Product Development Department, Faculty of Agro Industry, Kasetsart University, who allowed her to use the centrifuge and spray drier at Kasetsart University. Thanks also to Mr. Virat Rodpengsankaha for modification of bowl centrifuge in twin tub washing machine, to staff members of Laboratory Department, Boon-Rawd Brewery Co., Ltd. for their aids in this research, to Miss Sililak Teeradakorn for application trial of the yeast extract obtained, and to Miss Pannee Tantiwattananan who helped in typing this thesis.

หาลงกรณมหาวทยาลย

CONTENT

		Page
ABSTRACT IN	TAHT IAHT	iv
ABSTRACT		
ACKNOWLEDGEME	ENTS	vi
LIST OF TABLE	as	vii
LIST OF FIGUR	RES	
CHAPTER:		×
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
I	INTRODUCTION	1
II	STRUCTURE OF THE YEAST CELL AND YEAST CELL WALL.	6
. 111	DISINTEGRATION OF CELLS	8
IV	THE ADSORPTION OF HOP SUBSTANCES ON THE YEAST	14
	CELL WALL	
v	PRODUCTION OF YEAST EXTRACT	18
VI	RELATIONSHIP OF EQUILIBRIUM CONCENTRATIONS	31
VII	PREPARATION OF RAW MATERIAL	33
VIII	AUTOLYSIS	41
IX	CONTACT EQUILIBRIUM FOR EXTRACTION	57
x	CHARACTERIZATION OF THE YEAST EXTRACT	64
XI	CONCLUSION AND RECOMMENDATION	79
		81
APPENDIX		85
VITA		91

LIST OF TABLES

able		Page
1-1	Essential amino acid content of brewer's yeast, its	3
	protein concentrations and FAO reference protein	
4-1	Values of 1 and n in the equation of the Freundlich	17
	adsorption isotherm for hop substances on yeast cell	
5-1	Comparison of proteolytic enzymes from three different	22
	autolysing yeasts	
5-2	Characteristics of the four proteolytic enzymes released	24
	during yeast autolysis	
5-3	Proximate analysis of five commercial autolysed yeast	27
	extracts // / / / / / / / / / / / / / / / / /	
5-4	Nucleic acid components found in two commercial autolysed	28
	yeast extracts	
5-5	Range of vitamin content of commercial autolysed yeast	29
	extracts	
7-1	Composition of spent yeast	39
8-1	Percentage yield of nitrogen content in duplicate samples	44
	of yeast extract obtained by autolysis at different	
	incubation time	
8-2	Percentage yield of nitrogen content in duplicate samples	45
	of yeast extract obtained by autolysis with addition of	
	sodium chloride and ethanol	
8-3	Percentage yield of nitrogen content in duplicate samples	46
	of yeast extract obtained by addition of papain	

Table		Page
8-4	Percentage yield of nitrogen content in duplicate samples	47
	of yeast extract obtained by autolysis at different pH	
	and incubating temperature following 32 factorial design	
	experiments	
8-5	Percentage yield of nitrogen content in duplicate samples	50
% €	of yeast extract obtained by rupturing yeast cells after	50
	various cycles of freezing-thawing	
8-6	Results of 23 factorial design with preservative agents,	51
	addition of papain and autolysing temperature as variables	-
8-7	Contrast table of 23 factorial design with preservative	53
	agents, addition of papain and autolysing temperature as	
	variables	
9-1	Contact equilibrium data for extraction of soluble solids	59
	from autolysed yeast cells	
9-2	Contact equilibrium data for extraction of soluble	61
	nitrogen from autolysed yeast cells	
0-1	Chemical composition of yeast extract	73
0-2	Proximate amino acid compositions of five commercial	74
	autolysed yeast extracts and the yeast extract obtained	
0-3	Glucose isomerase activity produced by Streptomyces	76
	sp 190-1 and cell mass of Streptomyces sp 190-1	
	cultivated with commercial yeast extract and the yeast	
	extract obtained	

LIST OF FIGURES

Figure		Page
1-1	Outline of overall scheme for experimental plans	5
3-1	Types of non mechanical and mechanical cell disruption	9
4-1	Plot of the logarithm of the hop substances adsorbed per	15
	unit mass of yeast (Saccharomyces cerevisiae N.C.Y.C	
	240) against the logarithm of the final concentration	
	of hop substances in the beer	
5-1	Solubilization of yeast solids during autolysis in	20
	water at pH 6.5 and 45°C	
5-2	Changes in protein and amino acid concentrations	21
	(as percentage of total solids) in yeast extract during	
	autolysis	
5-3	Process routes in the manufacture of yeast extracts	30
6-1	Contact equilibrium stage	31
7-1	Protein contents of locally available brewer's yeast	38
8-1	Temperature time profiles of freezing and thawing cycle	49
	I and IV	
8-2	Half normal plot of contrast values in 23 factorial	51
	design	
9-1	Equilibrium time of extraction	60
9-2	Equilibrium line of extraction	62
10-1	HPI,C chromatogram of hop substances in beer	70
10-2	HPLC chromatogram of hop substances in the yeast extract	71
	obtained from alkali washed yeast	

Figure Page

10-3 HPLC chromatogram of hop substances in the yeast extract 72 obtained from distilled water washed yeast

ัศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย