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Phase equilibrium computations using the Gibbs free energy minimization
correspond to mass balance and thermodynamic model of the system are the global
optimization problem and usually solved by the Evolutionary Algorithms (EAs).
However, the equality constraint-handling techniques of the EAs have been still
insufficient. Thus, the aim of this work is to develop the EAs for the efficient
phase equilibrium computation by using the gradient-based algorithm to handle the
equality constraints in Differential Evolution (DE). Moreover, a new objective
function for the phase equilibrium problems modeled with the SAFT (Statistical
Associating Fluid Theory) equation of state is proposed in this work. The new
objective function uses the thermodynamic fundamental equation information in

stead of the fugacity equation.

The results show that the solutions obtained from our developed DE have
smaller constraint violation than that of traditional DE. In addition, the Gibbs free
energy value obtained and the number of function evaluation are also investigated
in this work. The solutions obtained by our developed method with the SAFT
model agree well with previous research and experimental works for the system of

non-associating molecule.
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CHAPTER|

INTRODUCTION

1.1 Importance and Motivation

Phase equilibrium computation for prediction of phase behavior is extremely
important in chemical engineering design and chemical process simulation.
Insufficient accuracy of the computation methodology and mathematical-related
model can undermine the reliability of the obtained solutions from these works. Over
a decade ago, various studies have shown an increasingly popular computation
technique when solving the phase equilibrium problem is to formulate it as the Gibbs
free energy minimization with the stochastic-based optimization (Reynolds,
Mulholland and Gomatam, 1997; Lee, Rangaiah, and Luus, 1999; Rangaiah, 2001,
Teh and Rangaiah, 2003; Srinivas and Rangaiah, 2007). Previous works not only
proposed how to obtain the global solution using several stochastic-based agorithms
but also recommend Differential Evolutionary Algorithm (Storn and Price, 1997), the
resent evolutionary computation, for the efficient phase equilibrium computation.
Although, Differential Evolution (DE) have been performed very effectively for
several phase equilibrium problems, none of them suggested any constraint-handling
techniques and indicated an appropriate constraint violation of the obtained solution.
In fact, these are the key task when applied to the evolutionary computation for
constrained optimization problems.

In general, minimization of the Gibbs free energy function usually deals with
the equality constraints (e.g. mass baance, thermodynamic model, etc.). This is a
significant problem because the traditional search operators of DE and another
Evolutionary Algorithms (EAs) are normally blind to these constraints type. Even
though, the penalty function and the repair method (or hybrid agorithm) are
commonly used as the constraint-handling technique for various EAs (Coello Codllo,
2002); in this case, the repair method seem to be advantage technique over using the
penalty function. This is because the repair method is used to make feasible solution

from a certain number of infeasible one by establishment the relationship between



optimization variables and their constraints when the indicated could be easily
characterized; while, The penalty method by converting the constrained optimization
problem to an unconstrained one with a penalty term are complicated by setting the
appropriate penalty parameters to guide the search obtain the reliable solutions.
Moreover, the penalty methods usually fail to handle the problem with highly equality
constraints. As a result, using the repair methods could be suitable for deal with the
equality constraints in phase equilibrium computation.

Recently, the gradient-based repair method has been proposed as one of the
constrai nt-handling techniques (Chootinan and Chen, 2006). This method was derived
from the gradient information, namely the Newton method, to the constraint set of the
optimization problem. Genetic Algorithm (GA), one of traditional EAS, is used to
prove its capability. Their results showed that, this method works well when applied
to handle highly equality constraints and can guarantee a feasibility of the solution for
any search optimization. As above mentioned, DE agorithm has been recommended
for computation of various phase equilibrium problems. Thus, in this dissertation, DE
with the gradient-based repair technique are developed in order to use as a new
efficient algorithm for more reliability of the obtained solution from the phase
equilibrium computation and furthermore in any constrained optimization problems.

Additionally, phase equilibrium computation with the statistical associating
fluid theory (SAFT) equation of state (Huang and Radosz, 1990, 1991, 1993) is
included in the test problems. This statistical thermodynamic-based model has been
widely occurred in many applications to modeling fluid and solid phase equilibria for
recent years (Zhong and Yang, 2005; Ji, Feng, and Tan, 2007). Their works have
shown that, the SAFT equation of state is a useful thermodynamically model for
several phase equilibrium problems. However, the complexity of the given model has
been caused the computational difficulties when applied this model for the phase
equilibrium calculations. Then, the expression with the fugacity equation cannot be an
appropriate model for the Gibbs free energy minimization. Hence, a new
methodology to formulate phase equilibrium optimization problem based on the
SAFT model is proposed in this research. A new expression uses the fundamental
equation to model the Gibbs free energy function instead of using the fugacity
equation. The binary systems of non-associating are investigated through using the
developed DE.



1.2 The Aim of the Thesis

DE and the gradient-based repair technique are developed with the aim of
more reliability of the obtained solution in phase equilibrium optimization. Not only
obtained the efficient algorithm for phase equilibrium computation but aso the
dissertation proposes a new methodology for solving phase equilibrium problem
modeled with the SAFT equation of state using the developed DE or other stochastic-
based methods.

1.3 Scope of the Thesis

The thermodynamic models based on the Wilson, NRTL, UNIFAC, SRK
(Soave-Redlich-Kwong), and aso the SAFT equation of state are investigated and
applied in the developed algorithm and compare the constraint violation and the total
Gibbs free energy of the system of the obtained results with original DE, and prior
works. The 7 test problems are included with 5 problems benchmark and 2 problems
with the SAFT model, asfollow in table 1.1



Table 1.1 List of test problemsin this work

Problem System Condition Predicted phase Model Reference

1 n-Butyl Acetate and Water 298 K, 1 am Liquid-Liquid Equilibrium UNIFAC McDonald and Floudas, 1995

2 Benzene, Acetonitrile 333K, 0.769 am Vapor-Liquid-Liquid Equilibrium ~ NRTL  Castillo and Grossmann, 1981
and Water

3 Esterification of Acetic Acid 355K, 1am Vapor-Liquid Equilibrium Wilson  McDonald and Floudas, 1995
with Ethanol
Mixture of nine hydrocarbons 314 K, 19.84 atm Vapor-Liquid Equilibrium SRK Cadtillo and Grossmann, 1981
Reduction of Ferric Oxide 1363 K, 1 atm Gas-Solid Equilibrium |deal Cadtillo and Grossmann, 1981
Non-associating system 423 K, 20 and Vapor-Liquid Equilibrium SAFT Xu et a., 2002
of Ethene and n-Eicosane 250 bar

7 Non-associating system |sothermal 543, Vapor-Liquid Equilibrium SAFT Linetal., 1980
of Methane and n-Hexadecane 623, and 703 K
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CHAPTER I

LITERATURE REVIEWS

2.1 Evolutionary Computation for Phase Equilibrium Problems

Stochastic-based approaches for phase equilibdamputation have been
shown increasingly popular techniques to obtaindlebal solution. One of these is
the evolutionary computations (or evolutionary aidons, EAS); see the books of
Back, Fogel, and Michalewicz for algorithms and rapers These methods are
usually quite simple to implement and use, and theyot require transformation of
the original problem. Furthermore, these technigces locate the vicinity of the
global solutions with efficiency. This chapter pides background for computation
via stochastic-based approaches for phase equitibgroblems. Not only EAs but
also other stochastic-based algorithms are invegstigfrom the prior works.

Reynolds, Mulholland and Gomatam, 1997 computeds@hequilibrium
problems via minimization of the Gibbs free enefgyall the species in the system is
conducted using the technique of simulated anng#8®\). Their work has discussed
how to solve difficult computational minimizatiorrgblems in a way which can
incorporate the physical properties of the speicieslved in these systems, including
phase change, multi-phase conditions and phaseteamiical equilibria problems.

Lee, Rangaiah, and Luus, 1999 used direct seagrimiaation for phase and
chemical equilibrium calculations. The selected hodt is the random search
optimization procedure of Luus and Jaakola (LJ),ictvhhas been show that
successful for solving difficult global optimizatioproblem. Their results obtained
with typical examples for vapor-liquid equilibriuend vapor-liquid equilibrium with
reaction, where the liquid and vapor phases maydeideal, show that the LJ
optimization procedure can be used to find veryueately the global minimum in
only a few seconds of computation time on a pelscoraputer.

Rangaiah, 2001 studied two stochastic optimizatiechniques, namely,
Genetic Algorithm (GA), one of the traditional EAand Simulate Annealing (SA).

These algorithms are evaluated and compared fosepleguilibrium and phase



stability problems. Typical examples and differethermodynamic models are
considered. The results show that GA is generabtlyenefficient and reliable than SA
for phase equilibrium calculation. But both of GAdaSA exhibited poor reliability
for locating the global minimum of the Gibbs frageegy function. For this problem,
a hybrid GA incorporating SA for individual leariginis proposed and shown that can
improve success rate to find the global minimum.

Teh and Rangaiah, 2003 studied Tabu search digorifor the global
optimization of phase equilibrium computations. Yhesed enhanced continuous TS
(ECTS) for their research. Performance of ECTS esngmared with a genetic
algorithm (GA). The results show that both the rfiedi TS and GA have high
reliability in locating the global minimum, and ththe modified TS converges faster
than GA due to reducing the computational time mmahber of function evaluations.

Srinivas and Rangaiah, 2007 studied Differentiabl&tion (DE), the recent
EAs, and Tabu search (TS) for phase equilibrium pimase stability computations.
They used DE and TS with the Quasi-Newton method)(@ optimization of the
local solutions. Their results show that DE-QN isrenreliable than TS-QN because
the escaping mechanism (via mutation and crossoneDE-QN is more effective
than that of TS-QN, and that TS-QN is computatilynadore efficient than DE-QN,
perhaps due to avoiding revisits to the same placeg the search process.

Srinivas and Rangaiah, 2007 developed Differefadlution (DE) and Tabu
list (TL) for phase equilibrium and phase stabitymputations. In their work, DE is
modified to incorporate the concept of Tabu Sedf@) (i.e., avoiding revisits to the
same place during the search); it improves thersityeamong members of the
population and eventually contributes to the corapomal efficiency. Revisits during
the search in DE are avoided by usan@L (which keeps track of previous search
points that are already evaluated), and hence, ptioposed method is named
differential evolution with tabu list (DETL).

2.2 Computation with the Statistical Ther modynamic-Based M odel

The use of equations of state (EoS) has beeneheraglly accepted method
for the calculation of many fluid physical propesi Over the last twenty years,
statistical mechanical approaches have meanwhdergmallowing the development
of powerful engineering equations of state. Inipatar, this chapter investigates how



equations that are based on the association teriivestheim’s theory (Wertheim,
1984a, 1984b, 1986a, and 1986b) can improve sigmifiy the predictive power in
chemical engineering applications and also priorkwaith computational tools for
solving phase equilibrium problems modeled withsthequations.

The effect of molecular associations on the phamxistence properties of
fluids are investigated since Chapman et al.’s gsap (Chapman et al., 1988a,
1988b, 1988c, 1990) in 90th decade. After that,ndguand Radosz have developed an
equation of state from the concept of the stasibtissociating fluid theory (SAFT)
previously proposed by Chapman et al. (Huang ardb&a 1990, 1991, 1993). This
equation of state is generally known as the SARTagqgn of state. Unlike the cubic
equations of state, the SAFT equation of state doesnly provide physicaheaning
from the concept of hard sphere effect, indicated¢ubic model, but also includes
chain effect and association of molecules.

Various works have reported that the SAFT modebrisferable for the
prediction of various fluid properties. In the wdsl Ji et al., 2007, the SAFT model
was used to predict the density of aqueous solsitadramino acidThe modeling is
accomplished by extending the previously developed method to determine the
SAFT parameters for amino acids (Feng, van der Kamdl de Swaan Arons, 2005).
The density of binary solutions of amino acids hasn correlated or predicted with a
high precision. And then the density of multi-compot aqueous solutions of amino
acids has been modeled based on the modelinggedgutinary systems, and a high
accuracy of density calculations has been obtained.

In addition, Zhong and Yang, 2005 studied theesyst containing fluid-solid
equilibrium mixture. The SAFT equation of state doned with a one-parameter
mixing rule was used to evaluate the capabilitghef SAFT approach for modeling
the solubility of solid aromatic compounds in supical fluids (SCFs) with co-
solvents. Binary interaction parameters were obkthioy fitting the phase equilibrium
data of the constituent binary systems. The SAFTehovas used to predict the
solubility of solids in carbon dioxide with co-selts. Their work demonstrates that
the SAFT approach is useful for modeling the sditybof solids in SCFs with co-
solvents with reasonable accuracy.

Because of the complexity of the SAFT model ligs the computational
difficulties, development of the reliable compubatitechnique for prediction of phase

behavior from a given model can be a very challeggiomputational problem.



However, only a few works have been shown in deweknt computational
algorithm such Xu et al., 2002. Their work formeladithe phase equilibrium problem
based on the SAFT model as a two-stage algorithwstl\f; the phase stability of the
stationary points obtained from the equi-fugacignditions are examined. If the
stationary points previously obtained are stabdeosdly, the equilibrium solutions
are then obtained by solving the global optimizagwoblem of minimum Gibbs free
energy. To accomplish the computational strateggy tused the gradient-based
optimization algorithm based on the interval analyapproach for solving the
problems. Their algorithm performed well in a casdinary system. Unfortunately,
it requires the derivatives with respect to eaanponent during each computation.
Therefore, to overcome this drawback, the dissertaproposes a new
methodology using the minimization of the total BBlfree energy of the system to
solve the phase equilibrium problem modeled with 8AFT approach as a single
stage problem. Moreover, the Gibbs free energy xgressed in terms of the
fundamental equations instead of the fugacity eguafThe optimization problem

formulated is solved using stochastic-based method.



CHAPTER Il

ALGORITHMIC DESCRIPTION FOR COMPUTATION
OF PHASE EQUILIBRIUM PROBLEM

3.1 Problem Formulation

For description any open systems, that can exeharagter with surroundings,
Gibbs showed equation (3.1) can be extended to sepstem by adding chemical

work terms of the formy,dn,, where 4, is the chemical potential of specieand n,

is the amount of species in system. The first law of thermodynamics for

homogeneous one phase system is given as
du = dQ - dw (3.1)

and for open system

N
dU = dQ - dw + > wdn (3.2)

i=1

where, N is the number of species in the systainjs the internal energy for the
systemQ is heat adding to the system by the surroundinysyes work done on the
surroundings by the system. Assume that expressiamork is only pressure-volume

work is involved
dw = PdVv (3.3)

where, P is pressure and/ is volume of the system; and the second law of

thermodynamics

as = R (3.4)
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where,Sis entropy and is temperature of the system. So that, the comiiisteand

second law and for the open system is
N

dU = TdS - Pdv + > dn, (3.5)
i=1

several important results are obtained by manifmriaof equation (3.5) with the
substitutions of molar properties a¥) = nU; S = nS; V = nv;
n = nx;where,U isthe molar internal energ\g is the molar entropyy is the

molar volume;x; is the mole fraction of speciésandn is the total amount of mole

of the system. From equation (3.5), the expanddd@arranged result is

- _ N
ndU +Udn = n(TdS—PdV-l-z,uidXi]

= \ (3.6)
+ (T§—Pv+2yixijdn
i=1
sincen anddn are arbitrary, so that
. _ N
dU = TdS - Pdv + > gdx (3.7)
i=1
. _ N
U =TS - Pv + > X (3.8)

from equation (3.8), multiply both side by the taeount of mole of the system, the

result is

N
U =TS - PV + > un (3.9)

i=1
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thus, equation (3.5) and equation (3.9) are thierdiftial form and expression form
for the internal energy. Note that equation (3 aquation (3.8) are the molar form
of equation (3.5) and equation (3.9) respectively.

Although the internal energy provide a criteriar fvhether a process can
occur spontaneously, this is not very useful. Beeanf the entropy and volume are
not easily controlled. However, more useful thergmaimics properties can be define
by based on the internal energy. For consideratonlosed system or at constant
composition, equation (3.5) can neglect the ternthef summation of the chemical

potential, that is
du = TdS - PdV (3.10)
for spontaneous process (irreversible processygdbend law of thermodynamics is

ds > dQT—ev (3.11)

then equation (3.10) can be rearranged to
du + PdVv - TdS < O (3.12)
at constant temperature and pressure, this equagicome

du + Pv - TS),, < O (3.13)

define the quantity in parentheses as the quanfitparticularly thermodynamic

property that call the Gibbs free energy, thus
dG), < O (3.14)

where,G is the Gibbs free energy of the system. From égud8.9), the Gibbs free

energy can be expressed in form
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G = ZN:,uini (3.15)

thus, if any spontaneous process (irreversiblega®)coccur at constant temperature
and pressure, then from equation (3.14) make kiatvthe change in the Gibbs free

energy of the system decrease. Recall equatioh €&tér differentiation

N N
dU = TdS - PdV + > udn + ST — VdP + > ndy (3.16)

i=1 i=1

from equation (3.5) and equation (3.16), which bamearranged in form
N

0 = -SIT + VdP - > ndy (3.17)
i=1

add both side of equation (3.17) by the differdritan of equation (3.15), the result
show that

N
dG = -SIT + VdP + > udn (3.18)

i=1

furthermore, the molar form of the differential iorand the expression form of the

Gibbs free energy equation can show that

o _ N
dG = -SdT + vdP + D wdx, (3.19)
i=1

G = ZN:,ui X, (3.20)

from equation (3.18)u,dn, is the change in the Gibbs free energy that oostien

dn. moles of species are added or removed at constant temperature @ssdyve.
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thus, when the transfer is in equilibrium (no spmeus change), the change in the

Gibbs free energy always decrease to the minimum
dG), = 0 (3.21)

note that, an above equation is the very imporéaputation because it provide the
useful criteria for the any equilibrium system. Gmier equation (3.18), (3.19), and
(3.21), the Gibbs free energy of the system witicke to minimum when thermal,
mechanical, chemical equilibrium occur simultandpusThen, condition for

equilibrium state of the system can determinechlgvi

TO = T® - )

® - p® _

P - P - e > (3.22)
,Ui(l) = :ui(Z) = e J

where the superscripts indicate to each phaseeo$yhtem at equilibrium state. The
equation (3.22) is used for thermodynamic equilibricalculation when no transfer

of heat and mass occur in the equilibrium at fiXexhdP.

3.1.1 Computation using the Fugacity Equation

The concept of fugacity arises from a consideratb change in the Gibbs
free energy those results from change in pressaock tamperature. Because of

u =G, from equation (3.19) with neglect the change of amount of each

component, the chemical potential of the systembeaexpressed as fallow

dG = -SdT + wvdP (3.23)

for an ideal gas at constant temperature

dG = vdP = RT(dInP) (3.24)
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and for component of an ideal mixture in which the partial pressBre= xP; from
equation (3.19)

dG, = -SdT + vdP (3.25)

Q.
®
I

= vdP = RT(dInP) (3.26)

the simple forms of these relations may be preserfoe other substances and

mixtures by defining terms called “fugacity” and dfial fugacity” at a fixed
temperature as

dG = vdP = RT(dInf) (3.27)

dG, = vdP = RT(dInf) (3.28)

in view of the following auxiliary conditions, thieigacity and partial fugacity can
reduce to the pressure and partial pressure atatwes

_f .

IF!H(')E = IF!rj)qﬁ =1 (3.29)
lim i limg = 1 (3.30)
xp - eed T :

where, the ratiosg and ¢3i are called fugacity coefficient and partial fudgci

coefficient respectively, then
f = ¢P (3.31)

and for each component in the mixture

f. = x4P (3.32)
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For pure substances, when the volume is known dsnation of the
temperature, either from direct measurement or fammempirical equation of state,

changes in fugacity may be found by integrationsth
17

In-2 = —[vdP (3.33)
RT ¢

sincef - P when P — 0, absolute values of the fugacity coefficient are

determinable by seR =P — @andP, =P, thus

i 15
n—— = X [vap (3.34)
P RT J
P p
i+t - [P+ [SdP (3.35)
rTC TP

z-1

f 1% RT ?
In = In— = —|(v—"d5>)\dP = |—=dP 3.36
¢ 5 — !( >) j 5 (3.36)

clearly, the integrands represent deviation fromalejas behavior and vanish at
P = 0. Since pressure-explicit equations of state aeentiore common types, a

useful relation for finding fugacity coefficients i
1% RT
Ing = z-1-Inz+—|(P-—)av 3.37
¢ - j (P-=") (3.37)

In a homogeneous mixture at a fixed temperatine fugacity of a particular
component of a mixture is defined by equation (B&& equation (3.32). A change
in partial fugacity with pressure is evaluated Iloyegration of the partial molar

volume at constant composition



16

1 %
12 = j v,dP (3.38)

=3
I

absolute values of the partial fugacity coefficiangé obtainable by taking advantage
of equation (3.32), which makeAs — X,P whenP — 0. The pressure integrals have

several useful equivalents

InXI—l'i‘lnF = ﬁ!vldp+-|[PdP (339)
~ RT 2 -1,

Ing = |— _ vV ——~)dp i 3.40
ng = In j( 5) j 5 (3.40)

all integrands vanish & = 0, the equation (3.35) can express in form

{E —ﬂ}dv RTInz (3.41)

RTIng =
# { on. Vv
When use the fugacities for phase equilibriumwdatton, the equation (3.27)
and (3.28) are integrated at constant temperabugenerate integration constants that

are functions of temperature

G = Ac3f+RT|ni0 (3.42)
f

for multicomponent system

A

G = AGif+RTInf—i0 (3.43)
f
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where, AG" is the standard Gibbs free energy of formationieatperature of the

system for componentin unit of joule per mole, which can obtain frohetGibbs-

Helmholtz equation

OAG IT AH |
( 8'|F ) TZI (3.44)

where, AH," is the standard enthalpy of formation at tempeeatf the system for

substance in unit of joule per mole. The enthaky be expressed in form Kirchhoff

equation

= AC, (3.45)

where, AC,, is the isobaric heat capacity of substance inafrjibule per mole.

From thermodynamic equilibrium condition, any casequilibrium between
phases requires equality ©f P, chemical potential and also partial fugacitiegath
component through out the system, thus

fFO _ £
f, = f

(3.46)

A A

@ )

f f
f@) i — f(2) I —
AG'Y +RTIn—o = AG'@+RTIn—q7r =

for the standard state fugacities,, specification of a standard state includes the

pressure and the physical state of the substascelly the one that is stable at the
system temperature, but not the temperature itselthe standard state does depend
on the temperature.

For gases the natural reference state is unitcftygat the temperature of the
system, which in most cases is very nearly 1 atm.

For condensed phase, the standard state natigraliysen as one at which the

fugacity is readily calculable. When the vapor ptes is known, the fugacity of the



18

condensed phase may be taken as that of the vapee [in equilibrium with it at the

temperature of the system. Adjustment of that fitydo the system pressure is given

by

T %’— (3.47)

For solid, vapor pressure data are not alwaydahtaj but usually the melting
point and sometimes the triple point are known arednearly the same. The pressure
at conditions is the vapor pressure, which cantitaimed by extrapolation of a vapor-
pressure equation below the freezing point. Subm@gadjustment of the fugacity of

the solid to the system pressure and temperatunade with the equation

H Id
RT?

In%: PJ'

(3.48)

P“’

at moderate pressure particularly,— H'® may be taken as the heat of sublimation.
When this has not been measured, it may be appabednas the sum of heats of
fusion and vaporization, or it may be figured frempor-pressure data of the solid

with the Clausius-Clapeyron equation with Antoinetgistant.

3.1.1.1P —v —T Equation of State Model

Consider the Vapor-Liquid Equilibrium (VLE) systeat fixed temperature

and pressure, the molar Gibbs of the individuaaoh phase is

A A

AG), +RT |n;i—g = AG, + RTIn::— (3.49)

iv iL
from equation (3.46), using equi-fugacity condititims can be arranged to

fiv = 1?iL (3'50)



19

when using fugacity equations for both phase, avg@hase can be expressed as a

function of partial fugacity coefficient of eachmponent in the form

A

fu = YidP 3.51)

where, ¢3i\, andy; are, respectively, the partial fugacity coefficiamd mole fraction

of component in the vapor phase atandP. Likewise, we can definefiL for a liquid

phase by

A

fii = X% AiLP (3.52)

where x; is the mole fraction of componentin the liquid phase andr;iL is the

corresponding liquid phase partial fugacity coedint at T and P. Incorporating
equation (3.41) and (3.46), the following final exgsions for VLE calculation can be

obtained

Vdy = X (3.53)

Because of calculation for the partial fugacitgfficient usually deal with —
v — T Equation of State, the model is a relationshipveenh molar volume (or
density), temperature, and pressure. Equationstaté glay an important role in
chemical engineering design, and they have assamedpanding role in the study of
the phase equilibria of fluids and fluid mixtur@here are many advantages in using
equations of state for phase equilibria calculaidBquations of state can be used
typically over wide ranges of temperature and pnessand they can be applied to
mixtures of diverse components, ranging from thgatligases to heavy liquids. They
can be used to calculate vapor-liquid, liquid-ldyuiand supercritical fluid-phase
equilibria without any conceptual difficulties. Than der Waals equation of state
was the first equation to predict vapor-liquid cisgance. Later, the Redlich-Kwong
equation of state (Redlich and Kwong, 1949) impdbtlee accuracy of the van der

Waals equation by introducing tem-perature-depeceléor the attractive term. Soave
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(1972) and Peng and Robinson (1976) proposed additimodifications to more
accurately predict the vapor pressure, liquid dgnand equilibria ratios.

Considerable progress has been achieved in thelagewent of equations of
state. Many highly successful empirical equatiohstate have been proposed that
can be used to calculate the phase behavior oflesifiygds. However, a more
sophisticated approach is required for complicaedecules. To meet the challenge
posed by large and complicated molecules, equatbrstate are being developed
increasingly with an improved theoretical basise3d new equations are playing an
expanding role in the accurate calculation of fpithse equilibria. Equation of state
development has been aided greatly by new insighdsthe nature of intermolecular
interaction and molecular simulation data. In gatar, molecular simulation is likely
to have an ongoing and crucial role in the improgetof the accuracy of equations
of state. A continuing challenge is to improve pediction of the phase behavior of
mixtures. The main impediment to the prediction noixture phenomena is our
understanding of interactions between dissimilale@udes. This is also an area that is
likely to benefit from the input of molecular sinatibn data.

3.1.1.2 Activity and Activity Coefficient Model

For multi-component and Liquid-Liquid EquilibriurLLE) system, from

equation (3.46), using equi-fugacity condition

fO = §@ (3.54)
from equation (3.49), hence

x®

yO = x@,0 (3.55)

the parameters for the activity coefficient moded ased the same for both phase.

when using activity models for liquid phase

>
=

(3.56)

— ‘_
r o
Il

o

|

X
=X
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Table 3.1Partial fugacity coefficient from some equatiorstdte

EoS Model Partial fugacity coefficient

|n¢3i = R_F-:-{Bii +O'5|:Zzyjyk(25ji_5jk):|}

BP

iri P=1+— _
Virial +RT B_ZZyiij”
5, =2B, -B, - B,
5, =2B, -B, - B,
~ 2 )
ng - L—In[z(l—g)}——\'aa’
-b v RTv
vdw P:vR—Tb_v%
a=( via)
b=zyibl
Ing = H(z—l)—ln[zl—g)}
SRK P RT N aa b v
v-b v(v+Db) aa |b 2 b
=2 2 Yy (aa); |In(l+=
bRT{b aazj“y’(a)”} &+

whereg; is the activity of component y; is the activity coefficient of componentso,
the final expressions for vapor-liquid equilibriucalculation when using activity
model can be obtained

Yidy = %7 fo (35
and for VLLE, express in term

Ve = xyO1
(3.58)

yi(;iv = Xi?’i(z) fn?(z)



Table 3.2Some activity coefficient model
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Model Activity coefficient
m m A .
Ny, = - xAy)+1-Y e
j=1 k=1 ZXjAjk
j=1
Wilson
vy A
Ay = Te p(‘ﬁ
Ay =A; =1
Seex L o ( S x.7,G,
|n7| _ J + Z ml JI Tij _ n=1m
ZGHXI = ZG” X L zGleI
1=1 1=1 1=1
NRTL 95 0
TR

Iny¢ = 1-J +InJ, -5q (1—%+In%)

R = q%—}{@éﬁ—%mé%ﬂ

k

=
=
|

UNIFAC I Q
= S = zel Ty




23

3.1.1.3K — values for Phase Equilibrium Computation

An equilibrium ratio is the ratio of mole fractiaf a species present in two
phases at equilibrium. For the vapor-liquid cake,donstant is referred to as e-

value or vapor-liquid equilibrium ratio

K - % (3.59)

For the liquid-liquid case, the ratio is referramd as the distribution coefficient or

liquid-liquid equilibrium ratio

@
X

Koi = pe) (3.60)

For equilibrium stage calculations involving thepamation of two or more
components, separation factors are define by fagmatios of equilibrium ratios. For

the vapor-liquid case, relative volatility is dediby

a. = —- (3.61)

ﬂij = i (3.62)

Equilibrium ratios can be expressed by the quastipartial fugacity and

activity coefficient as show in previously.
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Table 3.3Useful expression for estimatikg— value for VLE

Forms Equation Application

Hydrocarbon and light

gas mixtures from

Equation fo State Ki = = cryogenic
temperatures to the
critical region

All mixtures from

Activity coefficient Ky = 7’.;_% ambient to near-
' critical temperature
ps Ideal solutions at near-
Raoult’s law KB = — .
P ambient pressure
. Nonideal liquid
Modified Raoult’s y, P _
K, = = solutions at near-
law P .
ambient pressure
Nonideal liquid
solutions at moderate
PS 1 %
Poynting correction  Ki = 7.4y '—Pexpﬁ .[ViLdP) pressure and below
RS .
the critical-
temperature
Low to moderate
H. pressures for species
Henry's law K. = — N
P at supercritical

temperature

For vapor-solid equilibria, a useful formulatioancbe derived if the solid
phase consists of just one of the components ovéip®r phase. In that case, the

combination of equation (3.41)gives

A

fis = & ¥P (3.63)
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at low pressureq?iv = 1.0 and the solid fugacity can be approximatedh®yvapor

pressure of the solid to give for the vapor phas#enfraction of the component

forming the solid phase

. (PiS)SoIid
i = 5 (3.64)

For liquid-solid equilibria, a similar useful foation can be derived if again
the solid phase is a pure component. Then the c@ahbn gives

fs = ?’iLXifiE (3.65)

at low pressure, the solid fugacity can be appratéu by vapor pressure to give, for

the component in the solid phase

(P®) soia

o= 1 75id 3.66
I ViL (PiS)Liquid ( )

3.1.2 Minimization of the total Gibbs Free Energyof the System

For multi-component and multiphase system at teatpeeT and pressure,
the Gibbs free energy functi@his expressed as a linear combination of the chamic

potential of each component in each phase, thetiegu®.15) can rewritten as

T

G = iZ Ny 44 (3.67)

i=1 j=1

chemical potential can be expressed in terms obssflee energy of formation and
fugacity, so equation (3.55) can be rewritten as,

N 7« 'F
G = ZZn”{AG”wRTlnf—”O} (3.68)

ij
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where, n; is the number of moles of componenpresent in phasg u; is the
associated chemical potentialjs the number of phases at equilibriuz\rcsijf is the
Gibbs free energy of formation of component phasg at standard stat® is the
gas constant;ﬂj is the partial fugacity of componentin phasej and 1‘”O is the

fugacity of pure componemnat standard state.

3.1.2.1 The Gibbs Free Energy Function

For vapor-liquid (VL) and vapor-liquid-liquid (VLLequilibrium, for equation

of state models for both vapor phase and liquidsphthus

L

i nl Irl(¢|L |L) + znw In(¢|v y|)+ zznu (AG +RTIn P) (369

i=1 L=1 |1]l

N

-
1l

where 7" is the number of liquid phase and, thus, the éguatan be used as the
objective function for VLE and VLLE problems.

Note that, for vapor-liquid (VL) and vapor-liquidwid (VLL) equilibrium,
the Gibbs free energy of formation of a componaritquid state is related to that in

vapor state by
AG, = AG) +RTInP* (3.70)

where P®' is the saturated vapor pressure for pure componeat T. This

approximation is valid only when componerdoes not associate in the vapor phase
and its vapor pressure is under 2-3 atm.
Therefore, the Gibbs free energy function when agtersity model for liquid

phase can be modified as follows

L

i nIL In(%LXlLPSBI)_l_anV In(¢|v y| P)+R_ZZnIJAGI\f/ (371)

i=1 L=1 i=1 j=1

N

-
Il

so, the equation is the simplified objective fuanti for vapor-liquid-liquid

equilibrium (VLL) problems. The equation (3.71) atso useable for vapor-liquid
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equilibrium same as equation (3.58). The differesdie partial fugacity coefficient

in liquid phase in equation (3.59) is describedh®/same thermodynamic model.
For liquid-liquid equilibrium, from equation (3.h6the Gibbs free energy

function can be simplified to

N 7z 1 N 7«

> >0y In(y;%;) +EZZ n; AG (3.72)

=1 i1 j-1

G _
RT i

therefore, the equation is the objective function liquid-liquid equilibrium (LLE)

problems.

3.1.2.2 Constraints for Optimization

When only phase equilibrium is involved, the camagon of moles of each

component must hold

inij = Ny (3.73)

=1

where n. is the total mole of component i in the systenede The boundaries on

variables are

o
IA
>
IA

n.  i=12..N (3.74)

For simultaneous phase and chemical equilibriuhe tonservation of

chemical elements must hold

N 7
zaienij = b, (3.75)
=1

j=1

wheree = 1, 2, 3, ... M; ae represents the number of gram-atom of eleneeint
component, be is the total number of gram-atom of elemeniis the system anil is
the number of elements. The boundaries on variates
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0 < a.n; < b (3.76)

thus, to obtain phase compositions at equilibritim hecessary to find the minimum
of the Gibbs free energy subject to the constraamd the boundaries imposed by
equation (3.61) and (3.62) ,or equation (3.63) ¢h@4) for simultaneous chemical

equilibrium.

3.2 Application to the Statistical Associating Fluil Theory Model

Statistical thermodynamics-based equations oé sgatrticularly the statistical
associating fluid theory (SAFT) approaches, havenbproven their application in
prediction of phase behavior over a decade agongiwand Radosz (Huang and
Radosz, 1990, 1991, 1993) have developed an equatistate from the concept of
the statistical associating fluid theory (SAFT) eq@rh previously proposed by
Chapman et al. (Chapman et al., 1988a, 1988b, 19889, 1990). This equation of
state is generally known as the SAFT equationatestJnlike the cubic equations of
state, the SAFT equation of state does not onlyigeophysical meaning from the
concept of hard sphere effect but also includesncledfect and association of

molecules.

3.2.1The Statistical Associating Fluid Theory Equation 6 State

In the SAFT model, the molecules of each spediespproximated as chains

composed of the equal-sized spherical segmentsdifféirent number of segments,

m; the temperature-independent segment molar volurffe,and the temperature-
independent segment interaction energy,. For the associating molecules,

considered through the hydrogen bonding, the astogienergy parametet’®; and

the association volume parameté¥; are used to characterize the association bounds
between site# andB. The value of these parameters can be obtained thie works

of Huang and Radosz. The SAFT model is generalpressed in term of the molar

Helmholtz free energys; as following expression

a = a‘+a™+a’™ +a™" +a™ (3.77)
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where, the superscriptd, hs, disp, chain, andassoc represent the contributions of

ideal, hard spheres, dispersion, chain, and asgmtiaespectively.

The ideal molar Helmholtz free energy term

The ideal contribution is based on the molecuiarrhodynamics as expressed
by Silbey and Alberty, 2001 and is given by

N

= Y. xIn(N,pAY) - 1 (3.78)
i=1

for pure Components

2 In(NAY) - 1 (3.79)
RT AP '

where,A; is the de Broglie wavelength of each speciesthe mixture at temperature,

T; of the system, and determined from

> 12
A = {i( h ﬂ (3.80)
27\ M KgT

here, p is the component density of mixture and equakto where,x is the mole
fraction of component in the mixture,p is the molar densityN is the number of
components in the mixturdly is the Avogadro’s numbel; is the molecular mass of
each conponeritin the mixture.h, R, andkg are the Plank’s constant, Gas constant

and Boltzmann’s constant, respectively.

The hard-sphere molar Helmholtz free energy term

The hard-sphere contribution for a mixture of hgptieres used by Huang and

Radosz is expressed as fallow
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(€3)°

a® 6 (643066 -%G (&) [ (6P
RT ﬂNAp 4’3(1_53)2 (go jln(l é}):l (3.81)

where( is a function of the molar density, which is givan

N
¢ = %inmidi; i=0,.3 (3.82)
i=1

where,d; is the temperature-dependent segment diametemgpanent, this term is

determined from

d, = a“[l—Cex;{_su?ﬂ (3.83)
ko T

and gji is the temperature-independent segment diametepmiponent, which is

determined from

be
- (V;)OEJ (3.84)
N

where,C andr are equal to 0.1274/2 16 respectively. For pure component, the hard-

sphere term in equation (3.69) reduced to

a _md (3.73)

where,a)® is the hard-sphere Helmholtz free energy per rabgegments, and

ag" 4n -3y’
Rt (3)85

with a segment packing fraction (pure components)
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n = AP g0 (3)86

The dispersion molar Helmholtz free energy term

The dispersion contribution used by Huang and Radaobased on a square-

well fluid and expressed as fallow

adisp agisp 4
= m

e (v ()
RT RT m;;Dij(kBTj (rj 347)

where,al™® is the dispersion Helmholtz free energy per mélsegmentsD;; are the

universal constant; is the average reduced density (segment packaagydn), given

by

7ZN N
7= G o= TP amd; (3.88)
i=1

There are two approaches to determine the averagment numberm; average

segment energy; in mixtures, namely, the van der Waals one-patem@dw1)

mixing rule
N
m = > xm (3.89)
i=1
and
X X V| —
u i=1 j=1 l ]mi ah KT
= (3.90)

o iixixjmimjvi?



v - {%[(vﬁ)%ﬂvz)ﬂ}g

u; = @Q-kj)uuy )%

ij i

and

x (mvy)
f = N—
Z;‘X,- (m;v)
j=
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(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

where,u;, v/, andu; for this mixing rule are obtained from equation8@, (3.82),

and (3.83) respectively.
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=1 =2 =3 =4

=1 -8.8043 2.9396 -2.8225 0.34
]=2 4.1646270 -6.0865383 4.7600148 -3.1875014
j=3 -48.203555 40.137956 11.257177 12.231796
j=4 140.43620 -76.230797 -66.382743 -12.110681
]=5 -195.23339 -133.70055 69.248785 0.0
]=6 113.51500 860.25349 0.0 0.0
=7 0.0 -1535.3224 0.0 0.0

j=8 0.0 1221.4261 0.0 0.0

1=9 0.0 -409.10539 0.0 0.0

In this article l;j andy for the vf mixing rule are neglected. The constalkg
and the binary parametky can be investigated from Huang and Radosz. ItldHme
note that the average segment number in the vdWdngnrule sometime can be
replaced by the expression of equation (3.84) &®8bJ with neglect the adjustable

parametet;;.

The chain molar Helmholtz free energy term

The chain term, the Helmholtz free energy increnukre to the presence of
covalent chain-forming bonds among the segmentsbealetermine from

chain

a p—
RT

ZN:Xi (L-m)In(g, (d;)"™) (3.99)

where, the pair correlation function for a mixtwfehard spheresg, (d,)™; is given

by

g,(d)™ = (3.100)

1 .4 & +2(gj (&)’

-4, 2 0-4)? 12) @)y
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the more general pair correlation function, threntés expressed as fallow

gij (dij)hs _ 1 " 3diidjj 42 +2[ diidjj j (42)2 (3101)

1-¢, d;+d; 1-&,)? d; +d; 1-<)°

In addition, the pair correlation function for axtare of hard spheres given by

equation (3.89) and (3.90) can be used to apprdeitha pair correlation function for

a mixture of hard segments, sg, (d;)** = g, (dij)hs; which is used to evaluate the

association strength”®® ; for expression of the association contributiomte

The association molar Helmholtz free energy term

The association term is considered when the mestwontain associating

molecules, considered through the hydrogen bondinig. term is given by

{In XA —ﬁ}i} (3.102)
2 2

amc N S
= Xi z

RT i=1 A=1
here,S is the number of association site of each speri&s® is the mole fraction of

component not bonded at sitd; >. is summation over all site on molecuigand
A

1
XA = N (3.103)
1+ N D pxoah®

j=1B;=1

and the association strengtkf}”

AB
A = gi?eg(diﬂ{exr{g ]_l}aﬁff”‘ (3.104)
kg T
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where

o, = (3.)06

3.2.2 The Proposed Model for the Gibbs Free Energylinimization

At constant temperature]; and pressure,P; the condition of the
thermodynamic equilibrium in any systems is thalt@ibbs energy of the systefg,
must be reach the global minimum. So that, theabe function of this problem is

to find the amount of the components and the dessif each phase that minimize
7z N ak

I n|l—/ 4+ z 3.107

o - Shn(g - (3.107)

The thermodynamic model constraint is expressed as

P
P RT

_— 3.108)

when the systems do not including any chemical ti@ac the material balance
constraint is

N = znik 3.109)
k=1

and the boundaries constraint
0 < p (3.110)

0 < n < n; (3.111)
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where Kk is the desired number of phase of the systemualil@gum, n;r is the amount
of component at feedni is the amount of componeinin phasek at equilibrium, and

zis the compressibility factor of each phase, whscttetermined from
0
z = pﬁ (3.112)
op

Xik» T

here,ax andz are determine from using the amounts of componamisthe density

of phase&k. When the association effect is taken into accahetinternal problems for

evaluation of X# must be solved for equation (3.91). Hence, thetom (3.92) can

rewritten as

N S
fo = XA+NDY D (o, XAXHAY) -1 (3.113)
j=1B.=1

i

which has the Jacobian elements

of NS

A = LN S (0 XA+ N X (3414)
i=1B;=1

of

axAB,- = Nap XAa% (3.115)

to evaluate the compressibility factor, it needs erdy solving for theX” but also

the derivatives of theX” with respect to the density of each phase. Froen th

differentiation of equation (3.92)

= - | ! | (3.116)
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where
8AABj _ a(g (du)) AB; 3 __AB;
- [ ,{ %Tj L (3.117)
and

1 { &y

-7
o(gy(d,) _ 3d..d,,{ & 2%, } (3.118)
op -7 -4 |

2
5 %id; { 26, 3 }
dii +djj (1_ 4/3)3 (1 ;3)4
the equation (3.102) can be solved with the lirsyatem of equations, that is

Qy =c (3.119)

here,y is theNs * 1 vector comprising the derivatives of th&* ,where

ﬁl:s, (3.120)
Q is anNg x Ng matrix with coefficients
g = 1+N,(XA)?pArh (3.121)
g = Nu(X")p, A (3.122)



38

andc is anNs x 1 vector with elements are given by

33
Sj % B 8AA‘BJ)} 123)

noting that, theX # for equation (3.100) is bracketed B§"* =0 andX* =1 for all
association sites. thus, to obtain phase compasit equilibrium it is necessary to
find the minimum of the Gibbs free energy as gibgrequation (3.95) subject to the
constraints imposed by equation (3.96a), (3.96l0) eguation (3.97a), (3.97b) with
internal problems by equation (3.100) and (3.102).



CHAPTER IV

HYBRID DIFFERENTIAL EVOLUTION
WITH THE GRADIENT-BASED ALGORITHM

4.1 Differential Evolutionary Algorithm

Many chemical engineering designs, control, process simulation or other
engineering problems usually result in solution of optimization problems. Different
classes of search techniques like gradient-based techniques, random search techniques
or stochastic-based techniques are developed to deal with the optimization. Recently,
many researchers have reported that evolutionary programming namely Differentia
Evolution (DE) is successfully used for solution of the optimization problems
(Munawar and Babu, 2000; Angira and Babu, 2001). The algorithm is stochastic
techniques whose search methods model a natura evolution. That is why the
terminology used in DE is taken from biology, which islisted in Table 4.1

Table 4.1 Differential evolution terminology

Evolutionary terminology Mathematical programming equivalent

Chromosome or genotype or individual Vector of decision variables

Population Set of vectors of decision variables

Generation [teration

Fitness or phenotype Evaluated objective function at iteration

Mutation Perform perturbation vector (referred to
DE strategies) for each individual

Crossover Recombination between individual and
its perturbation vector to produceitstria
vector

Selection Choose anew individual from better

fitness of the former individua and its
candidate (trial vector)
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Start

Set the parameters F,
Cr, NP, and NG

v

Generate the initial population
randomly

v

Set generation = 1

}

Mutation

A

Generation =
Generation + 1 Crossover

Selection

Generation = NG ?

Report solution

Figure 4.1 Flow chart of Differential Evolution

DE start with randomly create a population from the search space. The
population evolves towards the better chromosomes (obtained solution) by applying
special operators modeling the evolution processes occurring in the nature, as follow
mutation, recombination or crossover, and selection. Following Fig. 4.2, the algorithm
starts with specifying the parameters, namely, amplification factor (F), crossover
constant (Cr), type of strategy, population size (NP), and maximum number of
generations (NG). The three main steps. mutation, crossover, and selection on the
population, are carried out. Mutation and crossover operations are performed to
diversity the search thus escaping from the local minima. The DE scheme entirely
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corresponds to a typical Evolutionary Algorithms (EAS). It is close to Genetic
Algorithm (GA). The principle difference consists in the mutation operation. In GA,
mutation is provided by arithmetical combinations of individuals. The core of this
operation is the formation of a difference vector which makes mutate an individual.

For DE, the mutation operation is denoted by differentiation.

Initialization

All variants of Differential Evolution start with initiaization of the first
generation. Theinitial populations are created randomly by the algorithm (Fig. 4.2).

initial point

- -

_____

v

Figure 4.2 An example of a two-dimensional objective function showing its contour

line and the process for generating initial point

Then, for each generation, the individuals for each population are update by
reproduction scheme. That consists with the mutation, crossover, and selection
operation. To produce a new one, the operation of mutation and crossover are applied
one after another. Next the selection operation is used for choose the best from
candidate solution.
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Mutation

For each obtained vector, X; ;j=12..,NP where N is a number of

dimension and NP is a number of population, a mutant vector is generate according to
DE with strategy 7

n %) (4.1)

where random index r,,r,,r, € {12,...,NP} are not equal to index j. F isarea and

constant factor € [0,1] which controls the amplification of the differential variation

(X, —%.)-

Crossover

In order to increase the diversity of the perturbed parameters vectors,
crossover isintroduced. From the end of mutation, the obtained mutation vector is

Vi = (Ve V) (4.2)

at the end of this operation, the trial vector isformed

>gi it rand(iy>cr)y o2 N (43)

{vu if (rand(i) < Cr)

i =

in (4.3), rand(i) is the i th evauation of random number generator with outcome
e [01]. Cr is the crossover constant e [01] which has to determine by the user.

Fig. 4.4 gives example of the crossover mechanism for 10-dimensinal vectors.
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Figure 4.4 Illustration of the crossover process for 10-dimentional vector



Selection

To decide whether or not it should become a member of generation j + 1, the

trial vector U; is compared to the target vector X; . If vector U; yield better optimum

value than )‘(j , then )‘(j set to Uj , otherwise, )‘(j isretained.

The strategiesin Differential Evolution

In 1997, Price & Storn gave the working principle of DE with single strategy.
Later on, they suggested ten different strategies of DE. The general conversion used is
DE/xly/z. DE stands for Differential Evolution, x represents a individual denoting the
vector to be perturbed, y is the number of difference vectors considered for
perturbation of x, and z stands for the type of crossover being used.

The following are the ten different working strategies proposed by Price &

Storn (exp stands for exponential crossover, while bin stands for binomial crossover).

1. DE/best/1/exp 6. DE/best/1/bin
2. DE/rand/l/exp 7. DE/rand/1/bin
3. DE/rand-to-best/1/exp 8. DE/rand-to-best/1/bin
4. DE/best/2/exp 0. DE/best/2/bin
5. DE/rand/2/exp 10. DE/rand/2/bin

There are described as follows, the best/1 scheme

) (4.4)

Vi = X +F-(X, =X,

the rand/1 scheme, from equation (4.1)

the rand-to-best scheme

<l

= Koy T F Koo = Kipay) T F (X, — X)) (4.5)

j indiv indiv
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the best/2 scheme

V, = R +F-(X —-X +X —X.) (4.6)
and the rand/2 scheme

V = X +F-(X —X_+X —X) (4.7)

where, indiv represents a vector individual j; best represents individual that has the
best objective value in current generation, and r,,r,,1,,1,,r; € {12,...,NP} are not

equal to indiv and best.

The pseudo code for DE/x/ylexp

The pseudo code for exponential crossover scheme of Differential Evolution is

given below
Q) random number of dimension, i = 12..,N;andsetl=1

2 dou, = v (anyx/yscheme)

3) setl=l+1andseti=(i+1)%N
(4)  ifrandomnumber ¢ [01] < Cr andl < Ndogoto (2) elseend

The pseudo code for DE/x/y/bin

The pseudo code for binomial crossover scheme of Differential Evolution is

given below
@ random number of dimension, i = 12,..,N,andsetl=1
(2)  ifrandomnumber € [01] < Cr orl=Ndou, = v,

(any x/y scheme), and then goto (3)
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©)] ifI<Ndoseti=(i+1) %N;setl =1+ 1; and then goto (2) else end

4.2 Typical Constraint Handling Techniquesin Evolutionary Algorithms

One of the major problems of any evolutionary computations is the evaluation
function. The evaluation of function is used to assign aquality for each individual in a
population. Generally, a search space usualy consists with feasible and unfeasible
subspace. Therefore, it is necessary to assume that the unfeasible solutions have no
more quality than the feasible solutions in each generation, athough some infeasible
solutions have better objective value after evaluation operation.

From Fig. 4.4, shade areas are the feasible region, while bright area represents
the infeasible region. Based on Fig. 4.4, the population contain some feasible (a, b, c,
X) and infeasible individual (d, y), x is the optimum solution of the objective function
with constraints, while y is the optimum solution when the objective function is
without any constraints. The problem of this optimization is how to obtain the feasible

optimum solution. For example, assume that

evaluate, (s) > evaluate,(p) (4.8

Figure 4.5 A general search space

for Vs e feasbleset, and Vp e infeasibleset. Later on, these

approaches were developed to the penalty function approach for penalize infeasible
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individuals. In general, constraint handling scheme in DE or other evolutionary

computations usually implemented before the selection process (Fig. 4.5).

»  Mutation

l

Crossover

!

Evaluation

Generation =

. Constraint
Generation + 1

handling

Selection

Generation = NG

Report solution

Figure 4.6 A constraint handling scheme in Differential Evolution

In most applications of DE and other EAs to constrained optimization
problems, the penalty function method has been used. In the penalty function method
for handling inequality constraints in minimization problems, the fitness function
F(X) isdefined as the sum of the objective function f(X) and a penalty term which
depends on the constraint violation, consider a general constrained optimization, as

follows

Optimize f(X)

Subject to l, < 0,(X) < u, m=12,...M (4.9
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where X represents the solution vector, f(X) is the objective function of the
problem, while g,,(X) and h,(X) are the inequality and equality constraints,

respectively, that define the feasible region. In the application of DE and other EAsto
any constrained optimization problems, handling the constraints is one of the difficult
tasks. The penalty method is perhaps the most commonly used technique. It basically
transforms the constrained problem to an unconstrained one by augmenting the
constraints to the objective function as a penalty term. When the solution isinfeasible,
its objective value is penalized according to the degree of constraint violations.

Generdly, the penalized objective value is computed using the expression
F(X) = f(X)+ p(X) (4.20)

where p(X) is the penalty function representing the degree of constraint violation

computed as

p(x) = iw;; -Max{0.0,g,,(X) - u,, } + iw;; -Min{0.0,g,,(X)-u,,}

+iwn |h, (%) —c,| (4.11)

where W and w are the penalty values of the upper and lower bounds of the

inequality constraints, and w, are the penalty values for the equality constraints. For
minimization problems, if the solution is infeasible, the objective value is increased
by the penalty term. For maximization problems, the penalty term is used to decrease
the objective value. In other words, a highly infeasible solution would be penalized
and would rarely be selected by the reproduction scheme.

The major concern of this method is how to choose a proper penalty value (w)
for each constraint so as to efficiently guide the search toward a promising area of the
search space. A large penalty value will lead to premature convergence (i.e., trade off
too much optimality for feasibility), while a small penalty will not only increase
computational time, but also admit too many infeasible solutions (i.e., not enough
pressure given to the penalty term to maintain feasibility).
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4.3 The Proposed Hybrid Algorithm

This constraint handling technique is proposed by Chootinan and Chen in
2006 for repair infeasible individuals in Genetic Algorithm (GA). The main idea of
the technique is to utilize the gradient information derived from the constraint set to
systematically repair the infeasible solutions. Basically, the gradient information is

used to direct the infeasible solutions toward the feasible region. Let V consist of

vectors of inequality constraints g and equality constraints h

vV = PM“} (4.12)
thl (M+N)x1

the derivatives of these constraints with respect to the solution vector,

_ V.3
VV = { Xg““l} (4.13)
thle (M+N)x1

therefore, the relationship between changes of constrains with respect to the solution

vector, can be evaluated by,

V.V XxAX = AV = AX = V.V xAV (4.14)

where AV isthe degree of constraints violation, and can be evaluate by

_ {Min{0.0,um ~ o+ Max{0.0,l,, - gm}} (4.15)

AV =
hn -G,

The repair procedure (Chootinan, and Chen, 2006), set the repair rate (P;). It issimilar
to the probability of mutation (Py). If it is impossible to make the infeasible solution
feasible, avery high penalty is applied.

To evaluate the pseudo inverse, in mathematics and in particular linear
algebra, the pseudo inverse A" of a mxn matrix A is a generalization of the inverse

matrix. More precisely, this article talks about the Moore-Penrose pseudo inverse,
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which was independently described by E. H. Moore in 1920 and Roger Penrose in
1955. Earlier, Fredholm had introduced the concept of a pseudo inverse of integral
operators in 1903. The term generalized inverse is sometimes used as a synonym for
pseudo inverse. If the columns of A are linearly independent, then A'A isinvertible. In

this case, an explicit formulais

AT = (ATA)TAT (4.16)

if the rows of A are linearly independent, then AAT is invertible. In this case, an

explicit formulais,
A" = AT(AA)! (4.17)

if both columns and rows are linearly independent (that is, for square nonsingular

matrices), the pseudo inverseisjust the inverse:
A = A* (4.18)

The pseudo code for gradient-based repair algorithm can be summarized, as

follow

Step 1

For any solution, determine the degree of constraint violation, equation (4.15),

If the solution is infeasible, generate a random number y from the interval [0.]. If

y < P ,sett=1andgoto step 2, otherwise return.

Step 2

Compute VV * and AX. Note that only non-zero element of AV are included

for further computations of VV * and AX.
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Step 3

Update the solution vector by X' = X'+VV ™ xAV .

Step 4

Evaluate the updated solution vector. If Max,,

X -x| = n andsolutionis

1
still infeasible, set t =t +1 and go to step 2, otherwise return. 7z is the minimum

adjustment for the solution vector (e.g. 10).

4.4 Test Problems Benchmark

Phase equilibrium examples considered in this study include vapor-liquid
equilibrium (VLE), liquid-liquid equilibrium (LLE), vapor-liquid-liquid equilibrium
(VLLE) and gas-solid equilibrium examples involving multiple components and
popular thermodynamic models. Five typical examples were taken from the
dissertation for evaluating the developed DE, original DE using the vaues of
parameters found from the preliminary tests. All programs used in this study, were
implemented in C programming language and compiled with Cygwin.



4.3.1 n-Butyl Acetate and Water Mixture

Table 4.2 Results for n-Butyl Acetate and Water Mixture at 298 K, 1.0 atm

52

o DE with Gradient-Based DE McDonald and Floudas, 1995
Quantities
Liquid | Liquid Il Liquid | Liquid I Liquid | Liquid I
CeH1202 0.00016 0.49984 0.25584 0.24416 0.00016 0.49984
H.O 0.45486 0.04514 0.34522 0.15478 0.45486 0.04514
@ 0.45502 0.54498 0.60106 0.3989%4 0.45502 0.54498
F (mol™) -0.03407 0.15327 -0.3407
NFE 25796 40278 Not report
cVv 0% 9.32 x 109 Not report

Zs
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4.3.2 Benzene-Acetonitrile-Water Mixture

Table 4.3 Results for Benzene-Acetonitrile-Water Mixture at 333 K, 0.769 atm

53

Ouartities DE with Gradient-Based DE McDonald and Floudas, 1995
V apor Liquid | Liquid Il V apor Liquid | Liquid I V apor Liquid | Liquid I
CeHe 0.07993 0.00075 0.26415 0.06709 0.21815 0.05959 0.10464 0.00073 0.23946
CHsN 0.04630 0.02217 0.24187 0.05434 0.19023 0.06636 0.06163 0.02169 0.22701
H.O 0.03995 0.27383 0.03465 0.12266 0.05008 0.17546 0.05242 0.26235 0.03365
) 0.16618 0.29675 0.54067 0.24409 0.45846 0.30141 0.21869 0.28477 0.50012
F (mol™ -1.40964 -1.32703 -1.40852
NFE 235235 338871 Not report
cv 10 8.2 x 104 Not report

€s
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4.3.3 Esterification of Acetic Acid with Ethanol

Table 4.4 Results for Esterification of Acetic Acid with Ethanol at 355 K, 1 atm

54

DE with Gradient-Based

McDonad and Floudas, 1995

Quantities
V apor Liquid V apor Liquid V apor Liquid

C,HsOH 0.07322 0.00472 0.22187 0.03498 0.07463 0.00488
CH3;COOH 0.05840 0.01954 0.11237 0.14279 0.05915 0.02036
CH3COOC;Hs5 0.41326 0.00880 0.10092 0.14279 0.40880 0.01168
H.O 0.34280 0.07926 0.13645 0.10986 0.35772 0.06278
7 0.88768 0.11232 0.57161 0.43042 0.90030 0.09970

F (mol™) -90.78336 -90.48820 -90.7816

NFE 140544 Not report

cv 10 Not report
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4.3.4 Nine Hydrocarbons Mixture

Table 4.5 Results for Nine Hydrocarbons Mixture at 314 K, 19.84 atm

Quantities DE with Gradient-Based DE Castillo and Grossmann, 1981
V apor Liquid V apor Liquid V apor Liquid
Methane 0.57305 0.02186 0.29769 0.29734 0.57323 0.02167
Ethane 0.08506 0.01434 0.06071 0.03863 0.08510 0.01430
Propane 0.03216 0.01614 0.02274 0.02558 0.03220 0.01610
i-Butane 0.00417 0.00453 0.00423 0.00453 0.00418 0.00452
n-Butane 0.00829 0.01221 0.00849 0.01190 0.00830 0.01220
i-Pentane 0.00161 0.00538 0.00320 0.00384 0.00163 0.00537
n-Pentane 0.00220 0.00930 0.00591 0.00559 0.00216 0.00934
n-Hexane 0.00110 0.01281 0.00783 0.00606 0.00110 0.01280
i-Pentadecane 0.00000 0.16469 0.07610 0.08861 0.00000 0.16470
@ 0.70764 0.26126 0.48690 0.48208 0.70790 0.26100

F (mol™) -3.13406 -2.27968 Not report

NFE 1495374 2310698 Not report

cVv 10® 4.6 x 104 Not report

qg
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4.3.5 Reduction of ferric oxide

Table 4.6 Results for Reduction of ferric oxide at 1363 K, 1.0 atm

56

OQuantities DE with Gradient-Based DE Castillo and Grossmann, 1981
Vapor  Solidl  Solidll  SolidIll  Vapor  Solidl  Solidll  SolidIll  Vapor  Solidl  SolidIl  Solid Il
CO 2.73494 - - - 0.59074 - - - 2.73489 - - -
CO, 0.00604 - - - 0.23716 - - - 0.00606 - - -
H. 0.74702 - - - 0.41955 - - - 0.74701 - - -
0, 0.00000 - - - 0.67645 - - - 10-20 - - -
H,O  0.00298 - - - 0.33165 - - - 0.00299 - - -
Fe - 1.00000 - - - 1.0 - - - 1.0 - -
FeO - - 0.00000 - - - 0.00000 - - - 1020 -
C - - - 0.00902 - - - 1.91600 - - - 0.00905
0 3.49098 1.00000 0.00000 0.00902 2.25555 1.0  0.00000 1.91600 3.49095 1.0 1010 0.00905
F (mol™ -57.97944 -28.85774 Not report
NFE 141144 225044 Not report
cVv 10 8.9 x 103 Not report
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4.4 Test Problemswith the Statistical Associating Fluid Theory Model

Three different binary mixtures were used in the dissertation. The first mixture
IS non-associating system; the next two are 1 site self-associating, and the final oneis
2 Site sdf-associating. For al problems, the SAFT parameters used for each
component were taken from Huang and Radosz.

Test problem 1 and 2, non-associating System, These system are mixture of
ethene (1) and n-eicosane (2); and methane (1) and n-hexadecane (2). There are no

association sites on either molecule, so a8®° = 0 in equation (3.65).
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441 Test Problem 1

Table 4.7 Results for Ethene - n-Eicosane Mixture at 423 K, 20 bar

. DE with Gradient-Based DE Xu et al., 2002
Quantities
V apor Liquid V apor Liquid V apor Liquid
Ethene 0.39115 0.10885 0.32551 0.17252 0.37995 0.11904
n-Eicosane 0.00013 0.49987 0.46286 0.03546 0.00005 0.50096
p (mol/L) 0.58670 2.81560 3.54005 4.33759 Not report Not report
@ 0.39128 0.60872 0.79 0.21 0.38 0.62

F (mol™ -101.66254 -100.97967 Not report

NFE 68982 426804 Not report

cv 10 8.8 x 103 Not report
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4.4.1 Test Problem 1 (continued)

Table 4.8 Results for Ethene - n-Eicosane Mixture at 423 K, 250 bar

59

. DE with Gradient-Based DE Xueta., 2002
Quantities
V apor Liquid V apor Liquid V apor Liquid
Ethene 0.29139 0.65861 0.46450 0.48559 0.28908 0.66129
n-Eicosane 0.03861 0.01139 0.02462 0.02539 0.04092 0.00871
p (mol/L) 7.946 8.431 8.558 8.560 Not report Not report
@ 0.330 0.670 0.49 0.51 0.330 0.670
F (mol™ -94.05916 -94.06743 Not report
NFE 191702 274386 Not report
Ccv 1015 2.0x 104 Not report
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4.4.2 Test Problem 2
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Figure 4.7 Results for Methane - n-Hexadecane Mixture at 543 K
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Figure 4.8 Results for Methane - n-Hexadecane Mixture at 623 K
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Figure 4.9 Results for Methane - n-Hexadecane Mixture at 703 K



Mole fraction of Methane in vapor phase
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Figure 4.10 Simulation Results for Methane - n-Hexadecane Mixture



Table 4.9 Feed molefor test problem 1
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Components Feed (mole)
CeH120; 05
H.,O 0.5
Table 4.10 Feed mole for test problem 2
Components Feed (mole)
CeHe 0.34483
CH3N 0.31034
H.,O 0.34843
Table 4.11 Feed mole for test problem 3
Components Feed (mole)
C,HsOH 05
CH3COOH 05
CH3COOC;Hs5 -
H.O -
Table 4.12 Feed mole for test problem 4
Components Feed (mole)
Methane 0.594904600
Ethane 0.099399451
Propane 0.048299665
i-Butane 0.008700722
n-Butane 0.020501924
i-Pentane 0.006995458
n-Pentane 0.011500843
n-Hexane 0.013903715
i-Pentadecane 0.164693622




Table 4.13 Feed mole for test problem 5
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Components Feed (mole)
CO 0.75
CO, -
H, 0.75
o, 0.50
H,O -
Fe 1.00
FeO 2.00
Table 4.14 Feed mole for test problem 6
Conditions Components Feed (mole)
Ethene 0.50
423 K, 20 bar
n-Eicosane 0.50
Ethene 0.95
423 K, 250 bar
n-Eicosane 0.05
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Table 4.15 Equilibrium data for test problem 7 (Lin et al., 1980)

Mole fraction of methane

Mole fraction of methane

Pressure (atm) o _
inliquid phase in vapor phase
543 K
20.50 0.0831 0.9580
30.23 0.1208 0.9687
50.0 0.1884 0.9765
99.5 0.3322 0.9808
149.9 0.4539 0.9798
200.6 0.5512 0.97%4
222.5 0.6229 0.9719
623 K
20.71 0.0836 0.7930
31.39 0.1265 0.8453
50.0 0.2032 0.8865
99.7 0.3716 0.9132
150.3 0.5178 0.9097
176.1 0.5968 0.8970
201.3 0.7371 0.8733
703K
20.87 0.0697 0.3097
30.77 0.1363 0.4632
49.8 0.2822 0.5099




CHAPTER YV

CONCLUDING REMARKS

5.1 Conclusion

This study has proposed a constraint handling technique that can effectively
repair the infeasible solutions based on the gradient of the constraint set. Such
gradient information can be derived directly from the constraints or indirectly by the
finite difference scheme. Coupled with a real-coded DE, experimental results clearly
illustrate the attractiveness of the method for handling several types of constraint. It
can produce competitive, if not better, solutions compared to the stochastic ranking
method, which appears to be the most promising constraint-handling technique
reported thus far in the literature. In addition, asindicated by the results of several test
runs, the method proposed here is quite robust; similar solutions are always obtained
(i.e., indicated by a small standard deviation of the objective value). Experiments
were aso conducted to examine the effects of repair probability, which is the only
parameter in the proposed method, on the computational requirements and solution

quality.

5.2 Recommendation

For the future work, the binary interaction parameters for the SAFT equation
of state will be estimated from the developed DE. This DE in the dissertation will be
developed for more efficient algorithm to solve the engineering optimization

problems
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