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CHAPTER I 

 

INTRODUCTION 

 

 

1.1 Importance and Motivation 

 Phase equilibrium computation for prediction of phase behavior is extremely 

important in chemical engineering design and chemical process simulation. 

Insufficient accuracy of the computation methodology and mathematical-related 

model can undermine the reliability of the obtained solutions from these works. Over 

a decade ago, various studies have shown an increasingly popular computation 

technique when solving the phase equilibrium problem is to formulate it as the Gibbs 

free energy minimization with the stochastic-based optimization (Reynolds, 

Mulholland and Gomatam, 1997; Lee, Rangaiah, and Luus, 1999; Rangaiah, 2001; 

Teh and Rangaiah, 2003; Srinivas and Rangaiah, 2007). Previous works not only 

proposed how to obtain the global solution using several stochastic-based algorithms 

but also recommend Differential Evolutionary Algorithm (Storn and Price, 1997), the 

resent evolutionary computation, for the efficient phase equilibrium computation. 

Although, Differential Evolution (DE) have been performed very effectively for 

several phase equilibrium problems, none of them suggested any constraint-handling 

techniques and indicated an appropriate constraint violation of the obtained solution. 

In fact, these are the key task when applied to the evolutionary computation for 

constrained optimization problems. 

 In general, minimization of the Gibbs free energy function usually deals with 

the equality constraints (e.g. mass balance, thermodynamic model, etc.). This is a 

significant problem because the traditional search operators of DE and another 

Evolutionary Algorithms (EAs) are normally blind to these constraints type. Even 

though, the penalty function and the repair method (or hybrid algorithm) are 

commonly used as the constraint-handling technique for various EAs (Coello Coello, 

2002); in this case, the repair method seem to be advantage technique over using the 

penalty function. This is because the repair method is used to make feasible solution 

from a certain number of infeasible one by establishment the relationship between 
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optimization variables and their constraints when the indicated could be easily 

characterized; while, The penalty method by converting the constrained optimization 

problem to an unconstrained one with a penalty term are complicated by setting the 

appropriate penalty parameters to guide the search obtain the reliable solutions. 

Moreover, the penalty methods usually fail to handle the problem with highly equality 

constraints. As a result, using the repair methods could be suitable for deal with the 

equality constraints in phase equilibrium computation. 

 Recently, the gradient-based repair method has been proposed as one of the 

constraint-handling techniques (Chootinan and Chen, 2006). This method was derived 

from the gradient information, namely the Newton method, to the constraint set of the 

optimization problem. Genetic Algorithm (GA), one of traditional EAs, is used to 

prove its capability. Their results showed that, this method works well when applied 

to handle highly equality constraints and can guarantee a feasibility of the solution for 

any search optimization. As above mentioned, DE algorithm has been recommended 

for computation of various phase equilibrium problems. Thus, in this dissertation, DE 

with the gradient-based repair technique are developed in order to use as a new 

efficient algorithm for more reliability of the obtained solution from the phase 

equilibrium computation and furthermore in any constrained optimization problems. 

 Additionally, phase equilibrium computation with the statistical associating 

fluid theory (SAFT) equation of state (Huang and Radosz, 1990, 1991, 1993) is 

included in the test problems. This statistical thermodynamic-based model has been 

widely occurred in many applications to modeling fluid and solid phase equilibria for 

recent years (Zhong and Yang, 2005; Ji, Feng, and Tan, 2007). Their works have 

shown that, the SAFT equation of state is a useful thermodynamically model for 

several phase equilibrium problems. However, the complexity of the given model has 

been caused the computational difficulties when applied this model for the phase 

equilibrium calculations. Then, the expression with the fugacity equation cannot be an 

appropriate model for the Gibbs free energy minimization. Hence, a new 

methodology to formulate phase equilibrium optimization problem based on the 

SAFT model is proposed in this research. A new expression uses the fundamental 

equation to model the Gibbs free energy function instead of using the fugacity 

equation. The binary systems of non-associating are investigated through using the 

developed DE. 
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1.2 The Aim of the Thesis 

 DE and the gradient-based repair technique are developed with the aim of 

more reliability of the obtained solution in phase equilibrium optimization. Not only 

obtained the efficient algorithm for phase equilibrium computation but also the 

dissertation proposes a new methodology for solving phase equilibrium problem 

modeled with the SAFT equation of state using the developed DE or other stochastic-

based methods. 

 

1.3 Scope of the Thesis 

 The thermodynamic models based on the Wilson, NRTL, UNIFAC, SRK 

(Soave-Redlich-Kwong), and also the SAFT equation of state are investigated and 

applied in the developed algorithm and compare the constraint violation and the total 

Gibbs free energy of the system of the obtained results with original DE, and prior 

works. The 7 test problems are included with 5 problems benchmark and 2 problems 

with the SAFT model, as follow in table 1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1.1 List of test problems in this work 

 

Problem System Condition Predicted phase Model Reference 
      

1 n-Butyl Acetate and Water 298 K, 1 atm Liquid-Liquid Equilibrium UNIFAC McDonald and Floudas, 1995 

2 Benzene, Acetonitrile 333 K, 0.769 atm Vapor-Liquid-Liquid Equilibrium NRTL Castillo and Grossmann, 1981 
 and Water     

3 Esterification of Acetic Acid 355 K, 1 atm Vapor-Liquid Equilibrium Wilson McDonald and Floudas, 1995 
 with Ethanol     

4 Mixture of nine hydrocarbons 314 K, 19.84 atm Vapor-Liquid Equilibrium SRK Castillo and Grossmann, 1981 

5 Reduction of Ferric Oxide 1363 K, 1 atm Gas-Solid Equilibrium Ideal Castillo and Grossmann, 1981 

6 Non-associating system 423 K, 20 and Vapor-Liquid Equilibrium SAFT Xu et al., 2002 
 of Ethene and n-Eicosane 250 bar    

7 Non-associating system Isothermal 543, Vapor-Liquid Equilibrium SAFT Lin et al., 1980 
 of Methane and n-Hexadecane 623, and 703 K    
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CHAPTER II 

 

LITERATURE REVIEWS 

 

 

2.1 Evolutionary Computation for Phase Equilibrium Problems 

 Stochastic-based approaches for phase equilibrium computation have been 

shown increasingly popular techniques to obtain the global solution. One of these is 

the evolutionary computations (or evolutionary algorithms, EAs); see the books of 

Bäck, Fogel, and Michalewicz for algorithms and operators. These methods are 

usually quite simple to implement and use, and they do not require transformation of 

the original problem. Furthermore, these techniques can locate the vicinity of the 

global solutions with efficiency. This chapter provides background for computation 

via stochastic-based approaches for phase equilibrium problems. Not only EAs but 

also other stochastic-based algorithms are investigated from the prior works. 

 Reynolds, Mulholland and Gomatam, 1997 computed phase equilibrium 

problems via minimization of the Gibbs free energy for all the species in the system is 

conducted using the technique of simulated annealing (SA). Their work has discussed 

how to solve difficult computational minimization problems in a way which can 

incorporate the physical properties of the species involved in these systems, including 

phase change, multi-phase conditions and phase and chemical equilibria problems. 

 Lee, Rangaiah, and Luus, 1999 used direct search optimization for phase and 

chemical equilibrium calculations. The selected method is the random search 

optimization procedure of Luus and Jaakola (LJ), which has been show that 

successful for solving difficult global optimization problem. Their results obtained 

with typical examples for vapor-liquid equilibrium and vapor-liquid equilibrium with 

reaction, where the liquid and vapor phases may be non-ideal, show that the LJ 

optimization procedure can be used to find very accurately the global minimum in 

only a few seconds of computation time on a personal computer. 

 Rangaiah, 2001 studied two stochastic optimization techniques, namely, 

Genetic Algorithm (GA), one of the traditional EAs, and Simulate Annealing (SA). 

These algorithms are evaluated and compared for phase equilibrium and phase 
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stability problems. Typical examples and different thermodynamic models are 

considered. The results show that GA is generally more efficient and reliable than SA 

for phase equilibrium calculation. But both of GA and SA exhibited poor reliability 

for locating the global minimum of the Gibbs free energy function. For this problem, 

a hybrid GA incorporating SA for individual learning, is proposed and shown that can 

improve success rate to find the global minimum. 

 Teh and Rangaiah, 2003 studied Tabu search algorithm for the global 

optimization of phase equilibrium computations. They used enhanced continuous TS 

(ECTS) for their research. Performance of ECTS is compared with a genetic 

algorithm (GA). The results show that both the modified TS and GA have high 

reliability in locating the global minimum, and that the modified TS converges faster 

than GA due to reducing the computational time and number of function evaluations. 

 Srinivas and Rangaiah, 2007 studied Differential Evolution (DE), the recent 

EAs, and Tabu search (TS) for phase equilibrium and phase stability computations. 

They used DE and TS with the Quasi-Newton method (QN) to optimization of the 

local solutions. Their results show that DE-QN is more reliable than TS-QN because 

the escaping mechanism (via mutation and crossover) in DE-QN is more effective 

than that of TS-QN, and that TS-QN is computationally more efficient than DE-QN, 

perhaps due to avoiding revisits to the same place during the search process. 

 Srinivas and Rangaiah, 2007 developed Differential Evolution (DE) and Tabu 

list (TL) for phase equilibrium and phase stability computations. In their work, DE is 

modified to incorporate the concept of Tabu Search (TS) (i.e., avoiding revisits to the 

same place during the search); it improves the diversity among members of the 

population and eventually contributes to the computational efficiency. Revisits during 

the search in DE are avoided by using a TL (which keeps track of previous search 

points that are already evaluated), and hence, the proposed method is named 

differential evolution with tabu list (DETL). 

 

2.2 Computation with the Statistical Thermodynamic-Based Model 

 The use of equations of state (EoS) has been the generally accepted method 

for the calculation of many fluid physical properties. Over the last twenty years, 

statistical mechanical approaches have meanwhile grown allowing the development 

of powerful engineering equations of state. In particular, this chapter investigates how 
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equations that are based on the association term of Wertheim’s theory (Wertheim, 

1984a, 1984b, 1986a, and 1986b) can improve significantly the predictive power in 

chemical engineering applications and also prior work with computational tools for 

solving phase equilibrium problems modeled with these equations. 

 The effect of molecular associations on the phase coexistence properties of 

fluids are investigated since Chapman et al.’s proposal (Chapman et al., 1988a, 

1988b, 1988c, 1990) in 90th decade. After that, Huang and Radosz have developed an 

equation of state from the concept of the statistical associating fluid theory (SAFT) 

previously proposed by Chapman et al. (Huang and Radosz, 1990, 1991, 1993). This 

equation of state is generally known as the SAFT equation of state. Unlike the cubic 

equations of state, the SAFT equation of state does not only provide physical meaning 

from the concept of hard sphere effect, indicated in cubic model, but also includes 

chain effect and association of molecules. 

 Various works have reported that the SAFT model is preferable for the 

prediction of various fluid properties. In the work by Ji et al., 2007, the SAFT model 

was used to predict the density of aqueous solutions of amino acid. The modeling is 

accomplished by extending the previously developed new method to determine the 

SAFT parameters for amino acids (Feng, van der Kooi, and de Swaan Arons, 2005). 

The density of binary solutions of amino acids has been correlated or predicted with a 

high precision. And then the density of multi-component aqueous solutions of amino 

acids has been modeled based on the modeling results of binary systems, and a high 

accuracy of density calculations has been obtained. 

 In addition, Zhong and Yang, 2005 studied the systems containing fluid-solid 

equilibrium mixture. The SAFT equation of state combined with a one-parameter 

mixing rule was used to evaluate the capability of the SAFT approach for modeling 

the solubility of solid aromatic compounds in supercritical fluids (SCFs) with co-

solvents. Binary interaction parameters were obtained by fitting the phase equilibrium 

data of the constituent binary systems. The SAFT model was used to predict the 

solubility of solids in carbon dioxide with co-solvents. Their work demonstrates that 

the SAFT approach is useful for modeling the solubility of solids in SCFs with co-

solvents with reasonable accuracy. 

 Because of the complexity of the SAFT model lies on the computational 

difficulties, development of the reliable computation technique for prediction of phase 

behavior from a given model can be a very challenging computational problem. 



 8 

However, only a few works have been shown in development computational 

algorithm such Xu et al., 2002. Their work formulated the phase equilibrium problem 

based on the SAFT model as a two-stage algorithm. Firstly, the phase stability of the 

stationary points obtained from the equi-fugacity conditions are examined. If the 

stationary points previously obtained are stable, secondly, the equilibrium solutions 

are then obtained by solving the global optimization problem of minimum Gibbs free 

energy. To accomplish the computational strategy, they used the gradient-based 

optimization algorithm based on the interval analysis approach for solving the 

problems. Their algorithm performed well in a case of binary system. Unfortunately, 

it requires the derivatives with respect to each component during each computation. 

 Therefore, to overcome this drawback, the dissertation proposes a new 

methodology using the minimization of the total Gibbs free energy of the system to 

solve the phase equilibrium problem modeled with the SAFT approach as a single 

stage problem. Moreover, the Gibbs free energy is expressed in terms of the 

fundamental equations instead of the fugacity equation. The optimization problem 

formulated is solved using stochastic-based method. 



CHAPTER III 

 

ALGORITHMIC DESCRIPTION FOR COMPUTATION 

OF PHASE EQUILIBRIUM PROBLEM 

 

 

3.1 Problem Formulation 

 For description any open systems, that can exchange matter with surroundings, 

Gibbs showed equation (3.1) can be extended to open system by adding chemical 

work terms of the form iidnµ , where iµ  is the chemical potential of species i and in  

is the amount of species i in system. The first law of thermodynamics for 

homogeneous one phase system is given as 

 

dwdQdU −=                                                                                                (3.1) 

 

and for open system 

 

∑
=

+−=
N

i
ii dndwdQdU

1

µ                                                                        (3.2) 

 

where, N is the number of species in the system; U is the internal energy for the 

system; Q is heat adding to the system by the surroundings; and w is work done on the 

surroundings by the system. Assume that expression of work is only pressure-volume 

work is involved 

 

PdVdw =                                                                                                            (3.3) 

 

where, P is pressure and V is volume of the system; and the second law of 

thermodynamics 

 

T

dQ
dS =                                                                                                              (3.4) 
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where, S is entropy and T is temperature of the system. So that, the combine first and 

second law and for the open system is 

 

∑
=

+−=
N

i
ii dnPdVTdSdU

1

µ                                                                    (3.5) 

 

several important results are obtained by manipulation of equation (3.5) with the 

substitutions of molar properties as UnU = ; SnS = ; nvV = ; 

ii nxn = ; where, U  is the molar internal energy; S  is the molar entropy; v  is the 

molar volume; ix  is the mole fraction of species i; and n is the total amount of mole 

of the system. From equation (3.5), the expanded and rearranged result is 

 

dnxPvST

dxPdvSTdndnUUnd

N

i
ii

N

i
ii









+−+









+−=+

∑

∑

=

=

1

1

µ

µ
                     (3.6) 

 

since n and dn are arbitrary, so that 

 

∑
=

+−=
N

i
iidxPdvSTdUd

1

µ                                                                    (3.7) 

 

∑
=

+−=
N

i
ii xPvSTU

1

µ                                                                             (3.8) 

 

from equation (3.8), multiply both side by the total amount of mole of the system, the 

result is 

 

∑
=

+−=
N

i
ii nPVTSU

1

µ                                                                            (3.9) 
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thus, equation (3.5) and equation (3.9) are the differential form and expression form 

for the internal energy. Note that equation (3.7) and equation (3.8) are the molar form 

of equation (3.5) and equation (3.9) respectively. 

 Although the internal energy provide a criterion for whether a process can 

occur spontaneously, this is not very useful. Because of the entropy and volume are 

not easily controlled. However, more useful thermodynamics properties can be define 

by based on the internal energy. For consideration to closed system or at constant 

composition, equation (3.5) can neglect the term of the summation of the chemical 

potential, that is 

 

PdVTdSdU −=                                                                                         (3.10) 

 

for spontaneous process (irreversible process), the second law of thermodynamics is 

 

T

dQ
dS irrev≥                                                                                                       (3.11) 

 

then equation (3.10) can be rearranged to 

 

0≤−+ TdSPdVdU                                                                             (3.12) 

 

at constant temperature and pressure, this equation become 

 

( ) 0, ≤−+ PTTSPVUd                                                                          (3.13) 

 

define the quantity in parentheses as the quantity of particularly thermodynamic 

property that call the Gibbs free energy, thus 

 

( ) 0, ≤PTGd                                                                                                        (3.14) 

 

where, G is the Gibbs free energy of the system. From equation (3.9), the Gibbs free 

energy can be expressed in form 
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∑
=

=
N

i
iinG

1

µ                                                                                                        (3.15) 

 

thus, if any spontaneous process (irreversible process) occur at constant temperature 

and pressure, then from equation (3.14) make know that the change in the Gibbs free 

energy of the system decrease. Recall equation (3.9), after differentiation 

 

∑∑
==

+−++−=
N

i
ii

N

i
ii dnVdPSdTdnPdVTdSdU

11

µµ         (3.16) 

 

from equation (3.5) and equation (3.16), which can be rearranged in form 

 

∑
=

−+−=
N

i
iidnVdPSdT

1

0 µ                                                                   (3.17) 

 

add both side of equation (3.17) by the differential form of equation (3.15), the result 

show that 

 

∑
=

++−=
N

i
iidnVdPSdTdG

1

µ                                                               (3.18) 

 

furthermore, the molar form of the differential form and the expression form of the 

Gibbs free energy equation can show that 

 

∑
=

++−=
N

i
iidxvdPdTSGd

1

µ                                                               (3.19) 

 

∑
=

=
N

i
ii xG

1

µ                                                                                                       (3.20) 

 

from equation (3.18), iidnµ  is the change in the Gibbs free energy that occurs when 

idn  moles of species i are added or removed at constant temperature and pressure. 
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thus, when the transfer is in equilibrium (no spontaneous change), the change in the 

Gibbs free energy always decrease to the minimum 

 

( ) 0, =PTGd                                                                                                        (3.21) 

 

note that, an above equation is the very important equation because it provide the 

useful criteria for the any equilibrium system. Consider equation (3.18), (3.19), and 

(3.21), the Gibbs free energy of the system will reach to minimum when thermal, 

mechanical, chemical equilibrium occur simultaneously. Then, condition for 

equilibrium state of the system can determined as fallow 

 

...)2()1( == TT  

 

...)2()1( == PP                (3.22) 

                                                                                                                                

...)2()1( == ii µµ  

 

where the superscripts indicate to each phase of the system at equilibrium state. The 

equation (3.22) is used for thermodynamic equilibrium calculation when no transfer 

of heat and mass occur in the equilibrium at fixed T and P. 

 

 3.1.1 Computation using the Fugacity Equation 

 The concept of fugacity arises from a consideration of change in the Gibbs 

free energy those results from change in pressure and temperature. Because of 

ii G=µ , from equation (3.19) with neglect the change of an amount of each 

component, the chemical potential of the system can be expressed as fallow 

 

vdPdTSGd +−=                                                                            (3.23) 

 

for an ideal gas at constant temperature 

 

)ln( PdRTvdPGd ==                                                                                (3.24) 
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and for component i of an ideal mixture in which the partial pressure Pi = xiP; from 

equation (3.19) 

 

dPvdTSGd iii +−=                                                                         (3.25) 

 

)ln( iii PdRTdPvGd ==                                                                             (3.26) 

 

the simple forms of these relations may be preserved for other substances and 

mixtures by defining terms called “fugacity” and “partial fugacity” at a fixed 

temperature as 

 

)ln( fdRTvdPGd ==                                                                                (3.27) 

 

)ˆln( iii fdRTdPvGd ==                                                                             (3.28) 

 

in view of the following auxiliary conditions, the fugacity and partial fugacity can 

reduce to the pressure and partial pressure at low values 

 

1limlim
00

==
→→
φ

PP P

f
                                                                                         (3.29) 

 

1ˆlim
ˆ

lim
00

==
→→ i

P
i

i

P Px

f
φ                                                                                      (3.30) 

 

where, the ratios φ  and iφ̂  are called fugacity coefficient and partial fugacity 

coefficient respectively, then 

 

Pf φ=                                         (3.31) 

  

and for each component in the mixture 

 

Pxf iii φ̂ˆ =                  (3.32) 
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 For pure substances, when the volume is known as a function of the 

temperature, either from direct measurement or from an empirical equation of state, 

changes in fugacity may be found by integration, thus 

 

∫=
2

1

1
ln

1

2
P

P

vdP
RTf

f
                                                                                              (3.33) 

 

since f →  P when P →  0, absolute values of the fugacity coefficient are 

determinable by set 0*
1 →= PP  and P2 = P, thus 

 

∫=
P

P

vdP
RTP

f

*

1
ln

*
                                                                                             (3.34) 

 

∫ ∫+=+
P

P

P

P
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P

vdP
RTP

P

P

f
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11
lnln

*

*
                                                                 (3.35) 

 

∫∫
−

=−==
PP

dP
P

z
dP

P

RT
v

RTP

f

00

1
)(

1
lnlnφ                                           (3.36) 

 

clearly, the integrands represent deviation from ideal-gas behavior and vanish at 

0=P . Since pressure-explicit equations of state are the more common types, a 

useful relation for finding fugacity coefficients is 

 

∫
∞

−+−−=
v

dv
v

RT
P

RT
zz )(

1
ln1lnφ                                                                 (3.37) 

 

 In a homogeneous mixture at a fixed temperature, the fugacity of a particular 

component of a mixture is defined by equation (3.28) and equation (3.32). A change 

in partial fugacity with pressure is evaluated by integration of the partial molar 

volume at constant composition 
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∫=
2

1

1
ˆ

ˆ
ln
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P
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i

i dPv
RTf

f
                                                                                            (3.38) 

 

absolute values of the partial fugacity coefficient are obtainable by taking advantage 

of equation (3.32), which makes Pxf ii →ˆ  when P →  0. The pressure integrals have 

several useful equivalents 
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RT
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1
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1ˆ
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all integrands vanish at P = 0, the equation (3.35) can express in form 

 

∫
∞

−







−

∂
∂

=
v i

i zRTdv
v

RT

n

P
RT lnˆlnφ                                                                 (3.41) 

 

 When use the fugacities for phase equilibrium calculation, the equation (3.27) 

and (3.28) are integrated at constant temperature to generate integration constants that 

are functions of temperature 

 

0
ln

f

f
RTGG f +∆=                                                                                        (3.42) 

 

for multicomponent system 

 

0

ˆ
ln

i

if
ii

f

f
RTGG +∆=                                                                                       (3.43) 
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where, f
iG∆  is the standard Gibbs free energy of formation at temperature of the 

system for component i in unit of joule per mole, which can obtain from the Gibbs-

Helmholtz equation 

 

2

)/(

T

H

T

TG f
i

P

f
i ∆

−=
∂

∆∂
                                                                                    (3.44) 

 

where, f
iH∆  is the standard enthalpy of formation at temperature of the system for 

substance in unit of joule per mole. The enthalpy can be expressed in form Kirchhoff 

equation 

 

Pi

P

f
i C

T

H
∆=

∂

∆∂
                                                                                               (3.45) 

  

where, PiC∆  is the isobaric heat capacity of substance in unit of joule per mole. 

 From thermodynamic equilibrium condition, any case of equilibrium between 

phases requires equality of T, P, chemical potential and also partial fugacities of each 

component through out the system, thus 

 

...ˆˆ )2()1( == ii ff                 

                  (3.46) 

...
ˆ

ln
ˆ

ln
)2(0

)2(
)2(

)1(0

)1(
)1( =+∆=+∆

i

if
i

i

if
i

f

f
RTG

f

f
RTG                                          

 

for the standard state fugacities, 0if , specification of a standard state includes the 

pressure and the physical state of the substance, usually the one that is stable at the 

system temperature, but not the temperature itself, so the standard state does depend 

on the temperature.  

 For gases the natural reference state is unit fugacity at the temperature of the 

system, which in most cases is very nearly 1 atm. 

 For condensed phase, the standard state naturally is chosen as one at which the 

fugacity is readily calculable. When the vapor pressure is known, the fugacity of the 
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condensed phase may be taken as that of the vapor phase in equilibrium with it at the 

temperature of the system. Adjustment of that fugacity to the system pressure is given 

by 

 

∫=
P

P

L
Sat
L

Sat

dP
RT

v

f

f
ln                                                                                            (3.47) 

 

 For solid, vapor pressure data are not always available; but usually the melting 

point and sometimes the triple point are known and are nearly the same. The pressure 

at conditions is the vapor pressure, which can be obtained by extrapolation of a vapor-

pressure equation below the freezing point. Subsequent adjustment of the fugacity of 

the solid to the system pressure and temperature is made with the equation 

 

∫ ∫
−

−=
P

P

T

T

id
S

tp
S

tp tp

dT
RT

HH
dP

RT

v

f

f
2ln                                                                   (3.48) 

 

at moderate pressure particularly, idHH −  may be taken as the heat of sublimation. 

When this has not been measured, it may be approximated as the sum of heats of 

fusion and vaporization, or it may be figured from vapor-pressure data of the solid 

with the Clausius-Clapeyron equation with Antoine’s constant. 

 

 3.1.1.1 P – v – T Equation of State Model 

 Consider the Vapor-Liquid Equilibrium (VLE) system at fixed temperature 

and pressure, the molar Gibbs of the individual in each phase is 

 

00

ˆ
ln

ˆ
ln

iL

iLf
iL

iV

iVf
iV

f

f
RTG

f

f
RTG +∆=+∆                                                                (3.49) 

 

from equation (3.46), using equi-fugacity condition, this can be arranged to 

 

iLiV ff ˆˆ =                                                                                                            (3.50) 
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when using fugacity equations for both phase, a vapor phase can be expressed as a 

function of partial fugacity coefficient of each component in the form 

 

Pyf iViiV φ̂ˆ =                                                                                                      (3.51) 

 

where, iVφ̂  and yi are, respectively, the partial fugacity coefficient and mole fraction 

of component i in the vapor phase at T and P. Likewise, we can define iLf̂  for a liquid 

phase by 

 

Pxf iLiiL φ̂ˆ =                                                                                                        (3.52) 

 

where xi is the mole fraction of component i in the liquid phase and iLφ̂  is the 

corresponding liquid phase partial fugacity coefficient at T and P. Incorporating 

equation (3.41) and (3.46), the following final expressions for VLE calculation can be 

obtained 

 

iLiiVi xy φφ ˆˆ =                                                                                                       (3.53) 

 

 Because of calculation for the partial fugacity coefficient usually deal with P – 

v – T Equation of State, the model is a relationship between molar volume (or 

density), temperature, and pressure. Equations of state play an important role in 

chemical engineering design, and they have assumed an expanding role in the study of 

the phase equilibria of fluids and fluid mixtures. There are many advantages in using 

equations of state for phase equilibria calculations. Equations of state can be used 

typically over wide ranges of temperature and pressure, and they can be applied to 

mixtures of diverse components, ranging from the light gases to heavy liquids. They 

can be used to calculate vapor-liquid, liquid-liquid, and supercritical fluid-phase 

equilibria without any conceptual difficulties. The van der Waals equation of state 

was the first equation to predict vapor-liquid coexistence. Later, the Redlich-Kwong 

equation of state (Redlich and Kwong, 1949) improved the accuracy of the van der 

Waals equation by introducing tem-perature-dependence for the attractive term. Soave 
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(1972) and Peng and Robinson (1976) proposed additional modifications to more 

accurately predict the vapor pressure, liquid density, and equilibria ratios. 

 Considerable progress has been achieved in the development of equations of 

state. Many highly successful empirical equations of state have been proposed that 

can be used to calculate the phase behavior of simple fluids. However, a more 

sophisticated approach is required for complicated molecules. To meet the challenge 

posed by large and complicated molecules, equations of state are being developed 

increasingly with an improved theoretical basis. These new equations are playing an 

expanding role in the accurate calculation of fluid-phase equilibria. Equation of state 

development has been aided greatly by new insights into the nature of intermolecular 

interaction and molecular simulation data. In particular, molecular simulation is likely 

to have an ongoing and crucial role in the improvement of the accuracy of equations 

of state. A continuing challenge is to improve the prediction of the phase behavior of 

mixtures. The main impediment to the prediction of mixture phenomena is our 

understanding of interactions between dissimilar molecules. This is also an area that is 

likely to benefit from the input of molecular simulation data. 

 

3.1.1.2 Activity and Activity Coefficient Model 

 For multi-component and Liquid-Liquid Equilibrium (LLE) system, from 

equation (3.46), using equi-fugacity condition 

 

)2()1( ˆˆ
iLiL ff =                                                                                                         (3.54) 

 

from equation (3.49), hence 

 

)2()2()1()1(
iiii xx γγ =                                                                                                (3.55) 

 

the parameters for the activity coefficient model are used the same for both phase. 

when using activity models for liquid phase 

 

iii
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iL xa
f

f
γ==

0

ˆ
                                                                                            (3.56) 
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Table 3.1 Partial fugacity coefficient from some equation of state  

EoS Model Partial fugacity coefficient 
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where ai is the activity of component i; γi is the activity coefficient of component i; so, 

the final expressions for vapor-liquid equilibrium calculation when using activity 

model can be obtained 

 

0ˆ
iLiiiVi fxy γφ =                                                                                                   (3.57) 

 

and for VLLE, express in term 

 

)1(0)1(ˆ
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Table 3.2 Some activity coefficient model 

Model Activity coefficient 
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 3.1.1.3 K – values for Phase Equilibrium Computation 

 An equilibrium ratio is the ratio of mole fraction of a species present in two 

phases at equilibrium. For the vapor-liquid case, the constant is referred to as the K – 

value or vapor-liquid equilibrium ratio 

 

i

i
i x

y
K =                  (3.59) 

 

For the liquid-liquid case, the ratio is referred to as the distribution coefficient or 

liquid-liquid equilibrium ratio 

 

)2(

)1(

i

i
Di x

x
K =                  (3.60) 

 

For equilibrium stage calculations involving the separation of two or more 

components, separation factors are define by forming ratios of equilibrium ratios. For 

the vapor-liquid case, relative volatility is define by 

 

j

i
ij K

K
=α                  (3.61) 

 

For the liquid-liquid case, the relative selectivity is 

 

Dj

Di
ij K

K
=β                  (3.62) 

 

 Equilibrium ratios can be expressed by the quantities partial fugacity and 

activity coefficient as show in previously. 
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Table 3.3 Useful expression for estimating K – value for VLE 

Forms Equation Application 
   

Equation fo State 
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ˆ

ˆ
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gas mixtures from 
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Henry’s law 
P

H
K i
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pressures for species 

at supercritical 

temperature 

 

 For vapor-solid equilibria, a useful formulation can be derived if the solid 

phase consists of just one of the components of the vapor phase. In that case, the 

combination of equation (3.41)gives 

 

Pyf iiViS φ̂=                 (3.63) 
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at low pressure, iVφ̂ = 1.0 and the solid fugacity can be approximated by the vapor 

pressure of the solid to give for the vapor phase mole fraction of the component 

forming the solid phase 

 

P

P
y Solid

S
i

i

)(
=                 (3.64) 

 

 For liquid-solid equilibria, a similar useful formation can be derived if again 

the solid phase is a pure component. Then the combination gives 

 

0
iLiiLiS fxf γ=                 (3.65) 

 

at low pressure, the solid fugacity can be approximated by vapor pressure to give, for 

the component in the solid phase 
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 3.1.2 Minimization of the total Gibbs Free Energy of the System 

 For multi-component and multiphase system at temperature T and pressure P, 

the Gibbs free energy function G is expressed as a linear combination of the chemical 

potential of each component in each phase, the equation (3.15) can rewritten as 
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chemical potential can be expressed in terms of Gibbs free energy of formation and 

fugacity, so equation (3.55) can be rewritten as, 
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where, nij is the number of moles of component i present in phase j; µij is the 

associated chemical potential; π is the number of phases at equilibrium; f
ijG∆  is the 

Gibbs free energy of formation of component i in phase j at standard state; R is the 

gas constant; ijf̂  is the partial fugacity of component i in phase j and 0
ijf  is the 

fugacity of pure component i at standard state. 

 

 3.1.2.1 The Gibbs Free Energy Function 

 For vapor-liquid (VL) and vapor-liquid-liquid (VLL) equilibrium, for equation 

of state models for both vapor phase and liquid phase, thus 
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where Lπ  is the number of liquid phase and, thus, the equation can be used as the 

objective function for VLE and VLLE problems. 

 Note that, for vapor-liquid (VL) and vapor-liquid-liquid (VLL) equilibrium, 

the Gibbs free energy of formation of a component in liquid state is related to that in 

vapor state by 

 

Sat
i

f
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f
iL PRTGG ln+∆=∆                                                                                  (3.70) 

 

where Sat
iP  is the saturated vapor pressure for pure component i at T. This 

approximation is valid only when component i does not associate in the vapor phase 

and its vapor pressure is under 2-3 atm.  

 Therefore, the Gibbs free energy function when use activity model for liquid 

phase can be modified as follows 
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so, the equation is the simplified objective function for vapor-liquid-liquid 

equilibrium (VLL) problems. The equation (3.71) is also useable for vapor-liquid 
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equilibrium same as equation (3.58). The difference is the partial fugacity coefficient 

in liquid phase in equation (3.59) is described by the same thermodynamic model. 

 For liquid-liquid equilibrium, from equation (3.56), the Gibbs free energy 

function can be simplified to 
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therefore, the equation is the objective function for liquid-liquid equilibrium (LLE) 

problems. 

 

 3.1.2.2 Constraints for Optimization 

 When only phase equilibrium is involved, the conservation of moles of each 

component must hold 

 

iT
j

ij nn =∑
=

π

1

                                                                                                        (3.73) 

 

where iTn  is the total mole of component i in the system (feed). The boundaries on 

variables are 

 

Ninn iTij ,...,2,10 =≤≤                                                                      (3.74) 

 

 For simultaneous phase and chemical equilibrium, the conservation of 

chemical elements must hold 

 

e

N

i j
ijie bna =∑∑

= =1 1

π

                                                                                                (3.75) 

 

where e = 1, 2, 3, … , M; aie represents the number of gram-atom of element e in 

component i, be is the total number of gram-atom of elements e in the system and M is 

the number of elements. The boundaries on variables are 
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eijie bna ≤≤0                                                                                               (3.76) 

 

thus, to obtain phase compositions at equilibrium it is necessary to find the minimum 

of the Gibbs free energy subject to the constraints and the boundaries imposed by 

equation (3.61) and (3.62) ,or equation (3.63) and (3.64) for simultaneous chemical 

equilibrium. 

 

3.2 Application to the Statistical Associating Fluid Theory Model 

 Statistical thermodynamics-based equations of state, particularly the statistical 

associating fluid theory (SAFT) approaches, have been proven their application in 

prediction of phase behavior over a decade ago. Huang and Radosz (Huang and 

Radosz, 1990, 1991, 1993) have developed an equation of state from the concept of 

the statistical associating fluid theory (SAFT) approach previously proposed by 

Chapman et al. (Chapman et al., 1988a, 1988b, 1988c, 1989, 1990). This equation of 

state is generally known as the SAFT equation of state. Unlike the cubic equations of 

state, the SAFT equation of state does not only provide physical meaning from the 

concept of hard sphere effect but also includes chain effect and association of 

molecules. 

 

 3.2.1 The Statistical Associating Fluid Theory Equation of State 

 In the SAFT model, the molecules of each species are approximated as chains 

composed of the equal-sized spherical segments with different number of segments, 

mi; the temperature-independent segment molar volume, 00
iv ; and the temperature-

independent segment interaction energy, 0
iu . For the associating molecules, 

considered through the hydrogen bonding, the association energy parameter, κAB; and 

the association volume parameter, εAB; are used to characterize the association bounds 

between sites A and B. The value of these parameters can be obtained from the works 

of Huang and Radosz. The SAFT model is generally expressed in term of the molar 

Helmholtz free energy, a; as following expression 

 

assocchaindisphsid aaaaaa ++++=                                                                    (3.77) 
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where, the superscripts id, hs, disp, chain, and assoc represent the contributions of 

ideal, hard spheres, dispersion, chain, and association, respectively. 

 

 The ideal molar Helmholtz free energy term 

 The ideal contribution is based on the molecular thermodynamics as expressed 

by Silbey and Alberty, 2001 and is given by 

 

1)ln(
1

3 −Λ= ∑
=

N

i
iiAi

id

Nx
RT

a
ρ                                                                          (3.78) 

 

for pure components 
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where, Λi is the de Broglie wavelength of each species i in the mixture at temperature, 

T; of the system, and determined from 
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here, ρi is the component density of mixture and equal to xiρ; where, xi is the mole 

fraction of component i in the mixture, ρ is the molar density. N is the number of 

components in the mixture. NA is the Avogadro’s number. Mi is the molecular mass of 

each conponent i in the mixture. h, R, and kB are the Plank’s constant, Gas constant 

and Boltzmann’s constant, respectively. 

 

 The hard-sphere molar Helmholtz free energy term 

 The hard-sphere contribution for a mixture of hard spheres used by Huang and 

Radosz is expressed as fallow 
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where ζ is a function of the molar density, which is given by 
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where, dii is the temperature-dependent segment diameter of component i, this term is 

determined from 
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and σii is the temperature-independent segment diameter of component i, which is 

determined from 
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where, C and τ are equal to 0.12, 6/2π  respectively. For pure component, the hard-

sphere term in equation (3.69) reduced to 
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where, hsa0  is the hard-sphere Helmholtz free energy per mole of segments, and 
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with a segment packing fraction (pure components) 
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 The dispersion molar Helmholtz free energy term 

 The dispersion contribution used by Huang and Radosz is based on a square-

well fluid and expressed as fallow 
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where, dispa0  is the dispersion Helmholtz free energy per mole of segments. ijD  are the 

universal constant. η is the average reduced density (segment packing fraction), given 

by 
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There are two approaches to determine the average segment number, m; average 

segment energy, u; in mixtures, namely, the van der Waals one-parameter (vdW1) 

mixing rule 
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and the volume fraction (vf) mixing rule 
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where, uij, 
0
iiv , and uii for this mixing rule are obtained from equation (3.81), (3.82), 

and (3.83) respectively. 
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Table 3.4 The universal constant used in equation (3.87) 
     

 i = 1 i = 2 i = 3 i = 4 
     

j = 1 -8.8043 2.9396 -2.8225 0.34 

j = 2 4.1646270 -6.0865383 4.7600148 -3.1875014 

j = 3 -48.203555 40.137956 11.257177 12.231796 

j = 4 140.43620 -76.230797 -66.382743 -12.110681 

j = 5 -195.23339 -133.70055 69.248785 0.0 

j = 6 113.51500 860.25349 0.0 0.0 

j = 7 0.0 -1535.3224 0.0 0.0 

j = 8 0.0 1221.4261 0.0 0.0 

j = 9 0.0 -409.10539 0.0 0.0 

 

 In this article, lij and γ for the vf mixing rule are neglected. The constant e/kB 

and the binary parameter kij can be investigated from Huang and Radosz. It should be 

note that the average segment number in the vdW1 mixing rule sometime can be 

replaced by the expression of equation (3.84) and (3.85) with neglect the adjustable 

parameter lij. 

 

 The chain molar Helmholtz free energy term 

 The chain term, the Helmholtz free energy increment due to the presence of 

covalent chain-forming bonds among the segments, can be determine from 
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where, the pair correlation function for a mixture of hard spheres, hs
iiii dg )( ; is given 

by 
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the more general pair correlation function, this term is expressed as fallow 
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 In addition, the pair correlation function for a mixture of hard spheres given by 

equation (3.89) and (3.90) can be used to approximate the pair correlation function for 

a mixture of hard segments, so, hs
ijij

seg
ijij dgdg )()( ≈ ; which is used to evaluate the 

association strength, ji BA∆ ; for expression of the association contribution term. 

 

 The association molar Helmholtz free energy term 

 The association term is considered when the mixtures contain associating 

molecules, considered through the hydrogen bonding. This term is given by 
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here, Si is the number of association site of each species i; iAX is the mole fraction of 

component i not bonded at site A; 
iA
∑  is summation over all site on molecules i; and 
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and the association strength, ji BA∆  

 

ji

ji

ji BA
ij

B

BA

ij
seg
ij

BA

Tk
dg κσ

ε 31exp)(











−










=∆                                                        (3.104) 

 

 

 



 35 

where 
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 3.2.2 The Proposed Model for the Gibbs Free Energy Minimization  

 At constant temperature, T; and pressure, P; the condition of the 

thermodynamic equilibrium in any systems is the total Gibbs energy of the system, G; 

must be reach the global minimum. So that, the objective function of this problem is 

to find the amount of the components and the densities of each phase that minimize 
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The thermodynamic model constraint is expressed as 
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when the systems do not including any chemical reaction, the material balance 

constraint is 
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and the boundaries constraint 
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where, k is the desired number of phase of the system at equilibrium, niT is the amount 

of component i at feed, nik is the amount of component i in phase k at equilibrium, and 

zk is the compressibility factor of each phase, which is determined from 
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here, ak and zk are determine from using the amounts of components and the density 

of phase k. When the association effect is taken into account, the internal problems for 

evaluation of iAX  must be solved for equation (3.91). Hence, the equation (3.92) can 

rewritten as 
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which has the Jacobian elements 

 

∑∑
= =

∆+∆+=
∂

∂ N

j

AAA
iA

S

B

BAB
jAA

A
iii

j

j

jij

i

i XNXN
X

f

1 1

)(1 ρρ                                        (3.114) 

 

jii

j

i BAA
jAB

A
XN

X

f
∆=

∂

∂
ρ                                                                                    (3.115) 

 

to evaluate the compressibility factor, it needs not only solving for the iAX  but also 

the derivatives of the iAX  with respect to the density of each phase. From the 

differentiation of equation (3.92) 
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where 
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the equation (3.102) can be solved with the linear system of equations, that is 
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here, y is the Ns ×  1 vector comprising the derivatives of the iAX ,where 
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Q is an Ns ×  Ns matrix with coefficients 
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and c is an Ns ×  1 vector with elements are given by 
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noting that, the iAX  for equation (3.100) is bracketed by iAX  = 0 and iAX  = 1 for all 

association sites. thus, to obtain phase compositions at equilibrium it is necessary to 

find the minimum of the Gibbs free energy as given by equation (3.95) subject to the 

constraints imposed by equation (3.96a), (3.96b) and equation (3.97a), (3.97b) with 

internal problems by equation (3.100) and (3.102). 



CHAPTER IV 

 

HYBRID DIFFERENTIAL EVOLUTION 

WITH THE GRADIENT-BASED ALGORITHM 

 

 

4.1 Differential Evolutionary Algorithm 

 Many chemical engineering designs, control, process simulation or other 

engineering problems usually result in solution of optimization problems. Different 

classes of search techniques like gradient-based techniques, random search techniques 

or stochastic-based techniques are developed to deal with the optimization. Recently, 

many researchers have reported that evolutionary programming namely Differential 

Evolution (DE) is successfully used for solution of the optimization problems 

(Munawar and Babu, 2000; Angira and Babu, 2001). The algorithm is stochastic 

techniques whose search methods model a natural evolution. That is why the 

terminology used in DE is taken from biology, which is listed in Table 4.1 

 

Table 4.1 Differential evolution terminology 
  

Evolutionary terminology Mathematical programming equivalent 
  

Chromosome or genotype or individual Vector of decision variables 

Population Set of vectors of decision variables 

Generation Iteration 

Fitness or phenotype Evaluated objective function at iteration 

Mutation Perform perturbation vector (referred to 
 DE strategies) for each individual 

Crossover Recombination between individual and  
 its perturbation vector to produce its trial 
 vector 

Selection Choose a new individual from better 
 fitness of the former individual and its 
 candidate (trial vector) 
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Figure 4.1 Flow chart of Differential Evolution 

 

 DE start with randomly create a population from the search space. The 

population evolves towards the better chromosomes (obtained solution) by applying 

special operators modeling the evolution processes occurring in the nature, as follow 

mutation, recombination or crossover, and selection. Following Fig. 4.2, the algorithm 

starts with specifying the parameters, namely, amplification factor (F), crossover 

constant (Cr), type of strategy, population size (NP), and maximum number of 

generations (NG). The three main steps: mutation, crossover, and selection on the 

population, are carried out. Mutation and crossover operations are performed to 

diversity the search thus escaping from the local minima. The DE scheme entirely 
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corresponds to a typical Evolutionary Algorithms (EAs). It is close to Genetic 

Algorithm (GA). The principle difference consists in the mutation operation. In GA, 

mutation is provided by arithmetical combinations of individuals. The core of this 

operation is the formation of a difference vector which makes mutate an individual. 

For DE, the mutation operation is denoted by differentiation. 

 

 Initialization 

 All variants of Differential Evolution start with initialization of the first 

generation. The initial populations are created randomly by the algorithm (Fig. 4.2).     

 

 

 

Figure 4.2 An example of a two-dimensional objective function showing its contour 

line and the process for generating initial point 

 

Then, for each generation, the individuals for each population are update by 

reproduction scheme. That consists with the mutation, crossover, and selection 

operation. To produce a new one, the operation of mutation and crossover are applied 

one after another. Next the selection operation is used for choose the best from 

candidate solution. 
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 Mutation 

 For each obtained vector, NPjx j ,...,2,1; =  where N is a number of 

dimension and NP is a number of population, a mutant vector is generate according to 

DE with strategy 7 

                                           

)(
321 rrrj xxFxv −⋅+=                                                                                        (4.1) 

 

where random index { }NPrrr ,...,2,1,, 321 ∈  are not equal to index j. F is a real and 

constant factor [ ]1,0∈  which controls the amplification of the differential variation 

(
32 rr xx − ). 

 

 Crossover 

 In order to increase the diversity of the perturbed parameters vectors, 

crossover is introduced. From the end of mutation, the obtained mutation vector is 

 

),...,,( 21 Njjjij vvvv =                                                                                             (4.2) 

 

at the end of this operation, the trial vector is formed 
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in (4.3), rand(i) is the i th evaluation of random number generator with outcome 

[ ]1,0∈ . Cr is the crossover constant [ ]1,0∈  which has to determine by the user. 

Fig. 4.4 gives example of the crossover mechanism for 10-dimensinal vectors.  
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Figure 4.3 DE flow (http://www.icsi.berkeley.edu/~storn/code.html#csou) 

 

     trial vector
6447448

mutate vector
6447448

(3)rand Cr≤

(4)rand Cr≤

(6)rand Cr≤

(9)rand Cr≤

(10)rand Cr≤

jvjx ju

 

 

Figure 4.4 Illustration of the crossover process for 10-dimentional vector 
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 Selection 

 To decide whether or not it should become a member of generation j + 1, the 

trial vector ju  is compared to the target vector jx . If vector ju  yield better optimum 

value than jx , then jx  set to ju , otherwise, jx  is retained.    

 

 The strategies in Differential Evolution 

 In 1997, Price & Storn gave the working principle of DE with single strategy. 

Later on, they suggested ten different strategies of DE. The general conversion used is 

DE/x/y/z. DE stands for Differential Evolution, x represents a individual denoting the 

vector to be perturbed, y is the number of difference vectors considered for 

perturbation of x, and z stands for the type of crossover being used.    

 The following are the ten different working strategies proposed by Price & 

Storn (exp stands for exponential crossover, while bin stands for binomial crossover). 

 

 1. DE/best/1/exp   6. DE/best/1/bin 

 2. DE/rand/1/exp   7. DE/rand/1/bin 

 3. DE/rand-to-best/1/exp  8. DE/rand-to-best/1/bin 

 4. DE/best/2/exp   9. DE/best/2/bin 

 5. DE/rand/2/exp   10. DE/rand/2/bin  

 

There are described as follows, the best/1 scheme 
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the rand/1 scheme, from equation (4.1) 
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the rand-to-best scheme 
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the best/2 scheme 

 

)(
4321 rrrrbestj xxxxFxv −+−⋅+=                                                                     (4.6) 

 

and the rand/2 scheme 

 

)(
54321 rrrrrj xxxxFxv −+−⋅+=                                                                       (4.7) 

 

where, indiv represents a vector individual j; best represents individual that has the 

best objective value in current generation, and { }NPrrrrr ,...,2,1,,,, 54321 ∈  are not 

equal to indiv and best.  

 

 The pseudo code for DE/x/y/exp 

 The pseudo code for exponential crossover scheme of Differential Evolution is 

given below 

 

 (1) random number of dimension, Ni ,...,2,1= ; and set l = 1 

 

 (2) do ii vu =  (any x/y scheme) 

 (3) set l = l + 1, and set i = (i + 1) % N 

 

 (4) if random number [ ] Cr≤∈ 1,0  and l ≤  N do goto (2) else end 

 

 The pseudo code for DE/x/y/bin 

 The pseudo code for binomial crossover scheme of Differential Evolution is 

given below 

 

 (1) random number of dimension, Ni ,...,2,1= , and set l = 1 

 

 (2) if random number [ ] Cr≤∈ 1,0  or l = N do ii vu =   

  (any x/y scheme), and then goto (3) 
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(3) if l < N do set i = (i + 1) % N; set l = l + 1; and then goto (2) else end 

    

4.2 Typical Constraint Handling Techniques in Evolutionary Algorithms 

 One of the major problems of any evolutionary computations is the evaluation 

function. The evaluation of function is used to assign a quality for each individual in a 

population. Generally, a search space usually consists with feasible and unfeasible 

subspace. Therefore, it is necessary to assume that the unfeasible solutions have no 

more quality than the feasible solutions in each generation, although some infeasible 

solutions have better objective value after evaluation operation. 

 From Fig. 4.4, shade areas are the feasible region, while bright area represents 

the infeasible region. Based on Fig. 4.4, the population contain some feasible (a, b, c, 

x) and infeasible individual (d, y), x is the optimum solution of the objective function 

with constraints, while y is the optimum solution when the objective function is 

without any constraints. The problem of this optimization is how to obtain the feasible 

optimum solution. For example, assume that 

 

)()( pevaluatesevaluate uf f                                                                               (4.8) 

 

 

 

Figure 4.5 A general search space 

 

 for feasibles ∈∀ set, and feasibleinp ∈∀ set. Later on, these 

approaches were developed to the penalty function approach for penalize infeasible 

a 

b 

c 

d 

Search space S 

x 

y 
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individuals. In general, constraint handling scheme in DE or other evolutionary 

computations usually implemented before the selection process (Fig. 4.5). 

 

 

 

Figure 4.6 A constraint handling scheme in Differential Evolution 

 

 In most applications of DE and other EAs to constrained optimization 

problems, the penalty function method has been used. In the penalty function method 

for handling inequality constraints in minimization problems, the fitness function 

)(xF  is defined as the sum of the objective function )(xf  and a penalty term which 

depends on the constraint violation, consider a general constrained optimization, as 

follows 

 

 Optimize )(xf  

 

 Subject to Mmuxgl mmm ,...,2,1)( =≤≤                           (4.9) 

 

   Nncxh nn ,...,2,1)( ==  
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where x  represents the solution vector, )(xf  is the objective function of the 

problem, while )(xgm  and )(xhn  are the inequality and equality constraints, 

respectively, that define the feasible region. In the application of DE and other EAs to 

any constrained optimization problems, handling the constraints is one of the difficult 

tasks. The penalty method is perhaps the most commonly used technique. It basically 

transforms the constrained problem to an unconstrained one by augmenting the 

constraints to the objective function as a penalty term. When the solution is infeasible, 

its objective value is penalized according to the degree of constraint violations. 

Generally, the penalized objective value is computed using the expression 

 

)()()( xpxfxF +=                                                                                           (4.10) 

 

where )(xp  is the penalty function representing the degree of constraint violation 

computed as 
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where u
mw  and l

mw  are the penalty values of the upper and lower bounds of the 

inequality constraints, and wn are the penalty values for the equality constraints. For 

minimization problems, if the solution is infeasible, the objective value is increased 

by the penalty term. For maximization problems, the penalty term is used to decrease 

the objective value. In other words, a highly infeasible solution would be penalized 

and would rarely be selected by the reproduction scheme. 

 The major concern of this method is how to choose a proper penalty value (w) 

for each constraint so as to efficiently guide the search toward a promising area of the 

search space. A large penalty value will lead to premature convergence (i.e., trade off 

too much optimality for feasibility), while a small penalty will not only increase 

computational time, but also admit too many infeasible solutions (i.e., not enough 

pressure given to the penalty term to maintain feasibility). 
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4.3 The Proposed Hybrid Algorithm 

 This constraint handling technique is proposed by Chootinan and Chen in 

2006 for repair infeasible individuals in Genetic Algorithm (GA). The main idea of 

the technique is to utilize the gradient information derived from the constraint set to 

systematically repair the infeasible solutions. Basically, the gradient information is 

used to direct the infeasible solutions toward the feasible region. Let V  consist of 

vectors of inequality constraints g  and equality constraints h  
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the derivatives of these constraints with respect to the solution vector, 

 

1)(1

1

×+×

×









∇

∇
=∇

NMNx

Mx
x h

g
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therefore, the relationship between changes of constrains with respect to the solution 

vector, can be evaluated by, 

 

VVxVxV xx ∆×∇=∆⇒∆=∆×∇ +                                         (4.14) 

 

where V∆  is the degree of constraints violation, and can be evaluate by 
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
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                                                (4.15) 

 

The repair procedure (Chootinan, and Chen, 2006), set the repair rate (Pr). It is similar 

to the probability of mutation (Pm). If it is impossible to make the infeasible solution 

feasible, a very high penalty is applied.  

 To evaluate the pseudo inverse, in mathematics and in particular linear 

algebra, the pseudo inverse A+ of a nm×  matrix A is a generalization of the inverse 

matrix. More precisely, this article talks about the Moore-Penrose pseudo inverse, 
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which was independently described by E. H. Moore in 1920 and Roger Penrose in 

1955. Earlier, Fredholm had introduced the concept of a pseudo inverse of integral 

operators in 1903. The term generalized inverse is sometimes used as a synonym for 

pseudo inverse. If the columns of A are linearly independent, then ATA is invertible. In 

this case, an explicit formula is 

 

TT AAAA 1)( −+ =                                                                                               (4.16) 

 

if the rows of A are linearly independent, then AAT is invertible. In this case, an 

explicit formula is, 

 

1)( −+ = TT AAAA                                                                                               (4.17) 

 

if both columns and rows are linearly independent (that is, for square nonsingular 

matrices), the pseudo inverse is just the inverse: 

 

1−+ = AA                                                                     (4.18) 

 

 The pseudo code for gradient-based repair algorithm can be summarized, as 

follow 

 

 Step 1 

 For any solution, determine the degree of constraint violation, equation (4.15), 

If the solution is infeasible, generate a random number γ  from the interval [ ]1,0 . If 

rP≤γ , set t = 1 and go to step 2, otherwise return. 

 

 Step 2 

 Compute +∇V  and x∆ . Note that only non-zero element of V∆  are included 

for further computations of +∇V  and x∆ . 
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 Step 3 

 Update the solution vector by VVxx tt ∆×∇+= ++1 . 

 

 Step 4 

 Evaluate the updated solution vector. If η≥−+
∀

t
i

t
ii xxMax 1  and solution is 

still infeasible, set t = t +1 and go to step 2, otherwise return. η  is the minimum 

adjustment for the solution vector (e.g. 410− ). 

 

4.4 Test Problems Benchmark 

 Phase equilibrium examples considered in this study include vapor-liquid 

equilibrium (VLE), liquid-liquid equilibrium (LLE), vapor-liquid-liquid equilibrium 

(VLLE) and gas-solid equilibrium examples involving multiple components and 

popular thermodynamic models. Five typical examples were taken from the 

dissertation for evaluating the developed DE, original DE using the values of 

parameters found from the preliminary tests. All programs used in this study, were 

implemented in C programming language and compiled with Cygwin. 
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4.3.1 n-Butyl Acetate and Water Mixture 

 

Table 4.2 Results for n-Butyl Acetate and Water Mixture at 298 K, 1.0 atm 

DE with Gradient-Based DE McDonald and Floudas, 1995 
Quantities 

Liquid I Liquid II Liquid I Liquid II Liquid I Liquid II 

C6H12O2 0.00016 0.49984 0.25584 0.24416 0.00016 0.49984 

H2O 0.45486 0.04514 0.34522 0.15478 0.45486 0.04514 

φ 0.45502 0.54498 0.60106 0.39894 0.45502 0.54498 

Ғ (mol-1) -0.03407 0.15327 -0.3407 

NFE 25796 40278 Not report 

CV 10-15 9.32 x 10-9 Not report 
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4.3.2 Benzene-Acetonitrile-Water Mixture 

 

Table 4.3 Results for Benzene-Acetonitrile-Water Mixture at 333 K, 0.769 atm 

DE with Gradient-Based DE McDonald and Floudas, 1995 
Quantities 

Vapor Liquid I Liquid II Vapor Liquid I Liquid II Vapor Liquid I Liquid II 

C6H6 0.07993 0.00075 0.26415 0.06709 0.21815 0.05959 0.10464 0.00073 0.23946 

CH3N 0.04630 0.02217 0.24187 0.05434 0.19023 0.06636 0.06163 0.02169 0.22701 

H2O 0.03995 0.27383 0.03465 0.12266 0.05008 0.17546 0.05242 0.26235 0.03365 

φ 0.16618 0.29675 0.54067 0.24409 0.45846 0.30141 0.21869 0.28477 0.50012 

Ғ (mol-1) -1.40964 -1.32703 -1.40852 

NFE 235235 338871 Not report 

CV 10-15 8.2 x 10-4 Not report 
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4.3.3 Esterification of Acetic Acid with Ethanol 

 

Table 4.4 Results for Esterification of Acetic Acid with Ethanol at 355 K, 1 atm 

DE with Gradient-Based DE McDonald and Floudas, 1995 
Quantities 

Vapor Liquid Vapor Liquid Vapor Liquid 

C2H5OH 0.07322 0.00472 0.22187 0.03498 0.07463 0.00488 

CH3COOH 0.05840 0.01954 0.11237 0.14279 0.05915 0.02036 

CH3COOC2H5 0.41326 0.00880 0.10092 0.14279 0.40880 0.01168 

H2O 0.34280 0.07926 0.13645 0.10986 0.35772 0.06278 

φ 0.88768 0.11232 0.57161 0.43042 0.90030 0.09970 

Ғ (mol-1) -90.78336 -90.48820 -90.7816 

NFE 140544 225044 Not report 

CV 10-15 6.1 x 10-3 Not report 
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4.3.4 Nine Hydrocarbons Mixture 

 

Table 4.5 Results for Nine Hydrocarbons Mixture at 314 K, 19.84 atm 

DE with Gradient-Based DE Castillo and Grossmann, 1981  
Quantities 

Vapor Liquid Vapor Liquid Vapor Liquid 

Methane 0.57305 0.02186 0.29769 0.29734 0.57323 0.02167 

Ethane 0.08506 0.01434 0.06071 0.03863 0.08510 0.01430 

Propane 0.03216 0.01614 0.02274 0.02558 0.03220 0.01610 

i-Butane 0.00417 0.00453 0.00423 0.00453 0.00418 0.00452 

n-Butane 0.00829 0.01221 0.00849 0.01190 0.00830 0.01220 

i-Pentane 0.00161 0.00538 0.00320 0.00384 0.00163 0.00537 

n-Pentane 0.00220 0.00930 0.00591 0.00559 0.00216 0.00934 

n-Hexane 0.00110 0.01281 0.00783 0.00606 0.00110 0.01280 

i-Pentadecane 0.00000 0.16469 0.07610 0.08861 0.00000 0.16470 

φ 0.70764 0.26126 0.48690 0.48208 0.70790 0.26100 

Ғ (mol-1) -3.13406 -2.27968 Not report 

NFE 1495374 2310698 Not report 

CV 10-15 4.6 x 10-4 Not report 
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4.3.5 Reduction of ferric oxide 

 

Table 4.6 Results for Reduction of ferric oxide at 1363 K, 1.0 atm 

DE with Gradient-Based DE Castillo and Grossmann, 1981  
Quantities 

Vapor Solid I Solid II Solid III Vapor Solid I Solid II Solid III Vapor Solid I Solid II Solid III 

CO 2.73494 - - - 0.59074 - - - 2.73489 - - - 

CO2 0.00604 - - - 0.23716 - - - 0.00606 - - - 

H2 0.74702 - - - 0.41955 - - - 0.74701 - - - 

O2 0.00000 - - - 0.67645 - - - 10-10 - - - 

H2O 0.00298 - - - 0.33165 - - - 0.00299 - - - 

Fe - 1.00000 - - - 1.0 - - - 1.0 - - 

FeO - - 0.00000 - - - 0.00000 - - - 10-10 - 

C - - - 0.00902 - - - 1.91600 - - - 0.00905 

φ 3.49098 1.00000 0.00000 0.00902 2.25555 1.0 0.00000 1.91600 3.49095 1.0 10-10 0.00905 

Ғ (mol-1) -57.97944 -28.85774 Not report 

NFE 141144 225044 Not report 

CV 10-15 8.9 x 10-3 Not report 
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4.4 Test Problems with the Statistical Associating Fluid Theory Model 

 Three different binary mixtures were used in the dissertation. The first mixture 

is non-associating system; the next two are 1 site self-associating, and the final one is 

2 site self-associating. For all problems, the SAFT parameters used for each 

component were taken from Huang and Radosz. 

 Test problem 1 and 2, non-associating System, These system are mixture of 

ethene (1) and n-eicosane (2); and methane (1) and n-hexadecane (2). There are no 

association sites on either molecule, so aassoc = 0 in equation (3.65).  
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4.4.1 Test Problem 1 

 

Table 4.7 Results for Ethene - n-Eicosane Mixture at 423 K, 20 bar 

DE with Gradient-Based DE Xu et al., 2002  
Quantities 

Vapor Liquid Vapor Liquid Vapor Liquid 

Ethene 0.39115 0.10885 0.32551 0.17252 0.37995 0.11904 

n-Eicosane 0.00013 0.49987 0.46286 0.03546 0.00005 0.50096 

ρ (mol/L) 0.58670 2.81560 3.54005 4.33759 Not report Not report 

φ 0.39128 0.60872 0.79 0.21 0.38 0.62 

Ғ (mol-1) -101.66254 -100.97967 Not report 

NFE 68982 426804 Not report 

CV 10-15 8.8 x 10-3 Not report 
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4.4.1 Test Problem 1 (continued) 

 

Table 4.8 Results for Ethene - n-Eicosane Mixture at 423 K, 250 bar 

DE with Gradient-Based DE Xu et al., 2002  
Quantities 

Vapor Liquid Vapor Liquid Vapor Liquid 

Ethene 0.29139 0.65861 0.46450 0.48559 0.28908 0.66129 

n-Eicosane 0.03861 0.01139 0.02462 0.02539 0.04092 0.00871 

ρ (mol/L) 7.946 8.431 8.558 8.560 Not report Not report 

φ 0.330 0.670 0.49 0.51 0.330 0.670 

Ғ (mol-1) -94.05916 -94.06743 Not report 

NFE 191702 274386 Not report 

CV 10-15 2.0 x 10-4 Not report 
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4.4.2 Test Problem 2 

 

Vapor-Liquid Equilibrium Data 
for Methane and n-Hexadecane System at 543 K
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Figure 4.7 Results for Methane - n-Hexadecane Mixture at 543 K 
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Vapor-Liquid Equilibrium Data 
for Methane and n-Hexadecane System at 623 K
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Figure 4.8 Results for Methane - n-Hexadecane Mixture at 623 K 
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Vapor-Liquid Equilibrium Data 
for Methane and n-Hexadecane System at 703 K
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Figure 4.9 Results for Methane - n-Hexadecane Mixture at 703 K 
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Vapor-Liquid Equilibrium Data 
for Methane and n-Hexadecane System
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Figure 4.10 Simulation Results for Methane - n-Hexadecane Mixture 
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Table 4.9 Feed mole for test problem 1 

Components Feed (mole) 
  

C6H12O2 0.5 

H2O 0.5 

 

Table 4.10 Feed mole for test problem 2 

Components Feed (mole) 
  

C6H6 0.34483 

CH3N 0.31034 

H2O 0.34843 

 

Table 4.11 Feed mole for test problem 3 

Components Feed (mole) 
  

C2H5OH 0.5 

CH3COOH 0.5 

CH3COOC2H5 - 

H2O - 

 

Table 4.12 Feed mole for test problem 4 

Components Feed (mole) 
  

Methane 0.594904600 

Ethane 0.099399451 

Propane 0.048299665 

i-Butane 0.008700722 

n-Butane 0.020501924 

i-Pentane 0.006995458 

n-Pentane 0.011500843 

n-Hexane 0.013903715 

i-Pentadecane 0.164693622 
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Table 4.13 Feed mole for test problem 5 

Components Feed (mole) 
  

CO 0.75 

CO2 - 

H2 0.75 

O2 0.50 

H2O - 

Fe 1.00 

FeO 2.00 

 

Table 4.14 Feed mole for test problem 6 

Conditions Components Feed (mole) 
   

Ethene 0.50 
423 K, 20 bar 

n-Eicosane 0.50 

Ethene 0.95 
423 K, 250 bar 

n-Eicosane 0.05 
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Table 4.15 Equilibrium data for test problem 7 (Lin et al., 1980) 

 

Pressure (atm) 
Mole fraction of methane 

in liquid phase 

Mole fraction of methane 

in vapor phase 
   

543 K 

20.50 0.0831 0.9580 

30.23 0.1208 0.9687 

50.0 0.1884 0.9765 

99.5 0.3322 0.9808 

149.9 0.4539 0.9798 

200.6 0.5512 0.9754 

222.5 0.6229 0.9719 

623 K 

20.71 0.0836 0.7930 

31.39 0.1265 0.8453 

50.0 0.2032 0.8865 

99.7 0.3716 0.9132 

150.3 0.5178 0.9097 

176.1 0.5968 0.8970 

201.3 0.7371 0.8733 

703 K 

20.87 0.0697 0.3097 

30.77 0.1363 0.4632 

49.8 0.2822 0.5099 

 



CHAPTER V 

 

CONCLUDING REMARKS 

 

 

5.1 Conclusion 

 This study has proposed a constraint handling technique that can effectively 

repair the infeasible solutions based on the gradient of the constraint set. Such 

gradient information can be derived directly from the constraints or indirectly by the 

finite difference scheme. Coupled with a real-coded DE, experimental results clearly 

illustrate the attractiveness of the method for handling several types of constraint. It 

can produce competitive, if not better, solutions compared to the stochastic ranking 

method, which appears to be the most promising constraint-handling technique 

reported thus far in the literature. In addition, as indicated by the results of several test 

runs, the method proposed here is quite robust; similar solutions are always obtained 

(i.e., indicated by a small standard deviation of the objective value). Experiments 

were also conducted to examine the effects of repair probability, which is the only 

parameter in the proposed method, on the computational requirements and solution 

quality. 

 

5.2 Recommendation 

 For the future work, the binary interaction parameters for the SAFT equation 

of state will be estimated from the developed DE. This DE in the dissertation will be 

developed for more efficient algorithm to solve the engineering optimization 

problems 
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