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CHAPTER I
INTRODUCTION

The concept of means is one of the most familiar concepts in mathematics. It
is proved to be a powerful tool from theoretical as well as practical points of
view. The theory of scalar means was developed since the ancient Greeks by
the Pythagoreans until the last century by many famous mathematicians. In the
Pythagorean school, various means are defined via the method of proportions (in
fact, they are solutions of certain algebraic equations). See the development of
this subject in a survey article [30]. The theory of connections and means for
matrices and operators started when the concept of parallel sum for matrices
was introduced in [2] for analyzing electrical networks. The parallel sum of two

positive definite matrices A and B is defined by
A:B= (A48

The parallel sum for positive semidefinite matrices A and B is defined by forming
the parallel sum of A+e€l and B+ €l for e > 0 and then take ¢ — 0 in the strong-
operator topology. Subsequently, this notion was extended to positive operators
on a Hilbert space in [5] via the same method.

In order to study operator means, the first step is to consider three classical
means, namely, arithmetic, geometric and harmonic means. Arithmetic and har-
monic means are easy to extend from positive real numbers to positive operators.
The harmonic mean, denoted by !, for positive operators is the twice parallel sum.

The geometric mean of two positive definite matrices A and B was defined in [7]:
A#B — A1/2(Afl/ZBA71/2>1/2A1/2.

In [8], important properties of geometric and harmonic means are firmly estab-

lished and, as applications, they played crucial roles in the study of concavity and



monotonicity of many interesting maps between matrix spaces. Another impor-
tant mean in mathematics, namely the power mean, was considered in [10]. See
also [12, Chapter IV] for a systematic treatment on matrix means.

A study of operator means in an abstract way was given by Kubo and Ando
[23]. Let B(3H) be the algebra of bounded linear operators on a Hilbert space H.
Denote by B(H)* the set of positive operators on H. A connection is a binary

operation ¢ on B(H)* such that for all A, B,C,D € B(H)*:
(M1) monotonicity: ALKC,B<D — AoB<CoD
(M2) transformer inequality: C(Ao B)C < (CAC) o (CBC)

(M3) joint-continuity from above: for A,, B, € B(H)", if A, | A and B, | B,
then A, 0 B, | Ao B.

Typical examples of connections are the sum (A, B) — A + B and the parallel
sum. A mean is a connection ¢ such that Ao A = A for any positive operator A.

The followings are examples of means in practical usage:

t-weighted arithmetic means: AV,B = (1 —t)A+tB

t-weighted geometric means: A#,B = AY2(A~1/2BA~1/2)t A1/

t-weighted harmonic means: A!; B = [(1 —t)A~! +tB~1]!

logarithmic mean: (A, B) + AY2f(A"Y/2BA71/2)AY2 where f : Rt — R*,
f(z) = (z = 1)/logz.

A fundamental tool in Kubo-Ando theory of connections and means is the
theory of operator monotone functions. Denote by OM (R™) the set of operator

monotone functions from R™ = [0, 00) to itself. In [23], a connection o on B(H)"

can be characterized as follows:
e There is an f € OM(R™) satisfying

flx)[ =10 (xI), xeR". (1.1)



e There is an f € OM(R™) such that

Ao B =AYV f(ATV2BATY)AY2 A B >0. (1.2)

e There is a finite Borel measure p on [0, 0o such that

AaB:aA+BB+/(O )%{(AA)!B}dM(A) (1.3)

where the integral is the Bochner integral, « = p({0}) and g = pu({oo}).

In fact, the functions f in (1.1) and (1.2) are unique and coincide, called the rep-
resenting function of o. From the integral representation (1.3), every connection

o 1s concave in the sense that
(tA+(1—-t)B)o(tA'+(1—t)B") > t(Ac A)+ (1 —t)(Bo B) (1.4)

for all A;B > 0 and ¢t € (0,1). Moreover, the map ¢ +— f is an affine order-
isomorphism.

The mean-theoretic approach has various applications. It can be used to obtain
the monotonicity, concavity and convexity of interesting maps between matrix al-
gebras or operator algebras (see the original idea in [8]). The order isomorphism
f — o transforms suitable scalar inequalities to operator inequalities concern-
ing means. For example, the arithmetic-logarithmic—geometric-harmonic means
inequalities are obtained from applying this order isomorphism to the scalar in-
equalities

2z r—1 1+«
<22 g <
Ttz 7 Slogxr 2

x> 0,2 # 1.

The concavity of general connections serves simple proofs of operator versions
of Holder inequality, Cauchy-Schwarz inequality, Minkowski’s inequality, Aczel’s
inequality, Popoviciu’s inequality and Bellman’s inequality (e.g. [27]). The famous
Furuta’s inequality and its generalizations are obtained from axiomatic properties
of connections (e.g. [17, 18, 19]). Kubo-Ando theory can be applied to matrix
and operator equations since harmonic and geometric means can be viewed as

solutions of certain operator equations (e.g. [4, 24]). It also plays an important role



in noncommutative information theory. A relative operator entropy was defined
in [16] to be the connection corresponding to the operator monotone function
x +— log z. See more information in [11, Chapter IV] and therein references.

Kubo-Ando definition of a connection is a binary operation satisfying axioms
(M1), (M2) and (M3). In this work, we show that some of the axioms can be
weakened. Moreover, we provide alternative sets of axioms involving concavity
property.

Consider the following axioms:
(M3') for each A, X € B(H)",if A, | A, then A, 0 X | Ac X and o A, | o A;
(M3") for each A, X € B(H)",if A, | A, then X0 A, | XoAand A,0l | Ao I;

(M4) concavity: (tA+ (1 —t)B)o (tA'+ (1 —t)B") > t(Ac A)+ (1 —t)(Bo B')
for t € (0,1);

(M4") midpoint concavity: (A+ B)/2 0 (A + B'")/2 > [(Ac A’) + (Bo B')]/2.

Note that condition (M3') is one of the axiomatic properties of solidarity intro-
duced in [15]. We will show that the axiom (M3) in the definition of a connection
can be relaxed to (M3') or (M3”). The conditions (M3’) and (M3") are clearly
weaker, and easier to verify, than the joint-continuity assumption (M3). More-
over, a connection can be axiomatically defined as follows. Fix the transformer
inequality (M2). We can freely replace the monotonicity (M1) by the concavity
(M4) or the midpoint concavity (M4’). At the same time, we can use (M3’) or
(M3") instead of the joint-continuity (M3). This result gives different viewpoints
of connections. It shows the importance of the concavity property of a connec-
tion. Moreover, it asserts that the concepts of monotonicity and concavity are
equivalent under suitable conditions. We also show that a connection is a mean

if and only if it satisfies a usual property of scalar means on R*, namely,
betweenness: A < B= A< AcB < B.

Each connection (mean) o on B(H)" gives rise to a unique connection (mean,

respectively) & on RT satisfying (zI) o (yI) = (zoy)I for x,y € RT. Properties



of & related to o, its representing function and its representing measure are in-
vestigated. In fact, there is an affine order isomorphism between connections on
B(H)" and induced connections on R*. This gives a natural way to define any
named mean. For example, the geometric mean on B(H)" is the mean on B(H)"
that corresponds to the usual geometric mean on R™.

We consider the relationship between connections and the representing mea-

sures. It is shown that a connection ¢ can be uniquely written as
0 = Ogc+ Osd + Oses

where 0,., 05¢ and o, are connections, subject to suitable conditions. The “sin-
gularly discrete part” o4 is a countable sum of means of the form o, with non-

negative coefficients, where

Aoy B = )\2—4;\1(/\14!3), A/ B>0

for each A\ € [0, 00], here oy : (A, B) — A and 0, : (A, B) — B. The “absolutely
continuous part” o,. has an integral representation with respect to Lebesgue mea-
sure m on the real line. The “singularly continuous part” o, has an integral
representation with respect to a continuous measure mutually singular to m.

Structures of the set of connections are also investigated. In fact, this set is
isometrically order-isomorphic, as normed ordered cones, to the set of operator
monotone functions on R*. Moreover, it is isometrically isomorphic, as normed
cones, to the set of finite Borel measures on [0, co].

Finally, we establish further properties of connections related to operator in-
equalities. A connection behaves nicely with any positive linear map ® in the

sense that
®(AcB) < P(A)o®(B), A,B=0.

We also prove some properties of connections related to monotonicity and concav-
ity of maps between operator algebras. These will generalize some results related

to specific connections in the literature.



This thesis is organized as follows. Chapter II deals with the development
of the theory of connections and means for positive operators, focused on the
axiomatic theory of Kubo and Ando. In Chapter III, various axiomatic char-
acterizations of connections and means are provided. The relationship between
connections and their induced connections is also considered here. Chapter IV
contains an explicit decomposition of an arbitrary connection and a mean. Chap-
ter V is a discussion of structures of the set of connections. In Chapter VI, we
establish some properties of connections involving operator inequalities. Some
preliminaries and results needed for this research are collected in Appendix A.
They cover the spectral theory for operators and the integration theory on Ba-

nach spaces.



CHAPTER I1
KUBO-ANDO THEORY OF OPERATOR
CONNECTIONS AND OPERATOR MEANS

This chapter contains the development of the theory of connections and means
for positive operators on a Hilbert space. The beginning of the theory came from
electrical networks as the presence of the parallel sum; see Section 2.1. This
lead to a study of matrix/operator means in Section 2.2. A general theory of
connections and means was investigated by Kubo and Ando in 1980. A major
result of Kubo-Ando theory is the correspondences between connections, operator
monotone functions and Borel measures; see Section 2.3. Equivalent definitions
and practical examples of means in Kubo-Ando sense are provided in Section 2.4.

Throughout, let H be a Hilbert space over C. Denote by B(H) the von
Neumann algebra of bounded linear operators acting on H. The sets of self-
adjoint operators, positive operators, strictly positive operators on J{ are written
by B(H)**, B(H)*™ and B(H)*", respectively. For A, B € B(H)**, we define
A< Bif B—A € B(H)*. If A is strictly positive, then we write A > 0. We
always reserve A, B, C, D for positive operators. Write A, — A to indicate that
A,, converges strongly to A. If A, is a sequence in B(H)*?, the expression A4, | A
indicates that A, is a decreasing sequence and A,, — A. The set of nonnegative

real numbers is denoted by R*.

2.1 Parallel Sum

In electrical engineering, Anderson and Duffin [2] defined the parallel sum of two

positive definite matrices A and B by

A:B=(A"'"+B Y '=A4-A(A+B) A (2.1)



Recall that the impedance of an electrical network can be represented by a pos-
itive (semi)definite matrix. If A and B are impedance matrices of multiport
networks, then the parallel sum A : B indicates the total impedance of two elec-
trical networks connected in parallel. This notion plays a crucial role for analyzing
multiport electrical networks. This is a starting point of the study of matrix and
operator means. This notion can be extended to invertible positive operators by

the same formula.

Lemma 2.1. ([2]) Let A, B,C, D, A,,, B,, € B(3)™ for each n € N.
(1) If AL C and B< D, then A: B<C:D.
(2) If A, L A and B, | B, then A, : B,, | A: B.

(3) If A, | A and B, | B, then lim A,, : B,, exists and does not depend on the
choices of A, B,.

Proof. The exsitence of limits follows from the order completeness of the von

Neumann algebra B(H) (see Appendix A.2). O

In the physical context, the normal situation is that the impedance matrices A
and B are strictly positive. However, the case A = 0 or B = 0—a short circuit—can
be handled by letting A : B = 0. This motivates us to define the parallel sum for

arbitrary positive operators A, B € B(H)*:

A:B=Ilim(A+el): (B+el) (2.2)

€l0

where the limit is taken in the strong-operator topology. We have a variational

description for the parallel sum as follows.

Lemma 2.2. (/2]) For each x € H,

((A: B)z,z) = inf{(Ay,y) + (Bz,2) 1y, z € H,y + z = z}. (2.3)



Proof. First, assume that A, B are invertible. Then for all z,y € K,

(Ay,y) + (B(z —y), 2 —y) = ((A: B)z,2)

= (Ay.y) + (Bz,z) — 2Re(Bx,y) + (By,y) — (B — B(A+ B)"'B),z)

= ((A+ B)y,y) — 2Re(Bx,y) + (A + B) ' Bz, Bx)

= [[(A+ B)I/QyH2 — 2Re(Bz,y) + || (A + 15’)*1/25’:6”2

> 0.
With y = (A + B)~' Bz, we have

(Ay, 4 + (Blo— y), 5 — y) — (A B)z,z) = 0.

Hence, we have the claim for A, B > (. For A, B > 0, consider A+ ¢l and B + €l
where € | 0. O

Remark 2.3. This lemma has a physical interpretation, called the Maxwell’s
power principle. This principle governs the flow of currents through electrical
circuits. Recall that a positive operator represents the impedance of a multiport
electrical network while the power dissipation of a network with impedance A
and current x is given by the inner product (Axz,z). Consider two electrical
networks connected in parallel. For a given current input x, the current will
divide x = y + 2z, where y and z are currents of each network, in such a way that

the power dissipation is minimized.
Theorem 2.4. ([2]) The parallel sum satisfies

(1) monotonicity: A; < Ay, By < By = A1 : By < Ay @ Bs.
(2) transformer inequality: S*(A: B)S < (S*AS) : (S*BS) for S € B(H).
(3) continuity from above: if A, { A and B, | B, then A,,: B, | A: B.

Proof. (1) The monotonicity follows from the formula (2.2) and Lemma 2.1(1).
(2) For each z,y,z € H such that x = y + z, by Lemma 2.2,

(S*(A: B)Sxz,x) = ((A: B)Sz, Sz)
< (ASy, Sy) + (BSz, Sz)
= (S*ASy,y) + (S*BSz, 2).
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Again, Lemma 2.2 assures S*(A: B)S < (S*AS) : (S*BS).
(3) Apply Lemma 2.1(2) to A, +€l, B, +el,A+el, B+l and use (2.2). O

Remark 2.5. The positive operator S*AS represents the impedance of a network
connected to a transformer. The transformer inequality states that the impedance
of parallel connection with transformer first is greater than that with transformer

last.

2.2 Matrix and Operator Means

Some desired properties of any object that is called a “mean” M on B(H)™ should

have are given here.

(A1) positivity: A,B >0 = M(A,B) > 0;

(A2) monotonicity: A > A',B > B'= M(A,B) > M(A", B');

(A3) positive homogeneity: M(kA,kB) = kM(A, B) for k € R;

(A4) transformer inequality: X*M(A, B)X < M(X*AX, X*BX) for X € B(H);

(A5) congruence invariance: X*M(A, B)X = M(X*AX, X*BX) for invertible
X € B(H);

(A6) concavity: M(tA+(1—t)B,tA'+(1—-t)B") > tM (A, A"+ (1—t)M (B, B)
for t € [0, 1];

(A7) continuity from above: if A, | A and B,, | B, then M(A,, B,) | M (A, B);
(A8) fized point property: M(A, A) = A;
(A9) betweenness: if A< B, then A < M(A, B) < B.

In order to study matrix or operator means in general, the first step is to
consider three classical means in mathematics, namely, arithmetic, geometric and

harmonic means. The arithmetic mean of A, B € B(H)™ is defined by

AvB—%(AJrB). (2.4)
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Then the arithmetic mean satisfies the properties (A1)—(A9). In fact, the proper-
ties (A4) and (A5) can be replaced by a stronger condition:

X" (AvB)X = (X"AX)V (X"BX), X € B(H).
Moreover, the arithmetic mean is affine in the sense that
(kA+C)YV(kB+C)=k(AVB)+C, keR".
Define the harmonic mean of positive operators A, B € B(H)" by
A'B=2(A:B)= 13?8 2(A- + B! (2.5)

where A, = A+ el and B, = B + el. This mean satisfies (A1)—(A9); see [2, 8].
The geometric mean for matrices or operators was firstly defined by Pusz and

Woronowicz [29]:
A#B=max{T >0 : [(Tz,y)| < HAl/zarH HBl/zyH Ve,ye H}, A, B>0.
This definition coincides with the following formula given by Ando [7]:
A# B = AYV2HAIRBAYD2A2 A B > 0. (2.6)

This formula comes from two natural requirements. This definition should coincide
with the usual geometric mean on R*: A# B = (AB)"? provided that AB = BA.
The second condition is that, for any invertible 7' € B(H),

T*(A# B)T = (T*AT) # (T*BT). (2.7)

The geometric mean of A, B > 0 can be equivalently defined by iterative process

3] as follows:
AO = A, BO = B7 An - An—l \ Bn—la B, = An—l ! B,_1.

Indeed, A, is decreasing while B,, is increasing. Since A, and B, are bounded
below and bounded above, respectively, they converge to positive operators by
the order completeness of B(JH). In fact, they have a common limit, namely, the

geometric mean of A and B.
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It was also pointed out in [6] that the geometric mean of A, B > 0 is the unique

positive solution to the Riccati equation:
XA'X =B

This equation plays an important role in circuit and system theory.

We define the geometric mean of A, B > 0 by
A#leiﬁ)l(A%—d)#(B%—d). (2.8)

The geometric mean enjoys the properties (A1l)—(A9); see e.g. [8]. Moreover, it is

self-duality in the sense that
(A#B)"t=A"'# B,

The power mean for operators was considered in [10]. The power mean or

Hélder mean with exponent p € R of A, B € B(H)™" is defined to be

(AP + BP>1/”
SaBaal \

Here, the case p = 0 is understood that we take limit as p — 0 and we get the
geometric mean. The case p = 2 is called the quadratic mean or root mean square.

The arithmetic-geometric mean or Gaussian mean is defined in [3] as follows:
Ag = Aa By = B7 A=A, 1V Bn—1> B, = A, # B 1.

Indeed, A, is decreasing while B, is increasing. Both sequences converge to a

common limit, namely, the Gaussian mean of A and B.

2.3 Connections, Operator Monotone Functions and Borel

Measures

The notion of parallel sum was characterized via a set of axioms in [28]. This
result lead naturally to a study of connections and means in an abstract way. In
an influential paper [23], Kubo and Ando proposed an axiomatic definition of a

connection as follows.
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Definition 2.6. A connection is a binary operation o on B(H)"such that for all
positive operators A, B, C, D:
(M1) monotonicity: AKC,B<D = AocB<CoD
(M2) transformer inequality: C (Ao B)C < (CAC) o (CBC)

(M3) continuity from above: for A,, B, € B(H)*, if A, | A and B, | B then
A,ocB,| Ao B.

Typical examples of connections are the sum and the parallel sum. Connec-
tions with the fixed point property (A, A) — A will be discussed in the next

section. We introduce algebraic operations on connections as follows:
o1+ 0y: BH)" x B(H)" = B(H)" : (A, B) = (Aoy B) + (Aoy B),
ko : B(H)" x B(H)* — B(H)": (A,B) — k(Ao B), keR".

Every nonnegative linear combination of connections is a connection.

Example 2.7. (Transpose, adjoint and dual of connections). Given a connection
o, we can construct a new connection as follows. The transpose of o is the

connection (A, B) — B o A. The adjoint of o is the connection defined by
(4,B) > (Ato B~ 1)
The dual of o is the transpose of the adjoint of o.

Example 2.8. (Composition of connections). If 01,09 and 7 are connections,

then the binary operation
o1(n)os : (A,B) — (Ao B)n(Aoy B)
is also a connection.

This axiomatic approach has many applications in operator inequalities (e.g.
[17, 27]), operator equations (e.g. [4, 24]) and operator entropy ([16]).
A fundamental tool in Kubo-Ando theory is an important class of real-valued

functions, introduced by Léwner in a seminal paper [25], namely:
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Definition 2.9. Let [ be an interval. A function f : I — R is said to be operator
monotone if for all Hilbert spaces H and for all Hermitian operators A, B on H

whose spectra are contained in I,
A<B — [(4) < [(B),
where f(A) is the functional calculus of f at A.
Example 2.10.
(1) Any straight line with nonnegative slope is operator monotone on R.
(2) The function x — —1/z is operator monotone on (0, c0).

(3) For each p € [0, 1], the function x — z? is operator monotone on R*. This

is known as the Lowner-Heinz inequality ([25]).
(4) The logarithmic function is operator monotone on (0, 00).

(5) The functions f(x) = (xr—1)/logz and g(x) = (xlogz)/(x—1) are operator

monotone on R*. Here, we use the L’Hopital’s rule for x = 0, 1.

(6) The function x + [(1 + 27)/2]'/? is operator monotone on R* if and only if

p € [—1,1]. Here, when p = 0, we take limit as p tends to 0.

The set of operator monotone functions is closed under taking nonnegative linear

combinations and pointwise limits. See more information in [11, 13, 21].

Theorem 2.11. (/22]) The following statements are equivalent for a continuous

function f I — R:

(1)) A< B = f(A) < f(B) for all Hermitian matrices A, B of all orders

whose spectra are contained in I;

(ii)) A< B = f(A) < f(B) for all Hermitian operators A, B € B(H) whose

spectra are contained in I and for an infinite-dimensional Hilbert space H;

(iii)) A< B = f(A) < f(B) for all Hermitian operators A, B € B(H) whose

spectra are contained in I and for all Hilbert spaces H.
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Theorem 2.12. (/25]) A continuous function f : RT — R* is operator monotone

if and only if there is a finite Borel measure pu on [0,00] such that

flz) = . ]%(I) du(X), = eRF (2.9)
where
bx(z) = % for A (0,00), Go@) =1, 6um() =2

Moreover, the measure p is unique and we can write

f(x):a—l—ber/ Mal,u()\), reR*

(0,00) TH+A
where a := pu({0}) = f(0) and b := p({oo}) = lim, o f(x)/.

A major result in Kubo-Ando theory is that there are correspondences between
connections on B(H)™T, operator monotone functions on R* and finite Borel mea-
sures on [0, 00]. Define the relation < for connections on B(H)" by o1 < o9 if

Aoy B< Aoy B for all A, B € B(H)*. Equip OM(R") with the pointwise order

relation.

Theorem 2.13. (/23]) For each connection o, there exists a unique operator

monotone function f:R* — RY such that
flx) ] = La(zl), xeR'.

In fact, the map o — f is an affine order-isomorphism between connections and
operator monotone functions on RY. Here, the order-isomorphism means that
when o; — f; fori=1,2, we have o1 < o9 if and only if f1 < f.

Moreover, every connection o takes the form
Ao B = ligl A2 F(AZV2B ATY?) AL
where Ac = A+e¢el and B.= B + €l.

We call f the representing function of o.
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Theorem 2.14. ([23]) For every connection o, there is a unique finite Borel

measure p on [0,00] such that for each A, B € B(H)™"

Ao B=aA+bB —|—/ #{(/\A) : B}du(N), (2.10)

(0,00)
where a = ({0}) and b = p({oc}). The map o — p is an affine bijection between
connections and finite Borel measures on [0, 00].

We call p the representing measure of o.

Remark 2.15. Let us consider operator connections from electrical circuit view-
point. A general connection represents a formulation of making a new impedance
from two given impedances. The integral representation (2.10) shows that such
a formulation can be described as a series of (infinite) weighted parallel sums.
From this point of view, the theory of operator connections can be regarded as a

mathematical theory of electrical circuits.

Corollary 2.16. ([23]) Every connection satisfies the properties (A1)-(A7) in
Section 2.2.

2.4 Kubo-Ando Means

Let o be a connection on B(H)' with representing function f and representing

measure u. By [23], the followings are equivalent:
(i) Iol =1,
(ii) o satisfies the fixed point property, i.e., Acd A= A for all A € B(H)™;
(iii) f is normalized, i.e., f(1) = 1;
(iv) p is normalized, i.e., p is a probability measure.

A (Kubo-Ando) mean is defined to be a connection satisfying one (thus, all) of the
above properties. Every convex combination of means is a mean. The transpose,

the adjoint and the dual of a mean are also means.
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Example 2.17. (Trivial means). The left-trivial mean (A, B) — A and the right-
trivial mean (A, B) — B are means. Their representing functions are given by

the normalized operator monotone functions xz — 1 and x > z, respectively.

Example 2.18. (Pythagorean means and their weighted versions). Let o € [0, 1].

The a-weighted arithmetic mean is the mean defined by
AvoaB=(1-a)A+aB, A B>0.

This mean has the normalized operator monotone funtion z — (1 — a) + ax as

the representing function. The a-weighted harmonic mean is defined by
AlyB=[1-a)A ' +aB "', A B>0.

The representing function of !, is given by z — z/((1 — @)z 4+ «). The a-weighted

geometric mean is defined to be
A#,B=AY2(AY2BATY2)2AYV2 A B > 0.
Its representing function is given by x + .
Example 2.19. (Quasi-arithmetic power means). For each p € [—1,1] and « €
[0, 1], the operator monotone function
T+ [(1 — @)+ ozP]/P
gives rise to the quasi-arithmetic power mean with exponent p and weight a:
A#p0B=][(1=a)A? +aBP]Y?, A, B e B(3H)".

The special case #; , of this mean gives the a-weighted arithmetic mean. The
case # 1s the a-weighted geometric mean. The case #_; o is the a-weighted
harmonic mean. The mean #,;/, is the power mean with exponent p. These

means satisfy the property that
A #p,a B =B #p,lfa A.
Moreover, they are interpolated in the sense that

(A #p,s B) #p,a A #p,t B) =A #p,(l—a)s+o<t B.
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Example 2.20. The logarithmic mean is the mean given by
(A, B) — A1/2f(A71/2BA71/2)A1/2

where f(z) = (x —1)/logz. For A, B > 0 such that A # B and AB = BA, the

logarithmic mean of A and B is
(A— B)(log A —log B)™".

This mean is important in the consideration of heat flow in chemical engineer-
ing (see e.g. [11, Chapter 1V]). The dual of the logarithmic mean is the mean

corresponding to the operator monotone function x — (zlogx)/(z — 1).

Example 2.21. If 0; and 0, are means such that o7 < g9, then there is a family
of means that interpolates between o, and oy, namely, (1 — a)o; + aoy for all
a € [0, 1]. Note that the map a + (1 —a)oy + a0 is increasing. For instance, the
Heron mean with weight « € [0, 1] is defined to be h, = (1 — @) # + «a V. This
family is the linear interpolations between the geometric mean and the arithmetic

mean. The representing function of A, is
o (1= )2 %(1 + ).

The case a = 2/3 is named the Heronian mean after Hero of Alexandria and it is

used in finding the volume of a frustum of a pyramid.

Example 2.22. If 01,09 and 1 are means, then the composition ()0 is also
a mean. Recall that the Gaussian mean of A, B > 0 is defined by the iterative

process as follows:
AO :A7B0 :Ba An :An—lVBn—laBn :An—l#Bn—l-

Since each step is a mean, the limit of this iteration is also a mean.



CHAPTER III
CHARACTERIZATIONS OF CONNECTIONS AND
MEANS

Recall that connection in Kubo-Ando sense is a binary operation o on B(H)"

satisfying the following axioms:

(M1) monotonicity: A>A',B>B = Ao B > Ao B’;

(M2) transformer inequality: C'(Aeo B)C < (CAC) o (CBC);

(M3) continuity from above: if A, | A and B, | B, then A,c B, | Ao B.

A mean is a connection ¢ such that I o I = I. In this chapter, we provide various
axiomatic characterizations of connections and means. In Section 3.1, it is shown
that the axiom (M3) can be relaxed. We also provide alternative sets of axioms
for a connection involving concavity property in Section 3.2. Characterizations of
means are given in Section 3.3. An interesting result is that a connection is a mean
if and only if it satisfies a usual property of scalar means, namely, the betweenness
property. Each operator connection on B(H)" induces a unique scalar connection
on R*. The correspondence between connections and induced connections will be
discussed in details in Section 3.4.

Throughout this chapter, o is a binary operation on B(H)". Consider the

following properties:
(M3') for each A, X € B(H)",if A, | A, then A, 0 X | Ac X and I o A, | [ o A;
(M3") for each A, X € B(H)",if A, L A, then X0 A, | XoAand A,0l | Ao I;

(M4) concavity: (tA+(1—t)B)o (tA'+ (1 —t)B") > t(AcA")+ (1 —t)(Bo B)
for t € (0,1);
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(M4") midpoint concavity: (A+ B)/2 o (A + B")/2 > [(Ac A’) + (Bo B')]/2;
(P) if a projection P € B(H)" commutes with A, B € B(H)™, then
P(AoB)=(PA)o(PB)= (Ao B)P,;
in particular, P commutes with Ao B.

The set of binary operations having property (A) is denoted by BO(A). Note that
the condition (M3') is one of the axiomatic properties of solidarity introduced in
[15]. The property (P) will play an important role in relaxing and characterizing

connections in Sections 3.1 and 3.2.

3.1 Improvement of the Definition of a Connection

The definition of a connection can be relaxed as follows.

Theorem 3.1. Let o be a binary operation on B(H)". Then the followings are

equivalent:

(i) o is a connection;

(i1) o satisfies (M1), (M2) and (M3');
(i1i) o satisfies (M1), (M2) and (M5").

The condition (M3’) or (M3") is clearly weaker than the joint-continuity as-
sumption (M3) in Kubo-Ando definition. We divide the proof of this theorem into

several lemmas. Each lemma is of interest in its own right.
Lemma 3.2. The transformer inequality (M2) implies

e congruence invariance: C(AoB)C = (CAC)o (CBC) for A,B > 0 and
C >0

e positive homogeneity: a(Ao B) = («A) o (aB) for A,B >0 and o € RT,
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Proof. By (M2), we have C(AcB)C < (CAC) o (CBC). Since C > 0, we get
C'(CAC) o (CBO)C' < (CT'CcACC™ Yo (CT'CBCC™) = Ao B,

ie. (CAC)o (CBC) < C(AoB)C. For a € (0,00), by setting C' = /al > 0 we
have a(Ao B) = (a«A) o (aB). For each n € N, we have

nI(000)nl < (nl)0(nl)o (nl)0(nl) =000

and, hence, 000 < (1/n?)(000). Taking n — oo in the norm topology yields
000 = 0 by Proposition A.3(4). O

Lemma 3.3. If o satisfies (M1) and (M2), then o satisfies (P).

Proof. Let P be a projection commuting with A and B. By Theorems A.7 and
A.8, P commutes with A2, Since Sp(P) C {0,1}, we have P < I by Theorem
A.2 and hence

PAP = AP? = AP = AY2PAY2 L AV2[AV? = 4.
Similarly, PBP < B. By (M1) and (M2), we have
P(Ac B)P < (PAP)o (PBP) < Ao B. (3.1)
Consider X = (Ao B) — P(Ao B)P > 0. Then
\X1/2P\2 — (X'2P)*X'2P = PXP = P(Ao B)P — PP(Ac B)PP = 0.

Hence, X'/2P = 0 and X P = 0, meaning that [(Ao B) — P(Ao B)P]P = 0 or
(Ao B)P = P(Ao B)P. Similarly, P(Ac B) = P(Ao B)P.
From (3.1) and the fact that P commutes with PA and PB, we have

PP(Ao B)PP < P(PAoc PB)P = P(PAo PB)< P(Aoc B)P
and hence P(Ao B)P = P(PAo PB). Note that, by (M2), we have
(I - P)(PAoPB)(I—P)<(I—-P)PA(I-P)o (I —P)PB(I—P)=000=0.
Now, since I — P commutes with PA and PB, we get
PAoc PB=P(PAocPB)+ (I — P)(PAoc PB)(I — P)=P(PAc PB).

Thus, P(Ao B) = P(PAo PB) = PAo PB. O
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Lemma 3.4. Assume that 0 € BO(M3') satisfies the positive homogeneity. If
f: Rt = R" is an increasing function such that f(x)l = 1o (xI) for all z € RT,

then f is continuous.

Proof. To show that f is right continuous at each x € R, consider a sequence

{z,} in RT such that x,, | x. Then by (M3’)
fle)l =10 (x,1) ) Io(xl)= f(x)],

ie. f(xz,) | f(x). To show that f is left continuous at each x > 0, consider a

sequence z,, > 0 such that z,, is increasing and z,, — z. Then x,' | z~! and

lima, ' f(z,)] =limz, ' (Iox,I) =lim(z,' ol = (7' )o ]

=2 Y loxl)=a ' f(x)]
That is t — 271 f(z) is left continuous and so is f. O

Lemma 3.5. Assume that o € BO(M3') satisfies (P). If f : Rt — R is an
increasing continuous function such that f(x)I = I o (xI) for all x € RT, then

f(A) =10 A forall A€ B(H)*.

Proof. First consider A € B(H)™ in the form > ", \;P; where {P;}I", is an
orthogonal family of projections with sum I and \; > 0 for all s = 1,...,m. Since

each P; commutes with A, we have by the property (P) that
IoA=Y P(IcA) =) PioPA=Y Po\P,
=N UoXD)P, =" FN)P = f(A).

Now, consider A € B(H)". Then there is a sequence {4, } of strictly positive
operators in the above form such that A, | A. By (M3') and Theorem A.9, we
have o A=1lim o A, =lim f(A4,) = f(A). O

From now on, H is assumed to be an infinite-dimensional Hilbert space.

Proposition 3.6. If 0 € BO(M1,M2,M3'), then there is a unique operator
monotone function f : Rt — R such that f(x)l = 1o (xI) for all x € RT.
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Proof. Note that I and I commutes with any projection P € B(H). By Lemma
3.3, I o (xzI) commutes with any projection P € B(H). By Theorems A.7 and
A8, I o (x]) commutes with any self-adjoint operators. Note that any bounded
linear operator 1" can be wriiten as T' = T + 15 for some self-adjoint operators
Ty and T,. Hence, I o (xI) commutes with every bounded linear operator on H.
Since the center of B(HH) is trivial by Proposition A.5, [ o (xI) is a scalar multiple
of identity. Hence, there is a function f : RT™ — R* such that f(x)I = I o (xI) for
all z € R*. Since o is monotone, f is increasing. By Lemma 3.2, o satisfies the
positive homogeneity. Lemma 3.4 implies that f is continuous. We obtain from

Lemma 3.5 and (M1) that for A < B in B(H)T,
f(Ay=1cA<1oB=f(B).

Since J{ is of infinite dimensional, f is operator monotone by Theorem 2.11. If
there is another ¢ € OM(R™) such that f(z)I = I o (zI) for all z € R, then
f(x)I =T0(xl)=g(x)I for each z € R* ie. f=g. O

Proposition 3.7. Given an operator monotone function f : Rt — R* there

exists a 0 € BO(M1, M2, M3") on B(H)" such that f(x)] = [ o (zI) for x € RY.

Proof. Let p be the corresponding finite Borel measure on [0, o] of the function
f given by Theorem 2.12. We define a binary operation o on B(H)" by
A+1
AocB=aA+ BB+ T{(AA) | B}du(N), A,B>=0 (3.2)
(0,00)
where o = p({0}), 8 = pu({oo}) and the integral is the Bochner integral. Consider

A,B >0 and set F\ = 21 (AA! B). Since A < ||A|| I and B < ||B|| I, we get
AMIB < AA[TYIBIT = (MA[Y Bl

and hence for any A > 0

A+ 1
I < == (A AT B < max{[[All, [|B]I} = M-

It follows that

[ sl < [ arau < o
(0,00)

(0,00)
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By Theorem A.10, F) is Bochner integrable. Since F) is a positive operator for
all A > 0, the operator f(O,oo) Fy\du(X) is also positive by Proposition A.14.

The midpoint concavity (M1) and the transformer inequality (M2) come from
passing those properties of harmonic mean through the integral. To show (M3’),
let A, X € B(H)' and consider a sequence A,, € B(H)" such that A, | A. Then
M1 X | M X for A > 0 by Theorem 2.4. The sequence A,cX is decreasing
by Proposition A.14. Let £ € H. Define a bounded linear map ® : B(3H) — C by
(T) = (TE,&). Put Tog(A) = ZL(AA1X) and set

A+1

TN = “=(MalX), neN.
By Theorem A.11, ® o T,, is Bochner integrable and
([ T dng. &) = o [ ) du(h) = [ @0 T3 di)
for each n € NU {oo}. Since T},(\) converges strongly to T (), we have that

(T,(N)E, &) = (Tw(NE,E), asn— oo

for each A > 0. We obtain from the dominated convergence theorem that

lim (4,0 X)€,€) = lim {(aA, + BX)E.€) + lim ( / T,(N) du(VE€)

n—oo

— (@A + BX)E.E) + lim / NE.€) dpu(N)
= (aA+BX)EE) + / (V6. du()
— {(ad+ BX)E&) + ([ Tu(NdnONE. &
(Ao X5 &)

Hence, A,,0 X converges weakly to Ao X. By Theorem A.6, A,0 X | Ao X. Sim-
ilarly, o A, | I o A. Thus, o is a connection on B(H)". A direct computation
using Proposition A.12 shows that [ o (zI) = f(z)I for x > 0. O

Proof of Theorem 3.1: Clearly, (i) = (ii) and (i) = (iii).
(i) = (i). Our aim is to construct a bijection from BO(M1, M2, M3') to
OM (R™). By Proposition 3.6, there is a function

o € BO(M1,M2,M3') — f € OM(R")
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such that f(z)I = I o (z1) for all z € R*. This map is surjective by Proposition
3.7. To show the injectivity of this map, let 01,09 € BO(M1, M2, M3') be such

that o; — f where, for each t > 0,
Ioj(zl)= f(x)I, i=1,2.

Since o; satisfies the property (P) by Lemma 3.3, we have [ 0; A = f(A) for
A > 0 by Lemma 3.5. Lemma 3.2 assures that o, and o, satisfy the congruence

invariance. Then, for A > 0 and B > 0,
AO’Z‘ B = AI/Q(I o A—I/QBA—I/Q)A1/2 — A1/2f(A_l/QBA_1/2)A1/2.
For each A, B > 0, we obtain by (M3') that

Ao1B=limA. o1 B = lifgl AV2(Ioy AZV2BAZY?)AL?

—1im A1/2f(A—1/2BA—1/2)A1/2
0/ € € € €

= lim AY2(Toy AZV2BAZY?) A2

:liir(I)IAGO'QB = Aoy B,

where A, = A+ el. That is o1 = 0».

Thus, there is a bijection between OM (R*) and BO(M1, M2, M3'). Every
element in BO(M1, M2, M3') has an integral representation (3.2). Since the har-
monic mean possesses (M3) by Theorem 2.4, so is any element in BO(M1, M2, M3).

(iii) = (i). We can develop the similar results when (M3') is replaced by (M3")
by swapping “left” and “right.” Indeed, given o € BO(M1, M2, M3") there is a
unique f € OM(R™) such that

flx)I = (xl)ol, xeR".

On the other hand, given f € OM(R™), we construct o by setting

Ao B =aB+ BA +/ )\Q—t\l{A! (AB)}u(\)

(0,00)

where p is the corresponding measure of f, « = p({0}) and g = p({oo}). O
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Remark 3.8. In the proof of (iii) = (i) in Theorem 3.1, ¢ corresponds to the
representing function of the transpose of o. In fact, there is a one-to-one corre-
spondence between operator monotone functions f on R* and operator monotone
functions on R in the form x +— 2 f(1/x). The representing function of a con-
nection ¢ in Kubo-Ando theory can be shown to be the function f € OM(R")

satisfying one of the following equivalent conditions for each x € R*:
(i) f(@)I = To(xl);
(ii) f(x)P = Po (xP) for all projection P on J;
(iii) f(z)A= Ao (zA) for all A > 0;

(iv) f(x)A= Ao (xA) for all A > 0.

3.2 Axiomatic Characterizations of Connections

A connection can be axiomatically defined as follows. Fix the transformer in-
equality (M2). We can freely replace the monotonicity (M1) by the concavity
(M4) or the midpoint concavity (M4’). At the same time, we can use (M3’) or
(M3”) instead of the joint-continuity (M3).

Theorem 3.9. Let o be a binary operation on B(H)T satisfying (M2). Then the

followings are equivalent:
(i) o satisfies (M1) and (M83), i.e., o is a connection;
(ii) o satisfies (M{) and (M3);

(iii) o satisfies (M4) and (M3);

(iv) o satisfies (M4) and (M3");
(v) o satisfies (M{') and (M3);

(vi) o satisfies (M}) and (M%);

(vii) o satisfies (M{4') and (M3").
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In order to prove this theorem, we use the following lemmas.
Lemma 3.10. If o € BO(M2,M4'), then for each A, B,C, D > 0,
(1) (AcB)+(CoD)< (A+C)o(B+ D);
(2) A< B implies AcI < Bol and [c A< [0 B.

Proof. As in Lemma 3.2, (M2) implies the positive homogeneity. The fact (2)
follows from the midpoint concavity (M4') and positive homogeneity. If A < B,
then by (1),

IoB=(I+0)c(A+B—-A)>2{UcA)+(0c(B—A)>=1cA
and similarly Bol > Ao . O
Lemma 3.11. If o0 € BO(M2, M4'), then o satisfies (P).

Proof. Let P be a projection such that AP = PA and BP = PB. We have
A=PAP+(I—-P)A(I-P)and B = PBP+ (I —P)B(I—P). Then by Lemma
3.10(1) and (M2)

Ao B > (PAPo PBP) + ((I — P)A(I — P)o (I — P)B(I — P)) (3.3)
> P(AcB)P + (I — P)(Ao B)(I — P). (3.4)

Consider C = Ao B— P(Ao B)P — (I — P)(Ao B)(I — P) > 0. We have
PCP=0=(I-P)C(I =P)

which implies C'/2P = 0 = C*/?(I — P). Hence, CP = 0= C(I — P) and C =0,

meaning that
AocB=P(AoB)P+ (I — P)(Ao B)(I — P).

It follows that P(Aoc B) = P(Ao B)P = (Ao B)P. The inequalities (3.3)
and (3.4) become equalities, which implies P(Ao B)P = (PAP)o (PBP) =
(PA)o (PB). O



28

Lemma 3.12. If 0 € BO(M2,M4'), then there is a unique binary operation G

on RT subject to the same properties and
(xl)o (yl) = (zoy)l, xz,y€R". (3.5)

Proof. Note that any projection on H commutes with 2 and y[ for any z,y € R™.
By Lemma 3.11, (zI) o (yI) commutes with any projection in B(H). Theorems
A.7 and A.8 imply that (z1) o (yI) commutes with every bounded linear operators
on H. It follows from Proposition A.5 that there exists a k € R' such that
(xI)o (yI) = kI. If there is a k' € Rt such that (xI)o (yI) = K'I, then k' =
k. Hence, each connection o on B(H)" induces a unique binary operation & :
R x Rt — RT satisfying (3.5). It is routine to check that & satisfies (M2) and
(M4'). O

Proposition 3.13. Ifoc € BO(M2, M3', M4'), then there is a unique f € OM(R™)
such that f(x)I = I o (xI) for allx € RT. In fact, f(x) =16z for all x € RT.

Proof. Define f : R — R" by 2 +— 15z by Lemma 3.12. If 0 < t; < to, then

Lemma 3.10(2) implies
fl) I =To(xI) <To(xal)= f(x)l,

i.e. f(x1) < f(z2). The continuity of f is assured by Lemma 3.4. Then Lemma
3.5 implies f(A) = [oA for all A > 0. If A,B € B(H)" are such that A < B,
then f(A)=Ic A< IoB = f(B), again by Lemma 3.10(2). Since H is infinite

dimensional, f is operator monotone by Theorem 2.11. O]

Proof of Theorem 3.9: By Corollary 2.16, (i) implies (ii)-(vii). It suffices to
show that (vi) implies (i). Assume that 0 € BO(M2, M3, M4"). Our aim is to
construct a bijection between BO(M2, M3', M4') and OM (R™). Proposition 3.13
assures that the map o € BO(M2, M3, M4') — f € OM(RT), where f(z)] =
Io(zI) for all x € RT, is well-defined. This map is surjective via the same method
as the construction in Theorem 3.1. The injectivity of this map can be proved by

using the same argument as the proof of that in Theorem 3.1, here the property
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(P)of o € BO(M2, M3, M4') is fulfilled by Lemma 3.11. Hence, we are allowed to
consider only the binary operations constructed from operator monotone functions
on R*. Thus, o admits an integral representation (3.2). By passing the properties
(M1) and (M3) of the harmonic mean through the integral representation, o also

satisfies those properties. O

3.3 Characterizations of Means

Recall that a (Kubo-Ando) mean is a connection o satisfying ol = I or, equiv-
alenthly, the fixed point property: Ac A = A for all A > 0. According to the
definition of mean for positive real numbers in [30], a mean M is defined to be a

binary operation M : (0,00) x (0,00) — (0, 00) satisfying
o betweenness: x <y — v < M(z,y) <.

In fact, the betweenness property is a necessary and sufficient condition for a

connection to be a mean:

Theorem 3.14. The followings are equivalent for a connection o with represent-

ing function f:
(i) o is a mean;
(ii) o satisfies the betweenness property, i.e., A< B = A< Ao B < B;
(i) 0 S AT = A< AcI<I;
() <A = I<IcA<A;
(v) 0<z<1 = =< f(x) <1,
(vi) 1<z = 1< f(z) <.

Proof. (i) = (ii). Use the fixed point property and the monotonicity.
(ii) = (i). We have I < Iol < I,ie., lol =1.

(ii) = (iii). Clear.
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(iii) = (ii). Consider 0 < A < B with B > 0. Since B~Y/2AB~1/2 < I, we get
BYPABTV? L BTVPABT oI < 1.

The transformer inequality implies that A < Ao B < B. Now, assume that
0 < A< B. Then for all e > 0, A < B + el and hence, by the previous claim,

A< Ao (B+el) < B+el.

Hence, A < Ao B < B by the continuity from above.
(i) &
=

(iv). It is similar to (ii) < (iii).
(ii)) = (v). If x > 1, then [ < To (z]) < ol which is I < f(x)I < I, i.e.
1< f(z) <z

(v) = (i). We have f(1) =

(i) < (vi). It is similar to (i) < (v). O

Hence, every (Kubo-Ando) mean satisfies all desired properties in Section 2.2.

Remark 3.15. For a connection o and A, B > 0, the operators A, B and Ao B
need not be comparable. The previous theorem tells us that if ¢ is a mean, then

the condition 0 < A < B guarantees the comparability between A, B and Ao B.

3.4 Induced Connections

Each connection o on B(H)™, thanks to Lemma 3.12, induces a unique connection

g on RT = B(C)™ satisfying
(xoy)l = (al)o(yl), =y€eR".
We call ¢ the induced connection of o.

Proposition 3.16. Let x,y € R*. Ifx >0, thenxz oy =xf(y/x). If y > 0, then
oy =yf(z/y).

Proof. Use the positive homogeneity of ¢ and Lemma 3.5. m

We can restate Proposition 3.13 as follows.
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Proposition 3.17. Each connection o on B(H)™ gives rise to an operator mono-
tone function x — 15 x on RT. Moreover, any operator monotone function on

R* arises in this form.

Theorem 3.18. The map o +— & from the connections on B(H)T to the con-

nections on RY such that
(xoy)l = (xl)o (yI), =z,yeR" (3.6)

s an affine order-isomorphism. Hence, there exists an affine order isomorphism
between the set of connections for positive operators acting on different infinite-

dimensional Hilbert spaces.

Proof. To show that this map is surjective, let 7 be a connection on R*. Then the
function f(x) = 1nz is operator monotone on R by Proposition 3.17. Theorem
2.13 implies that there is a connection o on B(H)" such that f(z)l = Io(xI) for

all x € RT. For 2,y > 0 we have by Proposition 3.16 that

(zny)l =x(In(y/2)) ] =af(y/z)] =zl o (y/z)]) = (z]) o (yI).

Hence (zny)l = (xI) o (yI) for all z,y € RT by continuity.
Now, suppose o; — n for : = 1,2. Let f; be the representing function of o; for

1t =1,2. Then for x € R
file)l =10y (z])=(Inx)] =10y (xl) = fo(x)l,

i.e. fi = fo. Hence, o1 = 09 by Theorem 2.13.
It is straightforward to check that the map o +— & and its inverse are affine

(i.e. it preserves nonnegative linear combinations) and order-preserving. ]

Corollary 3.19. A connection on B(H)t and its induced connection have the
same representing function, the same representing measure and the same formula.

More precisely, given an operator monotone function

f(x):oz—i—ﬁx—l—/(o )%(A!t)du()\), (37)
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then for each A, B € B(H)" and z,y € RT,

A+ 1
AoB:aA+BB+/ %(AA!B)CIM(A), (3.8)
(0,00)
A+1 . =
x&y:ax—i—ﬁy—l—/ L(Ax!y) du(A), (3.9)

where | is the harmonic mean on R*.

Proof. Let o be a connection and ¢ its induced connection. Then the corre-
spondences between connections, induced connections, finite Borel measures and
operator monotone functions imply that o and & have the same representing func-
tion and the same representing measure. Then ¢ has the integral representation

(3.8). The formula (3.9) of 6 can be computed by using Proposition 3.16. O

From this corollary, a connection and its induced connection can be written

by the same notation.

Corollary 3.20. A connection is a mean if and only if the induced connection is

a mean on RT.

Recall that the class of means on B(H)" is a convex set. We say that a map

between convex sets is convex if it preserves convex combinations.

Corollary 3.21. Giwen an infinite-dimensional Hilbert space 3, the map o — &
is a convex order-isomorphism from the means on B(H)T to the means on RT.
Hence, there exists a convex order-isomorphism between the means on the positive

operators acting on different infinite-dimensional Hilbert spaces.
Proof. 1t is an immediate consequence of Theorem 3.18 and Theorem 3.20. O]

Remark 3.22. According to Corollary 3.21, we can naturally define any named
means on B(H)T to be the corresponding ones on R*. On the other hand, there is
one and only one “good” such extension from means on R* to Kubo-Ando means
on B(H)™.

For example, the binary operation

o (A, B) — %(Al/élBl/QAl/ll + Bl/4A1/2Bl/4)
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satisfies AcB = (AB)"?, provided that AB = BA. The spectral geometric mean
of two positive definite matrices A, B is defined in [14] by

(A_I#B)1/2A(A_1#B)l/2.

Both of them can be viewed as extensions of the geometric mean on R™. However,
this corollary says that they are not Kubo-Ando means. In fact, they lack the

monotonicity.



CHAPTER IV
CONNECTIONS AND BOREL MEASURES

In this chapter, we investigate the relationship between connections and its repre-
senting measures. We use the decomposition of a measure in order to decompose
a connection and also study properties of each part in such decomposition. As
an illustation, we compute the representing measures of connections and means

in practical usage.

4.1 Representing Measures

Recall that there is a one-to-one correspondence between connections and finite
Borel measures on the extended half-line. Let us compute the representing mea-

sures of practical operator connections.

Example 4.1. For each 0 < A < oo, the binary operation o, defined by

1
Ay B = %(/\A!B), A B >0,

is a mean since its representing function is the normalized operator monotone

function

z(1+ )

oa(z) = P for . >0, ¢,(0) =1.

Note that ¢g(z) = limy o+ dx(x) = 1 and ¢oo(z) = limy o Pr(z) = x for each
x € RT. Hence, we denote oy and o, to be the left- and the right-trivial means,
respectively. The mean o, has the representing measure given by the Dirac mea-

sure concentrated at \:
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for each Borel set F in [0, 00]. Indeed, for each A € [0, 0o,

/ AO‘th(S)\(t):/ AO‘th(S)\(t>:AO')\B.
[0,00] 1oy

In particular, the representing measures of the left- and the right-trivial means
are given respectively by dp and d,,. The representing measure of the harmonic
mean is ;. By affinity of the map o + pu, the representing measures of the sum

and the parallel sum are given by dy + 0, and %(51, respectively.

The means o)’s for A € [0, 00} are extreme points of the convex sets of means
on B(H)*. This result follows from the fact that the Dirac measures d,’s are

extreme points of the convex set of probability Borel measures on [0, 0o].

Example 4.2. The representing measure of the a-weighted arithmetic mean is
given by (1—a)dp+ads for each a € [0, 1]. More generally, the measure Y, a; 0y,
where ¢; € [0, 00] and a; > 0, represents the connection Y | a; oy,. In particular,
the probability measure (1 — a)d; + ads, when a € [0,1] and s,t € [0,00], is

associated to the a-weighted arithmetic mean between o, and oy.

Example 4.3. Consider the representing measure of the a-weighted geometric

mean for 0 < a < 1. From contour integration, we have

/\afl g
o _/ % , SIn gy
[0700] xT + /\ T

Hence, the weighted geometric mean #, has the integral representation

A#QB:/ Aoy Bdu(N)
[0,00]

where the representing measure p is given by

sinamr A1
du(\) = e dm(\).

Here, m denotes Lebesgue measure on R.

Remark 4.4. Even though the map p — o is order-preserving, the inverse map
o +— [ is not order-preserving in general. For example, the representing measures
of the harmonic mean ! and the arithmetic mean V are given by ¢; and (dp+0x0)/2,

respectively. We have ! < V but d; € (dp + 0s0) /2.
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4.2 Decomposition of Connections and Means

In this section, we decompose arbitrary connection into three parts using decom-
position of Borel measures on the extended half-line [0, co].
Recall that a complex Borel measure p on R? is called discrete if there are

countable family {x,} in R? and {c,} in C such that

o0 oo
Z|cn| < oo and ,u:ch(Lcn.
n=1 n=1

The second condition means that p(E) = > ¢,0,, (E) for each Borel set E C

n=

[0,00]. On the other hand, u is called continuous if u({x}) = 0 for all x € R,
We have the following facts:

e Any complex Borel measure p on R? can be written uniquely as p = f1g + fic

where pi4 is discrete and p,. is continuous.
o If y is discrete, then v is mutually singular to Lebesgue measure m.

o If < m, ie. p is absolutely continuous with respect to m, then p is

continuous.
Using these facts and Radon-Nikodym theorem, we have:

e Any complex Borel measure y on R? can be written uniquely as

M= [sd + Hac + Hse

where pg is discrete, pq. < m and pg. is singularly continuous, i.e. g is a

continuous measure mutually singular to m.

Note that a Borel measure x4 on R can be uniquely extended to a Borel measure
on [0, o0] by setting

n(E), oo & B

i(E —{oo}) + u({oc}), cc€E

n(E) =

for each Borel set E.
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Theorem 4.5. Let o be a connection on B(H)T. Then there is a unique triple

(Cacs Osey 0sq) of connections on B(H)T such that
0= 0g4e+ Ose+ 0gq (4.1)
and

(1) there are a countable set D C [0,00] and a family {a)}rep C RY such that

Y xep @ < 00 and

Osd = E a)O ),

XeD
i.e. for each A,B >0, Aoy B =), pax(AoxB) and the series converges

in the norm topology;

(2) there is a (unique m-a.e.) integrable function g : [0,00] — R such that
Ao B = / (N (Aoy B) dm(\); (4.2)
(0,00)

(8) its representing measure of o4 is a continuous measure mutually singular to

m.

Moreover, the representing functions of 04, 0sq and gs. are given respectively by

fac(x) g 0.00] ¢)\($) dﬂac(A)a

fsa(x) = [ ]%(95) dpsa(N) =) axpa(x)
0,00 AeD

fsc(x) = 0.00] ¢A(x) d#sc(A)

and the representing measure of ogq is given by Y\ ax Ox.

Proof. Let p be the representing measure of ¢. Then there is a unique triple
(Hac, fses psq) of finite Borel measures on [0, 00] such that p = pge + fise + fisa

where p44 is a discrete measure, f,. < m and g, is a continuous measure mutually
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singular to m. Define
Ao B = / Aoy Bdpa(N),
[0,00]
Ao, B :/ Aoy Bdpug(N),
[0,00]

AO’SdB:/ AO’ABd,U/Sd(/\):ZaA(AO')\B)
[0,00])

AeD
for each A, B > 0. The series ), _,, ax(A oy B) converges in norm. Indeed, the

fact that, for each n < m in N and ¢; € [0, 00},

m

Zati(A !ti B) — Za’ti(A !ti B)H < Z G, ||A't1 BH
=1 =1 i=n+1

< Z ati(

1=n+1

< ) aymax{||A], | B}

i=n—+1

Al

Bl))

together with the convergence of > %, a; implies the convergence of the series
oo a(Aly, B). The one-to-one correspondence between operator monotone
functions on R* and finite Borel measures on [0, oo] (Theorem 2.14) shows that
the representing measures of o,., 05y and o, are given by fiac, ttsq and fis., respec-
tively. The condition (1) comes from the fact that the representing measure of o)
is 9, for each \ € [0, 00] in Example 4.1. The condition j,. < m means precisely
the condition (2) by Radon-Nikodym theorem. The decomposition (4.1) is unique

since the decomposition of the representing measure is unique. O

This theorem says that every connection o consists of three parts. The “singu-
larly discrete part” o4 is a countable sum of means in the form o). Such type of
connections include the weighted arithmetic means, the weighted harmonic means,
the sum and the parallel sum. The “absolutely continuous part” o,. arises as an
integral with respect to Lebesgue measure, given by the formula (4.2). Example
4.3 shows that weighted geometric means are typical examples of such connec-
tions. The “singularly continuous part” o, has an integral representation with
respect to a continuous measure mutually singular to Lebesgue measure. Exam-

ples of such measures correspond to nonconstant continuous functions F' : R — C
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such that F' is of bounded variation, F'(—oc) = 0 and F’ = 0 almost everywhere.
One such function is the Cantor function (which gives rise to the Cantor measure).
Hence (aside singularly continuous part) this theorem gives an explicit description

of arbitrary connections.

Proposition 4.6. The connection o,. defined by (4.2) is a mean if and only if

the average of a density function g on [0,00] is 1, i.e.

/ g dA = 1.
(0,00]

Proof. Use the fact that a connection ¢ is a mean if and only if Iol = I. m
The next result is a decomposition of means as a convex combination of means.

Corollary 4.7. Let o be a mean on B(H)T. Then there are unique triples

(Cacy Ose, 0sa) of means or zero connections on B(H)T and (kae, kse, ksa) of real

numbers in [0,1] such that
g = kacof-;c + kscof-svc S ksd&;ia kac + ksc + ksd =1
and

(1) there are a countable set D C [0,00] and a family {a)}rep C RT such that

Yoep =1 and 0,9 =3 \cpaxoy;

(2) there is a (unique m-a.e.) integrable function g : [0,00] — RT with average

1 such that

Ao, B :/ g N (AoyB)d\, A,BZ>0;
0,00]

(8) its associated measure of o4 is continuous and mutually singular to m.
Proof. Let u be the associated probability measure of ¢ = o, + 04g + 05 and
write (b = fige + fsq + fse- Suppose that pige, pisq and pg. are nonzero. Then

[lac
tac([0, 00])

Hsd
psa([0, 00])

MSC

+,usd<[07 OO]) m

w= ,U/ac([oa OO]) —i—,usc([(),oo])
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Set

—~ o lzbac — /-’Lsd — /"LSC
Hae = —F v Hsd =

el [0, 50])” 1ea([0,00])" M ([0, 9]
koe = ,Uac([oa OO]), ksa = Nsd([oa OO]), kse = ﬂsc([()? OO])

Define 04, 0.4, 05 to be the means corresponding to the measures [ige, ftsd, s,

respectively. Now, apply Theorem 4.5 and Proposition 4.6. O



CHAPTER V
STRUCTURES OF THE SET OF CONNECTIONS

We investigate the algebraic, order and topological structure of the set of connec-
tions. It is shown that this set is a normed ordered cone. In fact, it is isometrically
order-isomorphic to the set of operator monotone functions on R*. Moreover, it
is isometrically isomorphic, as normed cones, to the set of finite Borel measures

on [0, o).

5.1 Algebraic and Order Structures

Definition 5.1. A cone is a set C' endowed with an addition + : C x C — C and

a scalar multiplication - : RT x ' — C such that

(i) (C,+) is a commutative monoid: the addition is associative, commutative

and admits a neutral element 0 such that x +0 =z for all x € C.

(ii) For each z,y € C' and r, s € RT,

P (T ) =R w5 Py
(r+s)-z=r-z+s-u,
(rs)-x=r-(s-x),

l-z=r,

0-2=0.

For convenience, we write rz instead of r - z for r € Rt and z € C.

A cone C is called
o strict if foreach z,y e C,x+y=0 = z=y =0,

o cancellative if for each z,y,z € C, v +y=0+2 = y=z.
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Definition 5.2. An ordered cone is a cone C' equipped with a partial order <
such that the addition and the scalar multiplication are order preserving, i.e., for

each x,y,z € C and r € RT,
r<y = rx+z2<y+zandrx <ry.
An ordered cone C' is

e pointed if x > 0 for all x € C,

e order cancellative if for each z,y,2 € C,z+y<r+2 = y < 2.

It is easy to see that the order cancellability implies the cancellability. A
pointed ordered cone is always strict. An element @ in an ordered cone satisfies

a > 0 if and only if the map k — ka is order-preserving.

The ordered cone of connections

Recall that for connections o and n on B(H)*, we define

o+n:B(H)" x B(H)" - B(H)" : (A,B) —~ (Ao B) + (An B),
ko : B(H)" x B(H)"™ — B(H)* : (A, B) — k(Ao B), keR".

Denote by C(B(H)™) the set of connections on B(H)*. Define a partial order <
for connections on B(H)" by 01 < 02 if Aoy B < Aoy B for all A, B € B(H)™.
It is straightforward to show that the set C'(B(H)") is an ordered cone in which
the neutral element is the zero connection 0 : (A, B) + 0. This cone is pointed

and order cancellative.

The ordered cone of operator monotone functions

The set OM (R™) of operator monotone functions from R™ to itself is equipped
with usual addition and the scalar multiplication. The partial order on OM (R™)
is defined pointwise. It is routine to show that OM(R™) is an ordered cone in
which the zero function 0 : x + 0 is the neutral element. This cone is also pointed

and order cancellative.
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The ordered cone of finite Borel measures
Let BM ([0, 00]) be the set of finite Borel measures on [0, oo]. Then BM ([0, oo])

is a cone under usual addition and scalar multiplication:

(n+V)(E) = u(E) +v(E),  (kp)(E) = kp(E)

for each p,v € BM([0,00]), k € RT and Borel set F in [0,00]. Define p < v if
w(E) < v(F) for all Borel sets E in [0, 00]. It is easy to see that BM([0, cc]) is
an ordered cone in which the zero measure 0 : '+ 0 is the neutral element. This

cone is also pointed and order cancellative.

5.2 Topological Structure

Definition 5.3. A normed cone is a cone (C,+,:) equipped with a function

||| : C — RT such that for each z,y € C' and k € RT,
(i) lz =0 = = =0,

(i) [kl = k=]l

(iif) [l + gl < [lef + fyl-

Definition 5.4. A normed ordered cone is an ordered cone (C, <) which is also

a normed cone such that for each z,y € C, z <y = ||z| < ||y]|-
Define a function [|-|| : C(B(H)") — R by
lofl = sup {|Ao Bl : A, B >0, [|A] = |[B]| = 1}
for each connection o.

Lemma 5.5. ([9]) For each connection o, we have |Ac B|| < ||A| o ||B]| for all
A B>0.

Proposition 5.6. For each connection o, we have ||o|| = ||Io1]|.
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Proof. Clearly, ||o|| > ||[[o!||. For each A, B > 0 with ||A|| = ||B]|| = 1, we have
by Lemma 5.5 that

[Ao Bl < |All o [|Bl| = 1ol =[[(1o )I]| = |[ToI].
Hence, ||o|| < ||{ o ]| O
Proposition 5.7. The pair (C(B(H)"),||-||) is a normed ordered cone.
Proof. For each o,n € C(B(H)") and k € R, by Proposition 5.6 we have

|koll = I (ko) L|| = [Ik(Lo1)]| = k [[Io1]] = k|lo]|,

lo+nll =L (o +n) Il = [|(Ual) + (UInD)|| < [ToLf| + [[Inl]| = |[o]| + [In]]

Suppose now that ||o|| = 0,1.e. Iol = 0. For each projection P, we have P < [
and hence IoP < Iol = 0, i.e. IoP = 0. Similarly, (zI)ol = 0 for each z € [0, 1].

Then for each x > 1,

i sz) 0.

Consider A € B(H)*t in the form A = > AP, where \; > 0 and P)’s are
projections such that P,P; =0 for i # j and Y-, P, = I. By Lemma 3.3, we get

To A= i(IaA)P,- =Y PoAP, =) PioM\Pi=)» P(Ilo\I)=0.
=1

For general A € B(H)", let {A,} be a sequence in B(H)*" such that A, | A.
Then I o A =1lim,,_,o, [0 A, =0 for all A > 0. Hence, for A, B € B(H)*,

AoB=limA.oB=lim AP(To ATYPBATYH)AY? = 0,

1.e. o =0.

If o <, then ||o|| = |[Iol] < |[Inl| =|n| since oI <Inl. O

Definition 5.8. A function f from a cone C' into a cone D is called linear or

affine it f(rz+ sy) =rf(x)+ sf(y) for each z,y € C and r, s € RT.

Define a function [|-|| : OM(R*) — R* by || f|| = f(1) for each f € OM(R™).
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Proposition 5.9. The pair (OM(R™), ||-||) is a normed ordered cone. Moreover,

the function ||| is linear.

Proof. The only non-trivial part is to show that || f|| = 0 implies f = 0. Consider
f € OM(R") such that f(1) = 0. Suppose that there is an a > 0 such that
f(a) = 0. Then f(z) =0 for 0 < z < a. Since f € OM(R"), f is a concave
function by [20]. The concavity of f implies that f = 0. O

Assign to each measure u € BM ([0, 00]) its total variation:

4l = #([0, o]) < o0

Proposition 5.10. The pair (BM ([0, o0]), ||:]|) is a normed ordered cone. More-

over, the function ||-|| is linear.
Given any normed cone, we can equip it with a natural topology as follows.
Proposition 5.11. Let (C,||-||) be a normed cone. Then

(1) the function d : C x C = R¥, d(z,y) = | |z|| — [ly|| | is a pseudo metric; in
particular, C is a 1st-countable topological space with respect to the topology

induced by d.

(2) the functions ||-|| and d are continuous, where the topology on C' x C' is given

by the product topology.

(8) C becomes a topological cone in the sense that the addition and the scalar

multiplication are continuous.

Proof. The proof is very similar to the case of normed linear spaces. Note that the
topology induced by a pseudo metric satisfies the 1st-countability axiom. In this

topology, a function is continuous if and only if it is sequentially continuous. [J
Hence the cones C'(B(H)*1), OM(R") and BM([0, oc]) are toplological cones.

Definition 5.12. Let C' and D be normed cones. A function ¢ : C'— D is called
an isomorphism if it is a continuous linear bijection whose inverse is continuous.

In this case, we say that C' and D are isomorphic.
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By an isometry, we mean a linear function ¢ : C'— D such that ||¢(c)|| = ||¢]]
for all c € C. If ¢ : €' = D is an isomorphism which is also an isometry, we
say that ¢ is an isometric isomorphism. In this case, C' and D are said to be

1sometrically isomorphic.

Note that every isometry between normed cones is continuous and injective.

The inverse of an isometry is an isometry.

Definition 5.13. Let C' and D be normed ordered cones. A function ¢ : C' — D
is called an order isomorphism if it is an isomorphism (between normed cones)

such that ¢ and ¢!

are order-preserving. In this case, we say that C' and D
are order isomorphic. 1f, in addition, ¢ is an isometry, we say that ¢ is an
1sometric order-isomorphism. In this case, C' and D are said to be isometrically

order-isomorphic.

Theorem 5.14. (1) The normed ordered cones C(B(H)") and OM(RY) are
1sometrically order-isomorphic via the isometric order-isomorphism o v+ f,,

where f, is the representing function of o.

(2) The normed cones C(B(H)*) and BM ([0, o)) are isometrically isomorphic

via the isometric isomorphism o — [i,, where [, 1S the representing measure

of 0.

Proof. The function ® : ¢ — f, is an order isomorphism by Theorem 2.13. For

each connection o, since f,(1)I = [ o I, we have

@) = lfoll = fo(1) = [T o I] = [lo]

The function ¥ : ¢ — p, is an isomorphism by Theorem 2.14. For each connection

o, we have
(o)) = [lnoll = p([0,00]) = [T o I]| = [lo]

since [o [ = f[o o]

ToyIdu(\) = p([0,00])1. O

The next corollaries are immediate consequences.
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Corollary 5.15. The norm for connections is linear.

Proof. 1t follows from the fact that the map o — f, is an isometric isomorphism

and the norm on OM (R™) is linear. O
We obtain the following characterizations of a mean as follows.
Corollary 5.16. A connection is a mean if and only if it has norm one.

Proof. It follows from Proposition 5.6, Theorem 5.14 and the fact that a connec-

tion is a mean if and only if its representing function (measure) is normalized. [

This corollary tells us that a mean is a normalized connection. Every mean
arises as a normalization of a nonzero connection. The convex set of means is the

unit sphere in the normed cone of connections.
Corollary 5.17. The limit of a sequence of means is a mean.

Proof. Use the fact that the norm for connections is continuous by Proposition

5.11 and the norm of a mean is 1 by Corollary 5.16. m

The topologies of the cones C(B(H)*), OM(R") and BM/([0,cc]) are com-
patible with the isometric isomorphisms o+ f, and ¢ + pu, in Theorem 5.14 as

follows.

Corollary 5.18. For each n € N, let g,, be a connection with representing func-
tion f, and representing measure ,. Then the followings are equivalent for a

connection o with representing function f and representing measure ji:
(i) 0, — 0;
(i) fo = f;

(i) fin — p.



CHAPTER VI
CONNECTIONS AND OPERATOR INEQUALITIES

In this chapter, we generalize some results in the literature about positive linear
maps, monotonicity and concavity involving connections such that specific con-
nections are replaced by general connections. In Section 6.1, it is shown that a
connection behaves nicely with any positive linear map. We consider monotonicity
and concavity of certain maps between operator algebras related to connections

in Section 6.2.

6.1 Positive Linear Maps

Definition 6.1. Let 3 and K be Hilbert spaces. A linear map ¢ : B(H) — B(X)
is said to be positive if ®(A) = 0 whenever A > 0. It is called unital if ®(I) = I.
It is strictly positive if ®(A) > 0 when A > 0.

It is easy to see that a positive linear map P is strictly positive if and only if

®(I) > 0. In particular, every unital positive linear map is strictly positive.

Example 6.2.

(1) For each z € X, the map A — (Az,x) is a positive linear functional on

B(F0)*.

(2) Every linear functional on M, (C) takes the form p(A) = tr AX for some
X € M,(C). Moreover, ¢ is positive if and only if X is positive semidefinite.
The special case that ¢(A) is the sum of all entries of A is obtained when

X is a matrix whose all entries are 1.

(3) For each X € B(X,H), the map ® : B(H) — B(X), ®(A) = X*AX is a

positive linear map. This map is unital if and only if X is unitary. A special
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case of this map is the compression map that takes an n-by-n matrix to a
k-by-k matrix on the top left corner. Let Py, ..., P. be mutually orthogonal
projections on M, (C) with the condition P, & --- & P, = [. The map

A Y7 PAP;, called a pinching, is a positive linear map.

(4) For each X € B(X)", the map ® : B(H) - B(H® X), ®(A) = A® X or
®(A) = X ® A is positive. The tensor product ® is also called the Kronecker

product in matrix case.

(5) For each X € M,(C)*, the map ¥ : M,(C) — M,(C), A —» Ao X is

positive. Here, o denotes the Hadamard product, i.e. the entrywise product.

Recall the following fact:

Lemma 6.3 (Choi’s inequality, [12]). If ® : B(H) — B(X) is linear, strictly
positive and unital, then for every A >0, ®(A)~1 < P(A™).

Proposition 6.4. If & : B(H) — B(X) is linear and strictly positive, then
P(A)P(B) '®(A) < P(AB'A), A B>0. (6.1)

Proof. For each X € B(H), set U(X) = ®(A)~2d(AV2X AY2)D(A)~1/2. Then

U is a unital strictly-positive linear map. For each A, B > 0, we have

O(A)?®(B) ' B(A)/? = W(ATPBAT?)T!
< I ((A—I/QBA—l/Q)—l)
= O(A)V2P(ABTTA)D(A) Y2
by Lemma 6.3. O

This result was proved under an additional condition that ® is unital in [26].

Theorem 6.5. If & : B(H) — B(H) is a positive linear map, then for any

connection o on B(H)" and for each A, B > 0,

O(Ao B) < ®(A) o O(B). (6.2)
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Proof. First, asssume that ® is strictly positive and consider A, B > 0. The
formula (2.1) and Proposition 6.4 imply that

®(A:B)=d(A—-A(A+B) A

ERCEEEEEES
[
B
= = =
s 2
=7
+ W
]
X
RS
by
=

For A, B >0, since Ac=A+¢€el >0and B. = B+ el >0, we have
O(Ae: B) < D(A,) : P(B.).

Recall that a positive linear map between C*-algebras is norm-continuous. Since
the parallel sum is also norm-continuous ([2]), we have ®(A : B) < ®(A) : &(B)
forall A, B > 0.

For general case of ®, consider the family ¢, : A — ®(A) 4 €A where € > 0.

Then each &, is linear and stricly positive. The previous result implies that
O (A:B)< P (A): (B)

for all A, B > 0 and ¢ > 0. Taking ¢ — 0, we have ®(A : B) < &(A) : &(B) for
all A, B > 0. Since ® is a bounded linear operator, we have

O(AoB) = @(/{0 ]¥(m . B)du()\))

_ /[Om]@ (%(m : B)) du(N)

A+1
< /[ 0 BB

= ®(A) o P(B)
by Theorem A.11. O

This theorem shows that a connection behaves nicely with any positive linear
map. Note that the situation when ®(A) = X*AX is, of course, the transformer
inequality. This result was proved under the condition that ® is a unital strictly-

positive linear map and A, B are strictly positive operators in [26].
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Corollary 6.6. If ® : M,(C) — M,(C) is a positive linear map, then for any

connection o and for any positive semidefinite matrices A, B € M, (C), we have
®(AoB) < P(A) o O(B).
The results for the cases that ¢ is the harmonic mean and the geometric mean

were obtained in [8].

Corollary 6.7. For any connection o on M,(C)* and A, B,C € M,(C)", we

have

Ao(BoC)< (AoB)o(AoC). (6.3)

6.2 Monotonicity and Concavity

Recall some preliminaries about monotonicity and concavity of maps between

operator algebras.

Definition 6.8. Let I be an interval. A continuous function f : I — R is called
an operator concave function if for all A, B € B(H)** whose spectra are contained

in I and for all Hilbert spaces H, we have
f@A+ 1 —-t)B) > tf(A)+ (1 —t)f(B), te]0,1].

A well-known result is that a continuous function f : R™ — R or f : (0,00) —
(0,00) is operator monotone if and only if it is operator concave ([20]). Hence,
the map ¢t — logt is operator concave on (0,00) and the map t — ¢" is operator

concave on R* for any r € [0, 1].

Definition 6.9. Let C be a convex subset of B(H)**. A map ¥ : € — B(X)** is
called concave if for each A, B € C and t € [0, 1],

U(tA+ (1—t)B) > t¥(A) + (1 —t)¥(B).
A map ¥ : C — B(X)* is called monotone if A < B assures V(A) < V(B).

If f:R" — R* is operator monotone, then the map A — f(A) is monotone

and concave on B(H)*.
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Proposition 6.10. If &1, P, : B(H)" — B(X)" are monotone, then the map
(Al, Ag) — @1(141) O'q)z(Ag) (64)

is monotone for any connection o on B(X)T.

Proof. Assume A; < A, for i = 1,2. Then ®;(A4;) < ®;(A%) by the monotonicity
of ®; for each ¢ = 1,2. Now, the monotonicity of o implies ®;(A;) 0 P2(As) <
D1 (A]) 0 By .

Corollary 6.11. Let o be a connection. Then, for any operator monotone func-

tions f,g : RY — R*, the map (A, B) — f(A) o g(B) is monotone.
Proposition 6.12. If ®y,®,: B(H)" — B(X)™ are concave, then the map
(A1, Ag) = D1(Ay) 0 Po(Ag) (6.5)
is concave for any connection o on B(XK)T.
Proof. Let Ay, A}, Ay, Ay > 0 and t € [0, 1]. Since ®; and ®, are concave,
Qi (tA; + (1 —t)A) = tD;(A;) + (1 —t)D;(A]), i=1,2.
It follows from the monotonicity and concavity of ¢ that

Dy (tA; + (1 —t)A}) o Do(tAs + (1 — 1) A))
> [191(A1) + (1 — 1)@y (A))] 0 [tPo(A2) + (1 — 1) Pa(AY)]
2 t[q)l(Al) 0'@2(142)] -+ (]_ - t)[q)l(Al) O'@Q(AQ)].

This shows the concavity of the map (A;, As) — $1(A;) 0 P2(As) . O

Corollary 6.13. Let o be a connection. Then, for any operator monotone func-

tions f,g: RY — R the map (A, B) — f(A) o g(B) is concave.

The results in Propositions 6.10 and 6.12 for the case that ¢ is the harmonic
mean or the geometric mean of matrices were considered in [8].

From Corollaries 6.11 and 6.13, the map (A, B) — A" ¢ B® is monotone and
concave on B(H)" for any r,s € [0,1]. The map (A, B) — (log A)o (log B) is

monotone and concave on B(H)*T.
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Corollary 6.14. Let o be a connection on B(H)*. If &1, Py : B(H)t — B(H)"

1s monotone and strongly continuous, then the map
(A, B) — ®1(A) 0 D2(B) (6.6)
satisfies the continuity from above (MS3). In particular, the map
(A, B) = f(A) o g(B) (6.7)
satisfies (M3) for any operator monotone functions f,g : Rt — R*.

Proof. Suppose A,, | A and B, | B. The monotonicity of ®; implies that the
sequence ®q(A,) is decreasing. Since ®; strongly continuous, ®;(A,) converges

strongly to ®;(A). Similarly, ®5(B,,) | ®2(B). Since o satisfies (M3), we obtain
(I)l(An) o (I)Q(Bn) i (I)l(A) o (I)Q(B)

The last statement follows from the fact that if A, | A, then Sp(A,) C [0, || A4]|]
for all n and hence f(A,,) converges strongly to f(A) by Theorem A.9. O
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APPENDIX A

A.1 Banach Algebras and C*-Algebras

A normed algebra is an associative algebra equipped with a submultiplicative
norm. A Banach algebra is a complete normed algebra. A Banach algebra A
is unital if it has a multiplicative identity, denoted by 1,4. The spectrum of an

element a in a unital Banach algebra A is defined by
Sp(a) = {X € C:a— Aly is not invertible}.

Then Sp(a) is a nonempty compact subset of C. The spectral radius of a is defined
to be r(a) = sup{|A| : A € Sp(a)}. We have r(a) < ||a|.

A x-algebra is an algebra A equipped with a conjugate-linear map * on A,
called an involution, such that (a*)* = a and (ab)* = b*a* for all a,b € A. An

element a in a x-algebra is called
- normal if a*a = aa”,
- self-adjoint if a* = a,
- projection if a®> = a = a*.

A x-homomorphism between x-algebras is a multiplicative linear map preserving
involutions.

A normed x-algebra is a x-algebra A which is also a normed algebra such that

|la*|| = ||a|| for all @ € A. A C*-algebra is a complete normed x-algebra A such
that ||a*al| = ||a||® for all € A. If a is a normal element in a unital C*-algebra,
then r(a) = ||a|| and

(1) it is self-adjoint if and only if Sp(a) C R,

(2) it is a projection if and only if Sp(a) C {0, 1}.
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A typical example of a non-commutative (unital) C*-algebra is the algebra B(H)
of bounded linear operators on a Hilbert space H when dimJH > 1. A typical
example of a commutative (unital) C*-algebra is the algebra C'(X) of complex-

valued continuous functions on a compact Hausdorff space X.

Theorem A.l. Let a be a normal element in a unital C*-algebra A. Denote by
z : Sp(a) — C the inclusion map. Then there is a unique unital x-homomorphism
& from C(Sp(a)) to the C*-algebra generated by 14 and a such that ®(z) = a.

Moreover, ® is norm-preserving.

Hence, if f : Sp(a) — C is a continuous function, we denote the corresponding
element ®(f) in A by f(a). We call the unique unital *-homomorphism that
sending f € C(Sp(a)) to an element f(a) € A the (continuous) functional calculus
of a. Note that f(a) is normal.

Theorem A.2. Let a be a normal element in a unital C*-algebra. For each f €
C(Sp(a)), we have f(Sp(a)) = Sp(f(a)) where f(Sp(a)) = {f(A): A € Sp(a)}.

An element a in a unital C*-algebra A is said to be positive if a is self-adjoint
and Sp(a) C Rt = [0,00). In fact, a € A is positive if and only if there is a
(unique) self-adjoint element b € A such that b* = a. The set of positive elements
in A forms a closed positive cone of A, denoted by A™. If a,b are self-adjoint,
define a < b if and only if b —a € AT. We write a > b when a — b is positive and

invertible. For each a € A, define |a| = (a*a)'/2.
Proposition A.3. Let A be a unital C*-algebra.

(1) An element a € A is positive if and only if a + e€lg > 0 for all € € (0,00).

(2) Let a € A be self-adjoint and k € RY. Then —kla < a < kly if and only if

lla|| < k. Similarly, we have that —kla < a < kly if and only if ||a| < k.
(3) If {ao}taen is a net in AT such that a, — a € A, then a € AT.

(4) Let {an}taen, {ba}tacn and {ca}taca be nets of self-adjoint elements in A such
that a, < by < ¢ for all o € A. If a, and ¢, converge to a € A, then b,

also converges to a.
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Proof. (1). Use Theorem A.2.

(2). Assume that —k1, < a < kly. Since klg—a > 0, we have r(kly—a) > 0.
By Theorem A.2, we have ||a]| = r(a) < r(kla) = k.

Now, assume that ||a|| < k. Then Sp(a) C [—7r(a),r(a)] C [—k,k]. Theorem
A.2 imples Sp(a — k1) C [—2k,0], i.e. a — kly < 0. Similarly, a + k14 > 0.

(3). The limit a is self-adjoint since the involution is continuous. Consider

€ (0,00). Since a, — a, there is an N € A such that ||ay — al| < €. Note that

ay — a is normal and Sp(ay — a) C [~ |lay — al|, |lay — a]|] € (—¢,€). Theorem
A.2 implies that Sp(ay —a —€ly) C (—2¢,0). Hence, a + €lg > ay > 0. By (1),
a>=0.

(4). Let € € (0,00). Then there are m,k € A such that ||a, — z| < € for all
a>m and ||c, — x| < e for all &« > k. Choose [ € A such that [ > m and [ > k.

Then, for a > [, we have a > m and a > k which imply
r—ely<a,<xrtelgandz —ely <cy <z +ely

by (2). Hence, —€ly < a4 — = < by — @ < ¢o —x < €ly. By (2), we have
|bo — || < € for all & > 1. Thus, b, — . O

A.2 The Von Neumann Algebra of Bounded Linear Oper-

ators on a Hilbert Space

Let B(H) be the algebra of bounded linear operators on a Hilbert space H. The
sets of self-adjoint operators and positive operators on H are written by B(JH)**
and B(H)™T, respectively. For A, B € B(H)**, we define A < Bif B—A € B(H)*.

sa

By an increasing sequence in B(H), we mean a sequence {A,} in B(H)** such

that A, < A, for all n € N. A decreasing sequence in B(H) is defined similarly.

Strong-operator topology

For each x € JH, the function

pz: B(H) - RY, T ||Tx||
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is a seminorm on B(H). Then the family {p,}.cs separates points of B(H),
i.e. for each T € B(H) — {0}, we can find an x € 3 such that p,.(T) # 0.
The locally convex topology on B(H) induced by this family is called the strong-
operator topology on B(H). Under this topology, B(H) becomes a topological
vector space. A net {T)}rea converges strongly (i.e. converges in this topology)

to T € B(H) if and only if
T ()= li{n T\(zx)

for all z € J. This topology is smaller than the norm topology. The norm
convergence implies the strong-operator convergence. If dim H < oo, then both
convergences are equivalent. An important feature of B(JH) is the order complete-

ness:

Theorem A.4. If T, is an increasing (decreasing) net of self-adjoint operators
in B(H) that is bounded above (below, respectively), then T, converges strongly to
a self-adjoint operator in B(H).

A wvon Neumann algebra is a C*-subalgebra of B(H) which is closed under

strong-operator topology. In particular, B(H) is a von Neumann algebra.
Proposition A.5. The center of B(H) is trivial, i.e. B(H) is a factor.

Proof. Let T € B(3{) be such that 7'S = ST for any S € B(H). Choose a
bounded linear functional f in the topological dual of H such that f(w) # 0 for
some w € H. For each x € H, consider S, € B(H) defined by S,(v) = f(v)x for
each v € H. Then

J(Tw)a = S,(Tw) = TS, (w) = T(f(w)z) = f(w)T(2)

and T'(z) = ax where a = f(Tw)/f(w). Hence T' = al. O

Weak-operator topology
The weak-operator topology on B(H) is defined to be the locally convex topol-
ogy on B(H) induced by the separating family of seminorms defined by

p%y : BCH:) — RJr?px:y(T) = |<T£l3,y>‘ ) z,y € fH:
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Hence, a net {T,}aen in B(H) converges weakly (i.e. converges in this topology)
to T € B(H) if and only if (T,x,y) — (Tz,y) for all z,y € H or, equivalently,
(Thx,z) = (Tz,x) for all x € H (by polarization identity).

Theorem A.6. Let A be a von Neumann algebra. For a sequence A, € A, we

have that A,, converges weakly to A € A if and only if A,, converges strongly to A.

A.3 Spectral Theorem and Functional Calculus

Let © be a compact Hausdorff space and H a Hilbert space. A spectral mea-
sure relative to (€2, H) is a map E from the Borel o-algebra on € to the set of

projections in B(H) such that
e E0)=0,E(Q) =1,
e E(ANB) = E(A)E(B) for all Borel sets A, B of ;

e for each z,y € 3, the map E,, : A — (E(A)z,y) is a regular Borel complex

measure on ).

Let Boo(€2) be the C*-algebra of all bounded Borel-measurable complex-valued
functions on Q. Then for each f € B, (), there is a unique 7' € B(H) such that

T@) = [ fdBuy zyed
We write [ fdE for T. Moreover, the map

B (Q2) = B(H), fH/de,
is a unital *-homomorphism.

Theorem A.7. Let & : C(Q) — B(H) be a x-homomorphism. Then there is a

unique spectral measure E relative to (2, H) such that

of) = [ rdB. fec@.

Moreover, T € B(H) commutes with ®(f) for all f € By () if and only if T
commutes with E(S) for all Borel sets S of Q.
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Theorem A.8. Let A be a normal operator on H. Then there is a unique spectral

measure E relative to (Sp(A), H) such that

A:/sz

where z : Sp(A) — C is the inclusion.

Since f(A) = [ fdE for each f € C(Sp(4)), we can define

£(4) = [ 14 1 € Bu(Sp(4),

The unital x-homomorphism B (Sp(A)) — B(H), f — f(A) is called the Borel
functional calculus at A. If a normal operator 7' commutes with A and A*, then

T commutes with f(A) for all f € B (Sp(4)).

Theorem A.9. ([21]) Let A,, be a sequence of positive operators on H such that
Sp(Ay) C o, 5] for all n € N. Suppose that A, converges strongly to a positive
operator A. Then Sp(A) C [a, 5] and f(A,) converges strongly to f(A) for any

continuous function f : |o, f] — C.

A.4 Bochner Integral

Let (2, M, i) be a measure space and V' a vector space over F = R, C. A func-
tion f : Q — V is called a V-simple function if there are pairwise disjoint M-

measurable sets F1, ..., F, and nonzero vectors vy, ...,v, € V such that

Wi Z XE; Vi
i=1

If p(E;) < oo for all i = 1,...,n, then such f is called a V-step function. The
integral of f on € with respect to u is defined to be

/Qfdﬂ = ZM(EOW

Let (X, ||-]]) be a Banach space. For each function f : Q — X, we define the

norm function of f to be

2 =R, we [[fW)l
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A function f : Q — X is called strongly measurable if it is a pointwise (a.e.)
limit of a sequence of X-simple functions. If f is strongly measurable, then || f|]
is measurable. A strongly measurable function f : Q — X is Bochner integrable
if there is a sequence (s,) of X-step functions such that the measurable function

|f — snl| is Lebesgue integrable for each n € N and

lim/Hf—an dp = 0.
n—oo Q

In this case, we define the Bochner integral of f on ) with respect to u by
/ fdu= lim [ s,du
Q n—0Q 0

in the norm topology on X. The above integral is well-defined.

Theorem A.10. ([1, p. /26]) Let Q be a finite measure space and X a Banach
space. Then a measurable function f : 2 — X s Bochner integrable if and only

if |1 is Lebesque integrable.

The set of Bochner integrable functions from 2 to X forms a vector space over

F. The Bochner integral acts as a linear operator.

Theorem A.11. ([1, p. 427]) Let (Q, 1) be a measure space and let X,Y be
Banach spaces. If f : Q@ — X s Bochner integrable and if T : X — Y s a

bounded linear operator, then T o f is Bochner integrable and

/QTofdp:T(/Qfdu).

Proposition A.12. Let (2, ) be a measure space and let A be a Banach algebra
with a,b € A. If ¢ : Q — A is Bochner integrable, then the map ¢ : Q — A,

d(w) = agp(w)b is Bocher integrable and

/Qq”sdﬂza(/ﬂgbdu)b.

Proof. Since ¢ is strongly measurable, there is a sequence {¢,} of A-simple func-
tions such that ¢,(w) — ¢(w) for p-ae. w € Q. Define ¢,(w) = ad,(w)b for
w € . Then each ¢, is an A-simple function and ¢~n(w) — ¢n(w) for p-a.e.

w € by continuity of the multiplication. Hence, ¢ is strongly measurable.
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Let {¢,} be a sequence of A-step functions such that ||¢, — ¢|| is Lebesgue

integrable for each n € N and

iy [ 16, o du =0

For each n € N, define ¢,(w) = ag,(w)b for w € Q. Then ¢, is A-step and ¢, — ¢

is strongly measurable for each n. Hence, ¢~n — 45 ‘ is measurable for all n € N.
We have
J 6= 6] = [ o= avieppl aute)
< /Q lall - [[¢n(w) = p(w)]| - [[b]] dps(w)
::HaH/£H¢n00)—-¢OUHIdMOU)HH\
< 0
That is ) ¢~n — é is Lebesgue integrable for all n € N. Now,
i [ (60~ die < B | Jal-10n — o1 - 01

~ ol S 1162 = ol d o

— ==
Thus, (/5 is Bochner integrable. If ¢ is an A-step function, it is easy to see that

/agbbd,u —aq (/qﬁdu) b.

The case that ¢ is strongly measurable follows from the previous case and a

continuity argument. O

Lemma A.13. Let (2, 1) be a measure space and A a unital C*-algebra. If
¢ : Q — A is strongly measurable and ¢p(w) = 0 for all w € Q, then there is a

sequence {p,} of A-simple functions such that 0 < ¢1 < ¢o < -+ < ¢ and
On(w) = o(w), Ywe Q.

If, in addition, u(Q) < oo or ¢ is Bochner integrable, we can choose ¢, ’s to be

A-step.
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Proof. For each n € N, set

Bop={weQ: (k—1)/2" < o) < k/2"}, k=1,...,n2",
F,={weQ:|pw) = n},

n2m

E—1
Pn = Z o X Bl + nxr,la.
k=1

Since ¢ is strongly measurable, we have that ||¢|| is measurable and, thus, each
E, ; and F), are measurable. Then ¢, is A-simple and ¢, < ¢,11 < ¢ for each
n € N. If ||¢(w)]| < n, then xg, = 0 and there is a k € {1,...,n2"} such that
(k—1)/2" < ||p(w)]| < k/2"™ which implies ¢p(w) < k/2™-14 by Proposition A.3(2)

and hence

k-1 k kE—1 1
1y < =1y — 1y = =14
on AN o lA gn AT Hp A

0 < d(w) — dp(w) = d(w) —

Thus, ¢,(w) — ¢(w) as n — oo by Proposition A.3(4). If u(2) < oo, then each
¢n is A-step. Suppose that ¢ is Bochner integrable. If ¢,, = Zfﬁl XE; ,®i;n Where

each Ej,, is measurable and a;,, > 0 for all 7 and n, then

kn,
00 > / ¢ody = lim [ ¢,du= lim Zu(Em)ai,n.
Q n—oQ Q n—oQ i—1

Hence, for n large enough, p(£;,) < oo for all i =1,... k,. m

Proposition A.14. Let (2, ) be a measure space and A a unital C*-algebra.
Assume that ¢, : Q2 — A are Bochner integrable.

(1) If p(w) =0 for all w € Q, then [ ¢dp > 0.

(2) If p(w) = YP(w) for allw € Q, then [ddp > [ dpu.

Proof. We prove only the first assertion since it implies to the second one. Con-
sider ¢ of the form » !  yga; where {E;} is a collection of pairwise disjoint

measurable sets in Q with p(F;) < oo and a; > 0 for all i = 1,...,n. We have

/bed,u = /QZXEiai dp = ZM(Ez‘)az‘ = 0.
i—1 i—1
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Now, consider the case that ¢ is strongly measurable. By Lemma A.13, we can
choose a sequence {¢,} of A-step functions such that ¢,(w) > 0 for all w € Q,

| — @|| is Lebesgue integrable for all n and
i [ 116, — 61 d =0
n—ro0 Q

It follows that

[ o=l [ oudn>0
Q n—od Q

by Proposition A.3(3). O
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