
 

กลไกสร้างแรงจงูใจท่ีเข้ากนัได้สําหรับการประมลูพืน้ท่ีจดับธู 

 

 

 

 

 

 

 

 

นาย ภชูิทย์  สฤษดชิยันนัทา 
 

 

 

 

 

 

 

 

 

 

วิทยานพินธ์นีเ้ป็นสว่นหนึง่ของการศกึษาตามหลกัสตูรปริญญาวิทยาศาสตรมหาบณัฑิต 

สาขาวิชาคณิตศาสตร์ประยกุต์และวิทยาการคณนา       ภาควิชาคณิตศาสตร์  

คณะวิทยาศาสตร์   จฬุาลงกรณ์มหาวิทยาลยั 

ปีการศกึษา  2553 

ลิขสิทธ์ิของจฬุาลงกรณ์มหาวิทยาลยั 



 

AN INCENTIVE COMPATIBLE MECHANISM FOR BOOTH AUCTION 
 
 

 
 
 
 
 
 
 

Mr. Puchit Sariddichainunta  

 
  

 
 
 
 
 
 
 
 
 
 
 
 

A Thesis Submitted in Partial Fulfillment of the Requirements  
for the Degree of Master of Science Program in Applied Mathematics and Computational Science 

Department of Mathematics 
Faculty of Science 

Chulalongkorn University 
Academic Year 2010 

Copyright of Chulalongkorn University 









vi 

Acknowledgements 

First of all, I am deeply indebted to my advisor, Assistant Professor Dr. Krung 

Sinapiromsaran. He is not only a generous couch, but a role model which show that 

industrious work always repays. As well, he actively encouraged me to overcome all 

difficulties during course work and thesis completion. Meanwhile, I could not 

accomplish this thesis without his inspiration and persuasive instruction. The word 

thank you might not be enough. 

Sincere thanks and deep appreciation are also extended to thesis committees 

and conference anonymous reviewers of my submission at ICMSBE 2011 and IC2IT 

2011. They suggested me constructively to solidify my research. Besides, I would like 

to thank all professors in Master of Science Program in Applied Mathematics and 

Computational Science, Department of Mathematics, Faculty of Science, 

Chulalongkorn University, granted me scholarship and teaching assistantship. Also, 

they provided me financial support to participate the international conference. 

Furthermore, I wish to thank my friends: Suchit Pongnumkul and Charn 

Pruksapa who never ignore any of my words. Suchit initialized my knowledge 

endeavor and Charn examined feasibility of my ideas. I always obtained thoughtful 

comments in the dialogues with them. Moreover, all companions in AMCS computer 

lab are thankful to respond cordially to my inquiries. All of them constantly 

encourage me to complete this master thesis within two years. 

Importantly, I am most grateful to my family which is the most important 

thing in my life. Their unconditional love has brought me up. I really owe what I am 

to them. Especially, my mother and father always trust me to pursue my passion of 

higher education. My sisters look after me in many details to intensify my effort in 

this graduation and also my brother supports me from the heaven. They are very 

important part of my success. 

All honors of my graduation should go to people listed above and all errors 

should remain to me only.  



vii 

Contents 

Abstract (Thai) .............................................................................................................. iv 

Abstract (English) .......................................................................................................... v 

Acknowledgements ....................................................................................................... vi 

Contents  .................................................................................................................. vii 

List of Tables ................................................................................................................ ix 

List of Figures ................................................................................................................ x 

Chapter I  Introduction ................................................................................................ 1 

Chapter II  Problem background ................................................................................... 5 

2.1 Problem specification ...........................................................................5 

2.1.1 Linear alignment of a booth auction ..........................................5 

2.1.2 Failure of a simple greedy algorithm .........................................8 

2.2 Auction scenario ...................................................................................9 

2.2.1 Type of auctions .........................................................................9 

2.2.2 Setup and process .....................................................................11 

2.3 Theoretical concepts ...........................................................................14 

2.3.1 Preference and valuation ..........................................................14 

2.3.2 Mechanism design ...................................................................15 

Chapter III  Literature review ...................................................................................... 17 

3.1 Tractable structures of WDP ..............................................................17 

3.2 Mechanism design for WDP ..............................................................19 

Chapter IV Methodology ............................................................................................ 21 

4.1 Simplification of layout problem .......................................................21 

4.1.1 Integer programming ...............................................................21 

4.1.2 Dynamic programming ............................................................23 

4.2 Extensions ..........................................................................................27 

4.2.1 Integer programming ...............................................................27 

4.2.2 Dynamic programming ............................................................28 

Chapter V  Experiment and analysis ........................................................................... 30 

5.1 Simulation environments ....................................................................30 

5.2 Random sample simulation process ...................................................30 

5.3 Comparisons of algorithms running time ...........................................31 



viii 

5.3.1 Single line case ........................................................................32 

5.3.2 Double line case .......................................................................35 

5.4 Discussion of simulation results .........................................................38 

Chapter VI Conclusion ................................................................................................ 39 

References  .................................................................................................................. 41 

Appendices  .................................................................................................................. 44 

 Appendix A Sketch proofs of counting .................................................... 45 

 Appendix B Total unimodularity ............................................................. 49 

Biography  .................................................................................................................. 53 

 

  



ix 

List of Tables 

 
Table 2.1: Combinatorial bidding case which a greedy algorithm cannot achieve 

global optimal ..............................................................................................9 

Table 2.2: The matrix displays categories of some well-known auctions ...................10 

Table 5.1: The average running time of each algorithm for the single line case ........32 

Table 5.2: The average running time for the single line case when the number of 

bidders increases ........................................................................................34 

Table 5.3: The average running time of each algorithm for the double line case .......35 

Table 5.4: The average running time for the double line case when the number of 

bidders increases ........................................................................................37 

 

 



x 

List of Figures 
 

Figure 2.1: A layout in the exhibition hall ....................................................................5 

Figure 2.2: Single line and double line layout ..............................................................6 

Figure 2.3: Notation for a bundle of blocks in both single and double line case. .........6 

Figure 4.1: The two-dimensional array data structure corresponding to the bundle 

notation. ....................................................................................................23 

Figure 4.2: Layout with multiple zones. .....................................................................27 

Figure 4.3: Layout with multiple zones and physical obstructions ............................27 

Figure 4.4: The illustrations of data structure corresponding to the layout in Fig. 4.2, 

the multiple zones .....................................................................................28 

Figure 4.5: The illustrations of data structure corresponding to the layout in Fig. 4.3, 

the multiple zones with obstructions ........................................................29 

Figure 5.1: The comparison of average time among three methods (single line) .......32 

Figure 5.2: The distribution of running time among three methods (single line) .......33 

Figure 5.3: The distribution of running time for each algorithm for the single line 

case when the number of bidders increases ..............................................34 

Figure 5.4: The comparison of average time between two methods (double line) .....35 

Figure 5.5: The distribution of running time among three methods (double line) .....36 

Figure 5.6: The distribution of running time for each algorithm for the double 

line case when the number of bidders increases. ......................................37 

Figure A.1: The induction flow of the selectable options, the single line case. ..........45 

Figure A.2: The induction flow of the selectable options, the double line case. .........46 

 



1 

 
 

Chapter I 

Introduction 

 Auction is a well-known process to determine allocation of some scarce 

objects which are highly demanded by many agents . In a general auction1

Combinatorial auction 

, there is 

only one owner, so-called auctioneer, and several agents, so-called bidders to 

participate in the event . For the purpose of maximizing revenue, the auctioneer 

imposes justifiable competition rule such as price submission method and payment 

method for bidders. On the other hand, bidders submit their competitive price 

according to their willingness to pay in order to maximize their utilities. At the end of 

an auction period, the auctioneer evaluates those offers and determines the most 

advantageous bidder to be the winner of the auction. This kind of revenue 

maximization problem is known as the winner determination problem (WDP) . 

 Combinatorial auction is the advance study in auction theory. To illustrate 

difference, the general auction usually refers to a single object auction, while the 

combinatorial auction refers to multiple objects auction as well as the characteristics 

of objects such as divisibility of goods, identical or nonidentical objects, and 

continuous or discrete quantities. Moreover, bidding options and expression are 

another concern. Bidders offer price for the bundle of objects following the rule set by 

the auctioneer such as permitted bidding options, bidding language and payment 

method. Consequently, it is a complex process not only for the auctioneer to decide 

his optimal allocation, but also for the bidders to determine their optimal strategies for 

individual best pay-off.  Therefore, the characteristics of a combinatorial auction, 

which relax bidding options and additional rules, incur tremendous calculation cost to 

both the auctioneer and the bidders.  

 It is quite reasonable to think that the utilization of two or more objects yield 

better benefit, so the bidders who wish to consume those objects can offer higher 

price to the auctioneer. For example, in 1994, the spectrum auction of Federal 

                                                 
1 In the open procurement, it is called inverse auction to search for lowest price offers from suppliers who try to 

bid for purchase order acquisition. 
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Communication Commission (FCC)2

 A plenty evidences of combinatorial auction are available in industry practice, 

too. For instance, airport arrival-departure time slot approach for New York’s 

LaGuardia airport; bus route market in London; sponsored search for ad-slot service 

in Google and Yahoo. Example from the procurement in the combinatorial auction 

styles are such as milk procurement for public school in Chile; the procurement of 

freight transportation services; industrial procurement and so on. Thus, these 

evidences represent the usefulness and expectation of a combinatorial auction in 

practice. 

 sets up rules of bidding multiple licenses over 

regions. This is because geographical synergy of telecommunication industry exists 

and companies have motivations to gain profit from such situation. It claimed for $60 

billion USD at that time. Some similar spectrum auctions also occur in Germany, UK 

and Sweden. As well, a combinatorial auction still appears to wider areas; e.g., U.S. 

Treasury note; electricity grid auctions in UK.  

 Those real world applications attract many scholars from economics, 

operations research, and computer science to progressively conduct researches in 

combinatorial auction in both theory and applications. First, theoretical economists 

explore the possibility of the auction theory to enhance the efficiency of market-like 

mechanism for a combinatorial auction in aspect of game theory and mechanism 

design. As well, package bidding in operations research emphasizes the necessary 

techniques to solve the combinatorial optimization via the state-of-art optimization 

solver. Finally, computer scientists extensively make effort on an algorithmic design 

to improve speed and inspect the expressiveness for bidding languages. Indeed, the 

crossing of these three academic collaborations describes the development and the 

importance of combinatorial auctions.  

Booth auction 

 Booth auction is one of the combinatorial auctions that bidding auction must 

be the consecutive objects. The bidders are not allowed to bid booth and skip or make 

a hole, but they can propose every bidding option at the same time. This type of 

auction is classified as geometry-based structure , linear alignment , consecutive 

                                                 
2 http://www.fcc.gov/wtb/auctions/ 
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objects , etc. Those auction structures can be proved to be tractable that it is possible 

to solve in polynomial time . After the work of Rothkopf et al introduced the dynamic 

programming style for this problem, there is no further investigation of its extension 

in a double line case. This thesis contribution is the extension of previous work and 

the acceleration of algorithms relevant to a booth auction.  

 Note the characteristics of booth auction are widely observable. Basically the 

objects in the booth auction refer to the blocks in the hall space which located back-

to-back. This correlates to the auction which depends on geographic adjacency such 

as pieces of land, paddles or space; the spectrum auction for radio licenses, the 

territory for milk delivery and advertisement space in the classified. Other 

applications could be the problem to determine time schedule or time slot; priority 

queue for server time slot, meeting appointment allocation and so on. The booth 

auction thus has application for allocation of multiple objects which has synergy 

effect among those consecutive bundles. 

 As the perspective of a rational auctioneer, this thesis would be able to provide 

a tool for solving WDP as well as a suggestion to those auction practitioners who will 

set up an auction alike the problems in this thesis – the linear alignment of multiple 

objects. 

Research objectives, questions and scope 

Under the research interest of the combinatorial auction, the objectives of this 

thesis are to develop an approach to obtain the optimal solution for WDP and to study 

an incentive compatible mechanism for a certain structure of auction scenario. The 

former means that this thesis develops an algorithm for WDP, and the latter refer to 

the review of study to analyze the property of the algorithm in a mechanism design 

aspect. This thesis scope is limited to the specific domain of the problem, booth 

auction, which the characteristic of linear alignment dependents on the geographic 

layout. The problem specification is described in the next chapter. 

Specifically, the research question is to solve an allocation problem of booth 

layout in an exhibition space. The work is an extension of Rothkopf et al  who studied 

the computationally feasible case of a combinatorial auction in the geographic 

problem domain. They illustrated polynomial time algorithm for linear objects 

allocation. Consequently, this thesis contributes to a general case not only for a single 
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line booth auction but also for a double line booth auction and some additional 

obstructions. 

The structure of this thesis is as the followings. Chapter 2, problem 

background, introduces the problem specification, some necessary theorems and 

notations of this thesis. Thereafter, the literature reviews of related work will be 

described in chapter 3. The methodology of this research work is explained in chapter 

4, and the experimental results of the simulation are presented in chapter 5. Finally, 

chapter 6 concludes the works of this thesis and discusses future works. 
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Chapter II 

Problem background 

According to numerous details of a combinatorial auction, this chapter 

provides preliminary information, such as a problem specification, a bidding scenario, 

and a theoretical notation, which are used in this thesis. 

2.1  Problem specification 

Rather study for a general case of a combinatorial auction, this thesis narrow 

its scope to a specific problem domain, linear alignment of a booth auction. It is a 

geographic allocation problem of consecutive blocks Fig. 2.1. Rothkopf et al  first 

introduce this structure of auction objects regarding to the merit of obtaining 

telecommunication licenses of the northern to the southern region consecutively in 

spectrum auction. This case is also known as a tractable combinatorial auction . 

   

 

2.1.1  Linear alignment of a booth auction 

 Linear alignment of a booth auction refers to the allocation of blocks as a 

singleton of its geographic adjacency. Given an empty space in a hall, the organizer 

plans an event and divides the hall space into a certain size of blocks for a booth 

layout as in Fig. 2.1. A booth could contain more than one adjacent block. The layout 

of booth can be one line of blocks or double line of blocks with a pathway in between. 

Definitely, there could be more than one block in the booths, but the blocks must be 

located consecutively back-to-back in a rectangular form. For the argument 

    A    B    C-   

 

 

Figure 2.1:  A layout in the exhibition hall 

A zone 

A block A booth with 
two blocks. 
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simplicity, the case of one row of a single line and a double line is given, as in Fig. 

2.2. Hence, the bidding options are set up by the layout of booths.  

 

 

 Bidders can offer one price for a bundle of blocks in a rectangular form, which 

lie consecutively as a filled rectangular block. A bundle is denoted by starting and 

ending blocks, [start,end]. Based on the booth layout in Fig. 2.2, the starting blocks is 

the largest index in a lexicographic order, and the ending block is the smallest index. 

In the case of crossing blocks for a double line configuration, the starting block is the 

block from the right hand side, and the ending block is the block from the left hand 

side. The following examples are valid bundling options. The bundle only S1 is 

indicated by [S1,S1]. Bundle S2 and S3 appears as [S3,S2]. Bundle L1, L2 and L3 

appears as [L3,L1], and bundle L2 to L4 and R2 to R4 appears as [R4,L2]. 

Unconnected or non-rectangular blocks are not permitted; e.g., a bundle S4 and S2 or 

a bundle R3, R2 and L2 are invalid bundles. 

 

 

Figure 2.2: Single line and double line layout 

Figure 2.3: Notation for a bundle of blocks in both single and double line case. 
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The method to count the number of options is straightforward using the 

mathematical induction3 n. In the case of a single line, if we have  blocks, the number 

of possible bundle is ( 1)
2

n n + . An example of the booth of three blocks is displayed in 

Table 2.1 that there are 6 possible bidding options. If 4n = , there are 10 options: 

[S1,S1], [S2,S1], [S3,S1], [S4,S1], [S2,S2], [S2,S3], [S2,S4], [S3,S3], [S3,S4], and 

[S4,S4]. In the case of a double line, the number of possible bundles is 3 ( 1)
2

n n +  

providing rectangular blocks. These combinations are from two times of single line, 

left and right case, plus crossing line case. Therefore, the option in this combinatorial 

auction does not grow exponentially. This is a special structure of the linear alignment 

in our problem domain. 

 In the actual booth layout, there are some obstacles that may prohibit a 

location of some booths such as multiple zones and physical obstructions. These 

conditions restrict bidding options, and would probably increase the complexity of the 

problem. First, the multiple zones are the distinct area for booths which locate 

sporadically from each other. For example, in Fig. 2.1, three distinct zones are 

displayed. The number of zones expands the bidding options for the discontinuous 

selection of booths. Bidders can choose a bundle of blocks in the same zone which 

does not cross over another zone. Similarly, the physical obstructions also cause 

additional restrictions in bidding options. The auctioneer must explicitly identify the 

obstruction positions, so that bidders can avoid including those positions. Hence, both 

sources of restriction increase the complexity to obtain optimal solutions. 

 In order to handle a combination of restriction for both the multiple zones and 

the physical obstructions, we add some constraints to the winner determination 

problem, using the integer programming solver and dynamic programming 

application, to obtain the solution. Their specific details are explained in the chapter 4 

methodology. 
  

                                                 
3 See the sketch proof in appendix A. 
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2.1.2  Failure of a simple greedy algorithm 

 It is known that a combinatorial auction is related to a knapsack problem . To 

explain shortly, auctioneer has to choose various bids to maximize his revenue instead 

of selecting items to maximize utility as in the knapsack problem. The greedy 

algorithm is a common method to solve a knapsack problem. Since the greedy 

algorithm chooses the local optimal solution without considering every feasible 

substructures, it could not guarantee the global optimal which lead to an inferior 

solution. Moreover, this may lead to the complaint of unfair allocation which deprives 

bidders’ incentive to offer a high-valued submission price. 
 Generally the rational auctioneer wants to select the best offers from many 

bidders to maximize his revenue. The greedy algorithm is useful for a single-object 

case, but it would not be suitable for a multi-objects case. The following instance 

demonstrates a failure of the simple greedy algorithm4

Considering the situation of three-block-long single line, it has the price offer 

from each option – S1, S2, S3, S1∪S2, S2∪S3, S1∪S2∪S3 – as in Table 2.1. 

There are bidders A and B compete in the auction. If the auctioneer begins 

with the biggest bundle S1∪S2∪S3, he obtains bid value 7. Next step, the 

auctioneer compares result with its local partition [S1, S2∪S3]; the revenue 

becomes 1+4=5. This new partition returns the total price less than the former; 

therefore, the greedy algorithm terminates

:  

5

Indeed, this research employs other methods to find the optimal solution of a 

determination problem in a linear alignment of a booth auction. One common method 

to determine the solution is to use the integer programming which is one of the 

mathematical programming technique. The other is the dynamic programming which 

determines the optimal substructure via recursive technique. Their specific details are 

explained in chapter IV. 

 with the result [S1∪S2∪S3]. 

However, the partition [S1, S2, S3] provides a better solution which the bid 

result is 1+5+2=8. Hence, the greedy algorithm might not give the optimal 

solution for the auctioneer. 

                                                 
4  In this context, we set up the greedy algorithm that will terminate if it discovers a result which is not better off 

than the former. 
5 We assume that the greedy algorithm terminates when it cannot obtain strictly better-off solution in the next 

comparison. 
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Table 2.1:  Combinatorial bidding case which a greedy algorithm cannot achieve global optimal  

  

2.2  Auction scenario 

This section explains the setup for a combinatorial auction scenario with 

notation remarked for the rest of this thesis. As well, bidding process, winner 

determination and payment rules are discussed here. 

2.2.1  Type of auctions 

 There are many ways to categorize auction, price submission methods and the 

payment rules . The sealed-bid auction is a static type which allows bidders to submit 

price only one time. The bidders cannot a priory know the other bidders’ submitted 

price. Usually the highest offer price obtains the right to acquire that target; however, 

the payment would probably be the first-price or the second-price depending on the 

payment rules. In the first-price sealed bid auction, the winner is obliged to pay the 

winning price. On the other hand, the winner is allowed to pay the next winning price 

for the second-price sealed bid auction. This second-price sealed bid auction (Vickrey 

auction) is famous for its incentive compatible property which motivate bidder to 

submit their estimated value as bidding price truthfully.  

 Next, the dynamic aspect of auction is used in an ascending-bid auction 

(English auction) and a descending-bid auction (Dutch auction). These mechanisms 

devise price discovery system which motivate bidders tend to offer price closed to 

their estimated valuation to win the auction. In an ascending-bid auction, bidders will 

raise their price gradually in order to win his target. However, in a descending-price 

auction, the auctioneer will decrease the price until a bidder agrees with it. As a result, 

both mechanisms lead to discover the highest price bidders who will be the winner of 

the auction. 

Bundle A B Max
S1 1 1 1
S2 3 5 5
S3 2 1 2
S1∪S2 4 5 5
S2∪S3 4 3 4
S1∪S2∪S3 7 6 7
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Payment Rules 

 

 

 First-price Second-price 

Static First-price sealed-
bid auctions 

Vickrey auctions 

Dynamic English auctions 
Dutch auctions 

 

  

 In fact, many bidding methods and payment rules are invented to enhance 

some preferable outcomes in a mechanism design such as the truthfulness of bid 

prices. The combinatorial auctions are especially the motivation for the invention. For 

instance, Ausubel and Milgrom propose a multiple unit auction in . It is an alternative 

ascending-price format of which outcome equivalent to the Vickrey auction. Iterative 

combinatorial auction method by Parkes and Ungar  invents another method for 

auction agents that assign non-additive values to resources, such as distributed 

scheduling and task assignment problems. Both are a few examples for a special 

auction which is made for specific circumstances. 

 Finally, bidding language is a necessary tool to understand category of 

auctions . It considers how the expression in a combinatorial auction creates 

complexity for WDP. The major ideas is initiated in OR and XOR type. OR means 

each bidder is willing to obtain any bundle options for which they submit price, while 

the individual desire at most one bundle in XOR. Further that, many complicated 

expressiveness are the combination of OR and XOR for some specific options; 

theoretically, it refers to analysis of a Boolean logic in the various expression.  

 In summary, basic categories for auctions are the price submission method and 

payment rules. Since the potential of the combinatorial auction is studied, scholars 

invent new auctions rule to achieve the equivalent property once inherit in the 

Vickery’s auction. As well, bidding expressiveness emphasizes the critical issue of 

bidding language. Indeed, these categories are important to understand both operation 

and outcome of auctions. 

  

Price Submission 
Method 

Table 2.1: The matrix displays categories of some well-known auctions 
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2.2.2  Setup and process 

 As stated in the introduction, auction is a market-like process to determine 

allocation decision. The auction process is simple or not depends on type of auction 

and payment rules. It usually starts with calling for bidders to compete by submitting 

the price offer according to their financial ability. Bidders know their objects values, 

but they might not be able to determine the best submitting price accurately. After 

bidders submit price in the permitted method, which may end in one round or several 

rounds, the auctioneer determines the final winner of the auction. In a combinatorial 

auction, there would be several winners. Finally, the auctioneer requests for the 

payment of allocation result. 

A. Definition and notations 

 The followings are notations used in this thesis. They are explained according 

to the auction process based on game theoretical notations. 

• Players: Let {0,1,..., }i= be a finite set of players; the number 0 is an 

auctioneer and the others represent bidders. An auctioneer and i bidders are 

the players in this auction game.  

• Goods: Let {1,..., }g= be a finite set of goods. The auctioneer sells m goods 

to n potential bidders. The bundle of goods is denoted by ,⊆ ≠∅   . 

Hence, the possible bidding options set   is the power set 2 excluded empty 

set, \{ }= ∅2  for every ∈  .   has 2 1gt = −  bidding options6

• Bidding: Bidders have a nonnegative valuation for each bundle, 

 since 

empty set is excluded. 

( ) 0i
tv ≥  

and ( ) 0iv ∅ = , and submit bidding price ( ) 0i
tb ≥ such that 

( ) ( ) 0i i
t tv b− ≥   in their bidding profile.  

• Payment: Since auctioneer can arrange the payment to motivate bidders 

submit truthful information, the payment ( )tp  , could not be greater than the 

                                                 
6 However, in our problem specification the number of options is fewer due to the alignment restriction. 
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bidding price corresponding to the bundle, ( ) ( )i
t tp b≤  . For simplicity, let 

( ) ( )i
t tp b=  be the payment rule. 

• Profile: Let 0 1{ , , , }i= …    be the total profile. To allocate all goods, 

auctioneer intakes profile, i , from each bidder, then he will determine the 

winner and announce allocation profile, 0 . 

1 1 1{ ( , ( ), ), , ( , ( ), )}i i i
t t tx b i x b i= = … =      is the bidding profile of bidder i. 

0 0 0
1 1 1 1{ ( , ( ), ), , ( , ( ), )}t t t tx p w x p w= = … =      is the allocation profile of 

the auctioneer. The third element of tuple 0
tx , tw ∈  represents allocation 

decision – a bidder who obtains that bundle or nobody does. 

• Payoff: utility (profit) functions are defined for the auctioneer and bidders. 

Bidder’s utility ( )
1

( ) ( ) ( ) ( ) ( )
t

i i i i i i i
k k

k

iu v p v x p x
=

= − = −∑   

Auctioneer’s utility 0 0

1
( ) ( )

t

k
k

u p x
=

=∑  

• Optimization problem:  

Bidders are to maximize their utilities by offering a bidding price vector, 

1
* argmax ( ),  fo ( ), , ( )r i

t
i i i i iu b b= =b b     under the budget constraint, 

if any. 

Auctioneer is to maximize his revenue by searching the decision vector,

* 0 0
1

1
argmax ( ),  for ,...,

t

k t
k

p x x x
=

= =∑x x , under constraint of no duplicated 

goods allocation. 

 

B. Auction process: an example 

 The behavior of bidders and auctioneer in an auction are to optimize each 

individual. Their scope of actions is reviewed in this section along with the timeline. 

To illustrate, the FCC spectrum auction , Simultaneous Multiple Round (SMR) 

Auction, is an instance for this study. SMR is conducted in Web-Based Bidding 

System. The auction rule contains that each individual submission is offered at the 

same time, and it will be repeated for multiple bidding rounds. Bidding is confidential 
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during a round. When a round ends, results are processed and made public. The 

auction will be terminated when nothing happened at that round. 

• Pre-auction 

First of all, the auctioneer announces the auction event for public notice. He 

will disclose all necessary information: objects information, price submission 

method, decision method, prohibited action, payment rules. Consequently, the 

participants in auction, bidders, are measured for their bidding eligibility. It is 

to prevent for collusions among bidders, to clarify financial status, and to 

underwrite their provisional price submission.  

• Bidding 

Bidders must bid throughout the auction. According to the bidding rules, 

bidders offer the price which could maximize their expected utility. In this 

case simultaneous multiple round, Minimum opening bids are established 

prior to the auction. All submission prices are disclosed at the end of a round 

to see provisionally winning bids (PWBs), all bids, bid withdrawals, and 

proactive waivers. 

• Winner determination 

The Auctioneer is responsible for finding the combination of the best offer in 

order to maximize his benefit from those proposed bidding at the end of 

bidding. The comparison for the best offer is the core of price discovery. In the 

final stage, usually the combinations of highest submission that do not 

duplicate objects allocation are the optimal solutions. 

• Payment request  

Finally, the auctioneer issues the bill of payment7

 Actually the above is an auction design of combinatorial auctions. There are 

four basic steps to understand a certain auction. It is possible to generate other 

mechanisms to enhance price discovery for auction objects. However, those 

mechanisms should hold some preferable properties in mechanism design theory to 

 to the winners to pay for the 

amounts in their price submission. 

                                                 
7 The payments usually do not exceed their submission as well as their anticipated valuation. 
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correspond to bidders’ strategic behaviors. Those concepts are reviewed in section 

2.3.2. 

2.3  Theoretical concepts 

 This section describes some theoretical concepts, preference and valuation and 

mechanism design, which are necessary to all following chapters. These concepts can 

be found in the standard text book for the auction theory  and multiagent system 

analysis . 

2.3.1  Preference and valuation 

 Specific relationship among set of objects is considered. When the auction 

goods have nonidentical characteristics and they are being sold altogether, bidders 

would evaluate the additional goods to take in option in two different ways, substitute 

or complement. I will follow the formal definition in Krishna . 

• Substitute: bidder i considers the goods in   to be substituted if for all a∈

and bundle   and    not containing a, such that  ⊂  , 

 ( { }) ( ) ( { }) ( )i i i iv a v v a v∪ − ≥ ∪ −     (2.1) 

The inequality (2.1) is equivalent to requiring that for all bundles   and   , 

 ( ) ( ) ( ) ( )i i i iv v v v− ≥ ∪ + ∩       (2.2) 

Functions satisfying (2.2) are called submodular. In particular, if ∩ =∅  , 

 then, since ( ) 0iv ∅ = , the inequality in (2.2) reduces to 

  ( ) ( ) ( )i i iv v v− ≥ ∪     

 Hence, the substitute property implies that ( )iv ⋅ is a subadditive function over 

 the bundle of goods. 

• Complement: It is similar to the substitute case, but the opposite side of inequality.  

 ( { }) ( ) ( { }) ( )i i i iv a v v a v∪ − ≤ ∪ −     (2.3) 

The inequality (2.3) is equivalent to requiring that for all bundles   and , 

 ( ) ( ) ( ) ( )i i i iv v v v− ≤ ∪ + ∩       (2.4) 
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Functions satisfying (2.4) are called supermodular, In particular, if 

 ∩ =∅  , then, since ( ) 0iv ∅ = , the inequality in (2.4) reduces to 

 ( ) ( ) ( )i i iv v v− ≤ ∪       

This implies complement property of ( )iv ⋅ is a superadditive function over the 

bundle of goods. 

• Additive: If both (2.1) and (2.3) are hold, then the value are additive. That is, 

the value of any bundle   is simply the sum of the values of the individual 

objects in that bundle. In this case, it is useful to think of the different objects 

as being completely unrelated since the value derived from a particular object 

a  does not depend on whether another object b is obtained. 

2.3.2  Mechanism design 

An auctioneer has a particular objective - maximizing revenue. Although he 

has an algorithm to determine the best solution from several bid options, the solution 

could be improved when the bids are set to the highest price. Because the participant 

bidders have incentive to maximize their payoff, they would not tell their valuation 

and lower submission price. Therefore, in order to maximize the auctioneer expected 

revenue, it is necessary to design a mechanism that enhance bidders participate and 

offer bidding prices as high as possible. 

Mechanism design is a very important topic in Microeconomic  and gain much 

attentions in Multiagent Systems . It studies for a property in the mechanism to induce 

some preferable outcome, which is a reverse engineering of the game theory. It is 

implemented under the Bayesian game setting. Hereafter, the mechanism refers to the 

auction and the agent as the bidder. Those properties to be shortly introduced are 

participation constraint (PC), incentive compatibility (IC), and Efficiency (EF). See  

for the rigorous definition. 

• Participation constraint  

Participation constraint or Individual rationality is that the agent has incentive 

to participate in the mechanism because of the non-negative utility, ( ) 0i iu ≥ . 

• Incentive compatibility  
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Incentive compatibility or Truthfulness refers to the situation that agent i is to 

adopt the strategy * ( ) ( )i i
t tb v=  for the Bayesian-Nash equilibrium. The 

revelation principle claims that the truthful mechanism always exists; 

however, it is very difficult to find for a computational view point  . 

• Efficiency 

The mechanism is efficient if it is Pareto efficient,
 

0 *0 0 0( ) ( )u u≥  . The 

most famous class of a mechanism for the auction is Vickrey–Clarke–Groves 

mechanisms (VCG). It motivates agents to choose the socially efficient 

allocation even if agents have privately known valuations  and even though it 

is very difficult to implement in reality . 

In fact, the mechanism design theory suggests more properties which are also 

preferable. This thesis survey just a few that directly relates to strengthen the 

maximization of auctioneer’s revenue. Moreover, the formal analysis of a mechanism 

to prove for the existence of those properties has not yet been conducted in this 

research. Therefore, this thesis does not cover an analysis of auction as a mechanism 

which considers all parties react strategically. This aspect will be discussed later in 

future. 
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Chapter III 

Literature review 

Combinatorial auction has been studied in both theoretical and algorithmic 

aspects. The former focuses on an auction design and the latter on an efficient 

algorithm. Auction design constructs and analyzes the auction rules whether it 

achieves some preferable properties. However, the auction rules would be used 

inefficiently if the computation is costly and impractical. Therefore, many scholars 

make some attempts on the research of specific domains observed in reality, propose 

manageable solving method, and evaluate efficiency. 

This chapter reviews some literatures on WDP for some specific domains, 

such as, internet ad-slot auction and geometric allocation. 

3.1  Tractable structures of WDP 

The structure of combinatorial auctions imposes complexity to search for the 

optimal solution in WDP . First, the number of objects in auction is the major source 

of complexity to determine the winner in the auction. The bidding strategy for a single 

object is simple, but WDP becomes unmanageable when bidders have more options to 

bid their targets. In addition, if the object is indivisible, it is necessary to identify only 

the integer solution. As well, the case of non-identical multiple objects imposes 

computational burden on the auctioneer in searching for the optimal solution. Indeed, 

WDP is an NP-hard problem because its decision variable sparsely growing in 

number of bidders and combination of options. 

A. Rothkopf, Pekeč and Harstad (1998) 

Tractable structure of WDP has been firstly introduced by Rothkopf et al . In 

this famous paper, they discuss the importance of a computable combinatorial auction 

that the algorithm should be in a class of polynomial time complexity. Along with the 

structure of a combinatorial auction in practice, they prove and introduce algorithms 

for the problem structures which are solvable in polynomial time; i.e., nested 

structures, cardinality-based structures and geometry-based structures. Nested 

structures are that only one type of combination is able to bid together, while the 
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cardinality-based structures illustrate more than one type of groups. The geometry-

based structure is the most relevant to our problem which binding biding options 

depending on their adjacency as explained in the problem background.  

In this paper, the geometry-based allocation is our main concern. Based on 

their proof of the optimality for the dynamic programming substructure , they begin 

with the single line and then followed by the circular case and propose the polynomial 

time algorithm. Furthermore, they show that the generalization of m n× blocks 

allocation is NP-complete. The linear alignment of consecutive blocks in this thesis is 

influenced by Rothkopf et al. In addition, this thesis has introduced a faster algorithm 

to solve for a single line case, and then a double line case which does not exist in their 

work. The approach to the general layout that has multiple zones and physical 

obstruction are the extensions to Rothkopf et al work. 

B. Tennenholtz (2000) 

 Tennenoltz  further investigates the tractable case for a combinatorial auction. 

He proves polynomial running time for a combinatorial network auctions, various 

sub-additive combinatorial auctions, and some restricted forms of multiple-objects 

auctions. The allocation of objects in geometry-based structure could be one of the 

restricted forms. In his proofs for polynomial complexities solutions, he elaborates b-

matching techniques in graph algorithms to identify those tractable combinatorial 

auctions . Even though there are no implementation results in this work, the 

computationally tractable in a polynomial complexity is guaranteed for combinatorial 

auction in the geometry-based structure.  

C. Sandholm (2002) 

This paper initiates an analysis in some bidding languages with full 

expressiveness called XOR-bids and OR-of-XORs as well as tractable algorithms, . 

His bidding language enhances expression of the general preference, both of 

complementarity and substitutability. He also proposes the optimal search algorithm 

and preprocessors to cope with the problem of new bidding languages. The optimal 

search algorithm is constructed by four approaches: allow bidding on combinations, 

find the optimal solution, completely avoid loop and redundant generation of vertices 

and capitalize heavily on the sparseness of bids. For preprocessing, he also suggests 

three jobs: keep only the highest bid for a combination, remove provable 
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noncompetitive bids, and decompose the set of bids into connected components. In 

sum, this paper extensively demonstrates a constructive method to solve WDP in a 

general case of a combinatorial auction. 

3.2  Mechanism design for WDP 

The analysis of strategic behaviors among bidders is an important issue for a 

mechanism design for an auctioneer to reap the maximum revenue. Especially, in a 

combinatorial auction, the auctioneer would gain more or lose some benefit from 

bidders’ strategic behavior . They always have a motivation to submit price below 

their valuation. Therefore, the auctioneer has to design an incentive compatible 

mechanism8

A. Parke and Shneidman (2004) 

 to generate sufficient incentive for bidders to submit price as high as the 

valuation. These following researches have proposed the mechanism which equip 

with the preferable properties of mechanism design, and also relate to this thesis 

problem specification. 

From an iterative method algorithm iBundle in , Parke and Shneidman suggest 

the partition principle to prove equivalent of a mechanism to Vickrey–Clarke–Groves 

mechanism (VCG) in . Unlike the centralize mechanism design, the partition principle 

is implemented by computation of each self-interest agent. They also recognize the 

weakness of methods based on the principle and propose several principles to conduct 

the distribution of this computation focusing in particular on VCG mechanisms for 

implementing outcomes that maximize the total utility. However, many problems still 

remain such as costly computation, restricted communication networks, self-enforcing 

outcome and specific instantiations. 

B. Petcu, Faltings and Parke (2006) 

The decentralize mechanism for an efficient allocation has been introduced by 

Petcu et al . Their research highlights a combinatorial auction as an instance of a 

social choice problem which can be implemented by M-DPOP, their algorithm. The 

special characteristics of the algorithm will redistribute a problem to each agent to 

perform computation, report information, and send messages that is in its own best 
                                                 
8 In mechanism design, this term is said as truthful mechanism or incentive compatible mechanism. 
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interest. At the same time, it provides a faithful distributed implementation for an 

efficient social choice to self-interest agents. The proof of truthfulness in their 

proposed algorithm is based on the partition principle of Parke and Shneidman  and 

can be applied efficiently to social choice problems, not limited to just a 

combinatorial auction. 

C. Feldman, Muthukrishnan, Nikolova and Pál (2006) 

Internet ad slot auction is another important research target actively conducted 

by researchers not only in academics but in Yahoo and Google. Internet ad slot 

auction is similar to a booth auction that bidders want the best position with the high 

rate of visits. Regarding to bidders’ pricing for different positions and budget 

constraints, Feldman et al  set up an allocation rule for an advertisement slot and 

algorithms to solve WDP. Since the unit of a marginal benefit to acquire from ad slot 

in this auction is the number of clicks, the nature of auction object is divisible when 

consider the allocation as proportion occupied each slot. Moreover, bidder is not able 

to request for a specific ad slot position, while he could obtain just clicks which 

redistribute after each winners being determined. Thus, the bidders’ specific option in 

position arrangement has not yet been studied for the internet ad slot auction. 

In sum, this thesis will concentrate on a special case - the linear alignment of a 

multiple-object auction, and explain the success of a dynamic programming approach 

to maximize the auctioneer’s revenue. The new algorithms are developed based on 

Rothkopf et al  with the explanation of Tennenoltz  and Sandholm . Unfortunately, it 

is beyond the scope of this thesis to exhibit a comparison analysis of the search 

algorithm approach by Sandholm . Besides, it is also important to know the limitation 

of the solution under a certain bidding environments which bidders probably act 

differently,. Therefore, this thesis provides discussion about the properties in a 

mechanism design to the solution method of WDP.  



21 

 
 

Chapter IV 

Methodology 

 This chapter is the main contribution of this thesis. It explains the 

methodology in this research. First, it begins with the solution method for winner 

determination problem using the integer programming approach and the dynamic 

programming approach. After introducing the simplified case, it describes the method 

for extensional cases: multiple zones and physical obstructions. 

4.1  Simplification of layout problem 

In this section, the solution method for WDP is explained: integer and 

dynamic programming. The integer programming is a flexible methodology to solve 

WDP ; the computation complexity relies on the optimization solver. Note that the 

bidding option grows rapidly as the number of decision variables increase which 

incurs computation cost. On the other hand, a dynamic programming approach can 

alternatively be used to avoid an expensive calculation. While the efficient calculation 

is guaranteed, the disadvantage is the limitation to adopt various problem constraints 

in the solution step, unlike integer programming for a general WDP. The explanations 

of both methodologies are followed. 

4.1.1  Integer programming 

 Winner determination problem (WDP) is based on the assignment problem . 

The problem objective is to maximize the auctioneer’s revenue. In the problem 

formulation, binary decision variables are used to indicate the optimal selection and 

allocation constraints.  

 There is a finite set of bidders, ,  with n bidders, and a finite set of 

indivisible objects,  , with m distinct blocks. Each bidder i∈  has a non-negative, 

integer valuation for each bundle of objects ⊆   denoted by 0( )ib ∈ . The binary 

decision variables are defined by ( ) {0,1}ix ∈ ; ( ) 1ix =  means that the bundle   is 

allocate to bidder i and otherwise; it will not  allocate to this bidder i. 
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 The possible bundle is illustrated as [ , ]a b= : a  is the begin block position 

and b  is the end block position. For example, [S2,S2] means only one single block at 

S2 in the single line case. For the double line case, [R3,L1] is a rectangular six blocks 

from L1 to R3, and [L4,L2] is a bundle of three blocks on the left side from L2 to L4 

consecutively. Thus, we can represent all possible options as index of column in a 

coefficient matrix – the decision variables. 
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 WDP is formulated as in (IP1). The interpretation of each line is 

straightforward. The objective function is to maximize the revenue for all possible 

bidding options, and the constraints are to prevent duplicated allocation of each object. 

One bidder is allowed to have more than one object. Specifically, this WDP is in the 

OR bidding language defined in . The matrix iA  is the coefficient matrix in the 

constraint for the bidder i, and the sparse structure of coefficients is observed. For 

example, considering the size of   to be 4 is used to explain the structure of a 

coefficient matrix.  

 Single line case 

Let m be the number of row blocks, m =   . 

 

Double line case 
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According to the special structure of the layout booths, the coefficient matrices 

have the total unimodularity property9

   

 . For the sake of integral values in the right 

hand side and the total unimodularity, the integer formulation (IP1) is reducible to 

(LP1) which is equivalent to a linear programming model. This yields an integer 

outcome, in this case just 1 or 0. Hence, it is eligible to employ just linear 

programming methods, (LP1) and (LP2), instead of the integer programming model. 
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4.1.2  Dynamic programming 

A dynamic programming can be used to solve the optimization problem . 

Optimality in dynamic programming can be proved by the mathematical induction as 

regarded in . We exert a two-dimensional array as in Fig. 4.1 and its index to 

construct a data structure. It is suitable to solve for the dynamic programming 

approach since the bundle notation corresponds to the index and easy to call and 

update the memory in this structure. 

 

 

 

                                                 
9 More explanation of total unimodularity in Appendix B. 

(LP1) (LP2) 

Figure 4.1: The two-dimensional array data structure corresponding to the bundle notation. 
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Furthermore, the method of Rothkopf et al which is related to the setup for the 

single line10

A. RPH’s method 

 is the third algorithm in . We shortly called RPH’s method. 

Consequently, the new method proposed in this thesis is called PK method by the 

initial letter of the authors of. Although both methods are different in the step to 

update memory, the optimal value is obtained by the final comparison. 

RPH method, their algorithm is rewritten in pseudo code 1 and 2. RPH’s 

complexity is 2( )n  for the single line with a fixed start, say [1,n]. Pseudo code 1 

demonstrates this method; specifically, it has 
1

( 1)( 1)
2

n

k

n nk
=

−
− =∑ comparison works. 

However, the method which is suitable to our problem is the intervals on the line. 

They interpreted as the intervals on the circle of which computational complexity is 
3( )n . The reason is that it repeats each block to start again by renumerating the 

objects. The first round is [1,n], then the second round is [2,n+1] which n+1 refer to 

the first block, and so on. The first block connects to the end and the second block 

becomes a new fixed start. After that, we bring those n outcomes to contest for the 

most valuable solution. This method is displayed in pseudo code 2. Precisely, the 

count11
2 ( 1)

2
n n n−

+ is . The former part is to repeat the previous algorithm n time, 

and the latter is to compare the results of each round for the global maximum value.  

 

                                                 
10 In their manuscript, they call this case the consecutive asset in geometry-based structures. 
11 See the sketch proof in Appendix A. 

Pseudo code 1: Fixed start  
step 0 Input  p(i,j) for all i,j 
step 1 Set  w(1) = p(1,1). Set r = 2. 
step 2 Set  w(r) = p(1,r). 
step 3 For i = 2 to r 
   If  w(i-1) + p(1,r) > w(r) 
   Then  w(r) = w(i - 1) + p(1,r) 
step 4 If r < n, then set r = r + 1 and go to step 2 
 Otherwise, terminate with optimal revenue w(n). 
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To implement each algorithm, the bidding values must be sorted into a 

descendent order. The most valuable bid in each option becomes the first input in a 

square matrix of the algorithm. For a single line case, only one matrix is sufficient to 

keep the highest bid for every option. Then we can begin our algorithm to search for 

the optimal value which will be at the final element of the calculated matrix, [1,n]. 

B. PK’s methods 

On the other hand, our modified methods for a single line case and a double 

line case are in pseudo code 3 and 4 respectively. Firstly, the single line case has 

computational complexity equivalent to 
3( )n . Precisely, the work is counted as 

1

( 1)( 1)( 1)( 1)
6

n

k

n n nk n k
=

− +
− − + =∑  which is less than the case of algorithm in pseudo 

code 2. PK’s method, algorithm in pseudo code 3, works more efficiently since we 

reap the benefit of the data structure more effectively than the RPH’s method in 

pseudo code 2 which has to reorder the block position to move. Further that, our 

approach can easily apply to a double line case which has complexity in 3( )n  as 

well, see pseudo code 4. The calculation burden is obviously three times of the single 

line case, since it works repetitively for the left, right and crossing line. Thus, we 

improve RPH’s dynamic programming for both configurations. 

To implement pseudo code 3 and 4, WDP is characterized and recursively 

defined by the two-dimensional array. Step 1 informs the stage of computation. Next, 

step 2 characterizes the maximum value referred to a related value from the previous 

stage. Subsequently, it leads to the maximum value in the final stage. In another word, 

the final result depends on comparisons of their substitutable pair that each 

Pseudo code 2: Intervals on the circle  
step 0 Input  p(i,j) for all i,j 
step 1 For k = 1 to n 
    1.1 Set   w(k) = p(k, k). Set r = k + 1. 
 1.2  Set   w(r) = p(k,r). 
 1.3 For   i = k + 1 to r 

   If  w(i - k) + p(k,r) > w(r) 
 Then    w(r) = w(i - k) + p(k,r)  

 1.4  If r < n+1- k, then set  r = r+1 and go to step 1.2 
   Otherwise, get the kth round optimality w(n+1-k) 

step 2  w(opt) = Max{ w(n),..., w(2n-1)}. 
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component, and also relies on the relevant pair backwardly. Those previous 

comparison results are put conveniently in the callable memory in our data structure. 

Certainly, the optimal value is obtained from the final calculation of the final element. 

 

 
 

 In pseudo code 4, a double line case, the sequence is more complex. It is 

necessary to utilize three matrices for valuation inputs; i.e., left line, right line and 

crossing line. These three matrices represent the best price of each option. Next, we 

optimize for the single left line and the single right line. Moreover, there are more 

calls to compare the option crossing between left and right; however, the main idea, to 

compare bidding price from the lowest single level first and consecutively move to 

the biggest bundle later, is unchanged. Finally, the optimal value is located in the final 

Pseudo code 4: Double line algorithm 
step 0 Run single column algorithm for the left and right column and keep result in the 

square matrix L and R respectively.  
  Given a square matrix C for cross-side options value 
step 1  Let k = 0 be the diagonal line in the matrix; k+1 is the consecutive lower 

 diagonal line. 
step 2  For k ≥ 0 
   For  j = 1 to n 
     w = j + k 
    If  w = j 
       If C(j,j)  <  L(j,j) + R(j,j) 
       Then  C(j,j)  =  L(j,j) + R(j,j) 
    If  w ≤ k 
     For  k  = j to (w-1) 
       If  C(w,j) < C(k,j) + C(w,k+1) 
       Then  C(w,j) = C(k,j) + C(w,k+1) 
step 3  Terminate when k = n. 
 

Pseudo code 3: Single line algorithm 
step 0  Given square matrix array size n×n, say B ~ n×n 
 Let k = 0 be the diagonal line in the matrix; k+1 is the consecutive lower 
 diagonal line. 
step 1  For k ≥ 1 
 For  j = 1 to n 
    w = j + k 
   If  w ≤ n 
    For  k  = j to (w-1) 
     If  B(w,j) < B(k,j) + B(w,k+1) 
     Then  B(w,j) = B(k,j) + B(w,k+1) 
step 2  Terminate when k = n. 
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element of the crossing line matrix. Thus, with some adjustments in pseudo code 3 we 

can precede a double line booth auction as in pseudo code 4. 

4.2  Extensions 

In this section, two methods to solve WDP for the multi-block booth 

allocation are explained. It is straightforward to extend the integer programming 

method for the layout with multiple zones see Fig. 4.2, even the layout with 

obstruction in Fig. 4.3. The method is to nullify the coefficient of decision variables 

of which options must be excluded. Contrastingly, the extension of the problems in 

the dynamic programming method is required some additional techniques. In this 

section, we extend method for dynamic programming to cope with the realistic 

conditions, multiple zones and obstructions, which still maintain its computational 

advantage. 

  

  

 

4.2.1  Integer programming 

To add some constraints in a mathematical model is straightforward. First, we 

determine allowable combinations and mark prohibited blocks. Next, we convert 

those logical statements into variables and inequality. Considering situation in Fig. 4.2 

the layout with three multiple zones, we just construct decision variable of a 

selectable bundle. For example, if the bundle of block crossing over the multiple 

zones is not allowed, we can construct a decision variable as the following coefficient 

matrix
 

a b c
i ii ii ii =  A A A A

    .  a
iA  represents ‘zone a’, which hold the same structure 

as  iA  in the previous section. In the case of physical obstructions, we just eliminate 

Figure 4.2: Layout with multiple zones. Figure 4.3: Layout with multiple zones and 
physical obstructions 
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Figure 4.4: The illustrations of data structure corresponding to the layout in Fig. 4.2, the multiple zones 
 

the decision variables of a bundle that contains such blocks. This treatment thus 

reduces the number of decision variables, which would be an advantage for 

mathematical programming, unlike the method in dynamic programming that still 

maintains full connection structure. 

4.2.2  Dynamic programming 

We consider multiple zones for a double line case, Fig. 4.2 and Fig. 4.3. There 

are three zones with the same amount of blocks. To apply the dynamic programming 

algorithm explained in pseudo code 4, we connect all three zones from left to the right 

to maintain the same structure as the case of a double line. Now it looks as if the 

bidder bids for the triple-long size of one zone; our proposed algorithm is enabling to 

solve this optimally. In fact, it is necessary to avoid the combination of options that 

crossing over the zone. Therefore, we ignore the final round calculation result in our 

algorithm but pick up the solution from our feasible options; just the substructures are 

adequate to yield the optimal outcome. In the case of Fig. 4.2, we have four rows, 

double columns and three zones. The solution comes from three elements of the final 

two-dimensional array, C(A4,A1), C(B4,B1) and C(C4,C1), the left-low-corner 

elements. These are the maximum revenue from zone A, B and C respectively and the 

summation is the optimal value for the auctioneer. The data structure of this case is 

represented in Fig. 4.4. 

 

 

 

Next, it is possible to apply both multiple zones and obstructions together in our 

dynamic programming. The similar tactic from the previous case is still applicable to 

overcome these difficulties. The layout of Fig. 4.3 is an example that block R3 of 
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Figure 4.5: The illustrations of data structure corresponding to the layout in Fig. 4.3, 
the multiple zones with obstructions 

 

zone A and block L3 of zone C become the obstructions. First, we combine three 

zones into one and mark invalid element in the data structure which are prohibited 

options due to cross-over zone restriction. Moreover, the positions of obstruction 

blocks are marked in the data structure to avoid those impossible options. Fig. 4.5 

illustrates both marking case. Subsequently, the options related to prohibited 

selection, the elements with diagonal line marker, and the obstruction-related blocks, 

the element with crossing marker, are set to zero. Especially in the matrix for the 

crossing-line options, it must reflect those influences from the left-line and right-line 

matrix to avoid prohibited blocks and impossible options, see Fig. 4.5. Finally, the 

answer for optimality are obtained from the final element which are the low-left 

corner, C(A2,A1), C(A4,A4),  C(B4,B1), C(C2,C1), and C(C4,C4) to be combined. 
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Chapter V 

Experiment and analysis 

 Simulation experiments and analysis of our results are summarized in this 

chapter. To demonstrate the advantage of our method, we report the experimental 

results comparing with other algorithms. For the short notation, the Rothkopf et al 

method  is noted as RPH method and our method is noted by PK method. The main 

result is that the dynamic programming approach consumes less time than the integer 

programming approach, and PK method is faster than RPH method. 

5.1  Simulation environments 

The experimental environments, parameter setting and simulation results are 

described in this section. First, the simulation experiments are performed on IntelR 

CoreTM i3 Processor 3.07 GHz CPU with RAM 2 GB. The operating system is 

Windows 7. Linear programming solver and the other algorithmic codes are 

implemented by Matlab. As well, bidding values vector for each option are generated 

by the method explain in section 5.2, in Matlab internal pseudorandom environment.  

 The time measurement is recorded from their actual jobs. The solver for the 

linear programming model is the simplex method, and the time is measured soon after 

the optimal solution revealed. For the dynamic programming, the running time in the 

preprocess, to select the best offer for each option, is included and add with the 

computation time of the comparison process. 

5.2  Random sample simulation process 

 To avoid the selection bias and the unrealistic sample, the simulation must 

maintain two assumptions. One is a bundling assumption: the more combining blocks, 

the greater valuation – supermodular property. The other is a position advantage: the 

nearer the gate, the more expected benefit. See Fig. 4.1 and Fig. 4.2 to conceptualize 

the image. As well, the random number of bidding price vector is converted to the 

ceiling integer number to represent each individual evaluation. 

 First, we generate the random variables for an individual block from uniform 

distribution between zero and one. According to the assumption that the nearer the 
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gate the more expected benefit, it is necessary to construct ordered statistics 

distribution from the uniform distribution. The standard beta distribution, ( , )Beta α β , 

can bring about the random number generation in shorter time; n  is total number of 

block and j  the position, then ( ) ( , 1 )jX Beta j n j+ − . For example, if we have 4 

blocks, the value for the block label 1 is drawn from the beta distribution with the 

following parameter, (1) (1, 4)X Beta . 

 In addition to generate a random value for a consecutive-blocks bundle, we 

add generate the random number from the summation of random number of the 

corresponding block. For example, the value for the bundle [S3,S1] is obtained by 

generating (1) (2) (3)X X X+ + . Also we impose the condition on the value for the 

bundles that the more combining blocks, the greater valuation. Moreover, the sub-

additivity and the super-additivity condition could be applied into effect. These 

condition leads to tremendous time consumption in generating random valuation for 

5n > . 

In the case of a double line auction, the process to generate the random 

number for bidding price is similar. First, we generate for a single left row and right 

row. Next we combine both values for the crossing options and add a small value to 

increase the bid price to preserve the super modularity price structure in the simulated 

bids. Each case of a generated price is stored in a different matrix data structure 

according to pseudo code 6.  

Finally, the generated value is multiply by a thousand and rounded up to 

obtain integer valuation. The generated values are stored in a ready-to-use data 

structure and will be randomly drawn again to use as a sample in the simulation. 

5.3  Comparisons of algorithms running time 

 There are two cases of simulation as the following: a single line case and a 

double line case. The single line case is the comparison among three methods: linear 

programming relaxation (LP), RPH and PK. On the other hand, the double line case is 

the comparison between two methods: LP and PK. To grasp the basic performance of 

each algorithm, the case of 10 bidders and corresponding with the number of blocks, 

the average running time from the 1,000 simulation experiments are shown in Table 

5.1 and Table 5.3. Next, we also investigate when the number of blocks and bidders 
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increase progressively, Table 5.2 and Table 5.4. In such situations, the problem size is 

enlarged in the direction of variables and memory usages in calculation for each 

method. The experiments are carried out under the limited computing resource as 

mentioned in section 5.1. 

5.3.1  Single line case 

 The experimental results of a single line case is obvious that the dynamic 

programming approach, RPH’s and PK’s method, are further effective than linear 

programming approach. 

A. Basic simulation results 

The line plot in Fig. 5.1 also shows the advantage of PK’s method over the 

linear programming and RPH’s method. The average running time in our method is 

less than RPH’s method, statistically significant at the 0.01 by the two-tailed t-test. 

This simulation result consequently supported our theoretical computation in the 

methodology.  

Table 5.1: The average running time of each algorithm for the single line case 
 

 

 Single line case 
 

  

Average time in log scale 

Figure 5.1: The comparison of average time among three methods (single line) 

 unit: micro seconds 
 

Number of blocks 
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 The box plot in Fig. 5.2 displays the scatter of the running time results from the 

experiments. The trend is that the more blocks, the more running time. It is noticeable 

in the linear programming, but it is not very obvious in the dynamic programming in 

both RPH’s and PK’s method. It seems that the running time results of RPH’s and 

PK’s method do not change much in these controlled experiments, 10 bidders. 

 

 
 

B. Incremental simulation results 

The results from the experiments clearly show that LP suffers the most when 

the number of bidders and blocks increase. In Table 5.2, it displays that LP cannot 

operate at all when the number of bidders reach 10 for 70 blocks single line auction. 

Consequently, it gets worse in the situation of 50 bidders and 100 bidders that it 

cannot work for 40 blocks and for 20 blocks, respectively.  

On the other hand, the dynamic programming approach performs well on each 

situation control. When considering for the average running time, PK’s method 

performs faster than RPH’s method. As well, the box plots in Fig. 5.3 illustrate that  

Figure: The distribution of running time 
among three methods, the 
single line case 

blocks 

Linear prog 

 

 RPH  PK 

 

Figure 5.2: The distribution of running time among three methods (single line) 

Time unit: sµ  

 

blocks 
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Figure 5.3: The distribution of running time for each algorithm for the single line case when 
the number of bidders increases 

Table 5.2: The average running time for the single line case when the number of bidders 
increases 

 

 

  

Remarks: N.A. means the data is not available due to the unsuccessful performance of the algorithm. 

 

10  
bidders 
 
 
 
 
 
 
 
50  
bidders 
 
 
 
 
 
 
 
 
100 
 bidders 

 Linear Prog    RHP   PK 

 

Time unit: sµ  

blocks 
 
 
 
 
 
 
 
 
 
blocks 
 
 
 
 
 
 
 
 
 
blocks 
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the maximum running time of PK’s method likely lie below the minimum running 

time of RPH’s method. Therefore, it could be concluded that PK’s method is the most 

efficient among three methods in the experiment for the single line case. 

5.3.2  Double line case 

 In the double line case, the result is consistent to the single line case. The 

dynamic programming approach hereafter refers to the authors’ method only since 

RPH’s method is not adaptable to the double line case. 

A. Basic simulation results 

 From the result in Table 5.3 and box plots, the average time operated in the 

dynamic programming approach is far superior to the linear programming approach. 

The first reason is the structure of coefficient matrix in the linear programming bears 

too many feasible solutions. In addition, iteratively solving for the linear 

programming approach is very costly because it has to update sparsely matrix .  

 
 Table 5.3:   The average running time of each algorithm for the double line case 

 

 

The box plots displayed in Fig. 5.5 show more details to our simulation 

results. The vertical axis is the running time in micro seconds and the horizontal axis 

is the total number of bidders in the auction. It is obvious that the running time 

Figure 5.4: The comparison of average time between two methods (double line) 

 unit: micro seconds 
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monotonically increase when the number of bidders grows up for both algorithms. 

The dynamic programming shows some outliers that may need to be investigated 

more. 

 

Figure 5.5: The distribution of running time among three methods (double line) 
 

B. Incremental simulation results 

The experiment results of the double line case are similar to the single line 

case. The LP performance is the most incompetent for the greater number of bidders 

and blocks. Fig. 5.5 demonstrates that LP cannot works from the case of 10 bidders 

and 40 blocks in the single line auction. Further that, the performances in the case of 

50 bidder and 100 bidders suggest the handicap of LP method: The operations are 

incomplete from 20 blocks and from 10 blocks respectively.  

 Although PK’s method performance is acceptable in most cases, there is a 

signal of its weakness in the case of 100 bidders and 80 blocks. The reason is similar 

to LP’s weakness that the requirement of memory allocation prior to the main 

algorithm is not sufficient. From Fig. 5.6, it suggests that the trend of PK’s method is 

still efficient unlike the LP’s method which consumes much more computing 

resources and yet slower. 

blocks 

 RPH  PK 
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Figure 5.5: The distribution of running time for each algorithm for the double line case when 
the number of bidders increases. 

Table 5.4: The average running time for the double line case when the number of bidders 
increases 
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blocks 
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Time unit: 

 

Remarks: N.A. means the data is not available due to the unsuccessful performance of the algorithm. 
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5.4  Discussion of simulation results 

The evidence that the integer programming solved by the LP relaxation is 

slower than the dynamic programming approach has been obtained from the 

experimental results of both the single line case and the double line case. The major 

reason is that the simplex itself work slowly in our large coefficient matrix of WDP 

for a booth auction, because the size of matrix in the simplex boost the more 

computation time, . Moreover, the number of bidders multiplies the size of decision 

variables in the integer programming also leads to more feasible solutions which 

require a heavy load for the simplex in LP.  

For the comparisons of the dynamic programming algorithm, it is shown that 

the average running time of PK’s method is significantly different and smaller than 

RPH’s method, by two-sample t-tests for a difference in mean. In the box plot, there 

could be some cases that RPH’s running time is equivalent to PK’s when the number 

of blocks is smaller than 10. However, the comparison of running time in Table 5.2 

and the box plots of Fig. 5.3 exhibit the robust tendency that PK’s method is superior 

to RPH’s method. Thus, the theoretical estimation of the number of work, 

demonstrated in chapter 4, is supported by the experiments. 

The running time resulted in the experiments is measured at micro seconds 

level for every controls. It is not a great burden in practice to use any of the methods. 

However, it was found that the integer programming consumes the great number of 

memory resources and may halt during the coefficient matrix preparation process. On 

the other hand, the dynamic programming approach is still workable to optimize the 

solution. Although the economical memory usage of the dynamic programming 

algorithm is another advantage shown in the experiments, it is necessary to improve 

the memory usage to operate PK’s method in a limited computing environment. 
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Chapter VI 

Conclusion 

 This thesis has developed methods to solve the winner determination problem 

(WDP) in a combinatorial auction for a multi-block booth allocation. It is much 

influenced by Rothkopf et al  who proposed the integer programming and the 

dynamic programming algorithm. This thesis also explains the detailed structure in 

the integer programming related to the model of a booth auction and linear 

programming relaxation for integer programming.  

By the worst case analysis of the computation complexity, it is shown that the 

new method in this thesis, PK method, is faster than the method of Rothkpf et al , 

RPH method. As well, the experimental results suggest that the dynamic 

programming performance is more superior to the integer programming performance 

in our setting environment. When changing the quantity of blocks or bidders, the 

results reinforce this tendency. 

 In addition, another contribution of this thesis is to model a double line booth 

auction and to develop an algorithm for WDP of a double line booth auction. Thank to 

the merit of the matrix data structure for a dynamic programming algorithm, the 

algorithms for a double line booth auction maintains the same complexity as the case 

of a single line auction. 

Furthermore, this thesis extends geometry-based structures of the booth 

allocation with restriction of multiple zones and obstructions. Not only the integer 

programming model is well-known for its flexibility, but our proposed algorithm by 

the dynamic programming is also extensible to overcome these restrictions due to the 

data structure, two-dimensional array. This data structure can control state and renew 

memory for each stage effectively. 

 The future work of this thesis is discussed on the ground of the limitation of 

this work. This work is developed just algorithms to solve WDP by the auctioneer 

stand point, not yet completed the full auction design. From the game theoretical 

aspect and the mechanism design, it is necessary to consider strategic behavior 

bidders which might report untruthfully bid price. This strategic behavior will reduce 
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the auctioneer revenue. Therefore, the complete design for a booth auction should 

consider this mechanism. 

 In the aspect of algorithms design, PK’s method is very useful for 

superadditive valuation of each bidder and guarantees optimal solution in WDP for 

the auctioneer. However, the solution might be unjustified in the case: the same 

bidder submits the bids that value in subadditive and become the maximum value for 

a bundle and all substructure options. Moreover, this algorithm is weak in a more 

complex bidding language that proposed by Nissan . For example, OR-of-XOR offer 

bidding condition to select the exact preference for the bidders. 

 Last but not least, the implication of our proposed algorithm would not be 

limited to the allocation of space. The other similar bundles bidding which have a 

specific directional relation would be solved by this algorithm. 
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Appendix A 

Sketch proofs of counting 

This appendix will provide proof of the enumeration of bidding options in 

chapter 2 and the comparison works of the algorithms in chapter 4. 

Claim 1: The number of possible bundles in a line booth auction is ( 1)
2

n n +  bundles 

for n  is the number of blocks. 

Proof    

Let ( )P n  be the number of possible options, ( 1)( )
2

n nP n +
= . 

Basic step :  Let 1n = . When we have one block, it is obvious that we have one 

option. So (1) 1P =  is true. 

Induction step: Assume that ( )P k  is true, then ( 1)( ) .
2

k kP k +
=  

 When 1n k= + , there are more 1k +  possible options additionally. 

  ( 1) ( 1)( 2)( 1) ( 1)( 1) .
2 2 2

k k k k kk k+ + +
+ + = + + =     

As a result, ( 1)P k + is true by the mathematical induction.                                             

 

Figure A.1: The induction flow of the selectable options, the single line case. 

 

Claim 2: The number of possible bundles in a double line booth auction is 
3 ( 1)

2
n n +

 

bundles for n  is the number of row blocks. 

Proof  
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Let ( )P n  be the number of possible options, 
3 ( 1)( )

2
n nP n +

= . 

Basic step:  Let 1n = . When we have one row block, there are three possible 

bidding options, L1, R1 and L1R1. So (1) 3P =  is true. 

Induction step: Assume that ( )P k  is true, then 
3 ( 1)( )

2
k kP k +

= .  

When 1n k= + , we consider the additional possible options from left 

column, right column and both columns. Each case contributes more 

1k +  possible options. 

  3 ( 1) 3( 1)( 2)3( 1) 3( 1)( 1) .
2 2 2

k k k k kk k+ + +
+ + = + + =  

As a result, ( 1)P k + is true by the mathematical induction.   

  
 

Figure A.2: The induction flow of the selectable options, the double line case. 

 

Claim 3: The number of jobs in the pseudo code 1 (fixed start) is 
1

( 1)( 1)
2

n

k

n nk
=

−
− =∑ , 

for k is the number of stages and n  is the number of blocks. 

Proof 

In the pseudo code 1, there is no comparison in stage 1 since it is the initial step. 

Next, in stage 2 there are one comparison; so that, the total number of jobs becomes 3. 

Assume that in stage t  there are 1t −  comparisons.  

The total jobs is calculated as the following summation,
 1

( 1)( 1)
2

t

k

t tk
=

−
− =∑ . 

When there is an additional block the comparison increase t  jobs, because the 

possible options increase t options.  
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Therefore, the total jobs become  
1

( 1)( 1)
2

t

k

t tk t
=

+
− + =∑  

By the mathematical induction, we conclude that the number of job is 
( 1)

2
n n −

.  

 

Claim 4: The number of jobs in the pseudo code 2 (interval in the circle) is 
2 ( 1)

2
n n − , 

for n  is the number of block. 

Proof 

It is obvious that the number of job in pseudo code 2 is the n times repetition of 

pseudo code 1.                                                                                                               

 

Claim 5: The number of jobs in pseudo code 3 is 
1

( 1)( 1)( 1)( 1)
6

n

k

n n nk n k
=

− +
− − + =∑ , 

a single line case, for k is the number of stage and n  is the number of block. 

Proof 

In stage 1, there is no comparison job. 

Next, in stage 2 there are one comparison job for each two-consecutive bundle,

( 2 1)n − +  possible options. Then, the work load (2 1) ( 2 1)n− × − + . 

Thus, the basis step is true. 

Consequently, the number of jobs increases for each stage is ( 1)( 1),k n k− − + and the 

total comparison jobs is the summation of that increment; i.e., 

1

( 1)( 1)( 1)( 1)
6

n

k

n n nk n k
=

− +
− − + =∑ .  This is induction step. 

When there is an additional blocks, the incremental of work load from stage 1 to stage 

1n +  is 0,1, , n  respectively.  

Then, the additional comparisons work load is  
1

1

( 1)( 1)
2

n

k

n nk
+

=

+
− =∑ . 

Hence, the total comparison for 1n +  block is ( 1)( 1) ( 1) ( 1)( 2)
6 2 6

n n n n n n n n− + + + +
+ = . 

By the mathematical induction, we conclude that the number of job is ( 1)( 1) .
6

n n n− +  

 



48 

 
 

Claim 6: The number of jobs in pseudo code 4 (double line case) is 
( )2 1

2

n n +
, for n  

is the number of row block. 

Proof 

It is obvious that the number of jobs in the pseudo code 4 is the 3 times repetition of 

single line case for left column, right column and both columns. 

Furthermore in stage one of the crossing block, it incurs n  time comparison jobs.  

Hence, the summation of actual jobs become ( )( ) ( )2 13 1 1
6 2

n nn n n
n

+− +
+ = .   

  



49 

 
 

Appendix B 

Total unimodularity 

This appendix is written summaries of other related works, based on the book 

of Schrijver (1990), “Theory of linear and integer programming”, Chapter 19.  

Definition: Unimodularity matrix (UM) 

A square integer matrix B  is unimodular (UM) if its determinant is 1 or 0 or –1. 

Definition: Total unimodularity property (TUM) 

An integer matrix A  is called totally unimodular (TUM) if every square, nonsingular 

submatrix of A  is UM. 

Hoffman and Kruskal’s Theorem 

Let A  be an integral matrix. Then A  is total unimodular, if and only if for each 

integral vector b  the polyhedron { ; }≥ ≤x | x 0 Ax b  is integral. 

The preservation of TUM 

Seymour's decomposition theorem12

Total unimodularity is preserved under the following operation 

 for totally unimodular matrices. 

1) Permuting rows or column; 

2) Taking the transpose; 

3) Multiplying a row or column by 1− ; 

4) Pivoting; 

5) Adding all-zero row or column, or adding a row or column with one nonzero, 

being 1± ; 

6) Repeating a row or column. 

Moreover, by Seymour’s characterization, total unimodularity is preserved under the 

following conditions: 

                                                 
12 P.D. Seymour, “Decomposition of regular matroids,” Journal of Combinatorial Theory Series B, vol. 

28, issue 3, pp. 305–359, June 1980. 
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0 1

sum

b ab
sum a

a a b ab
sum

c d d dc

 
− ⊕ =  

 
   

− ⊕ =   
   

     
− ⊕ =     

     

A 0
A B

0 B

A
A

B 0 B

A A
B B

 

Proposition 1:  The constraint coefficient matrix structure in the integer programming 

for a single line booth auction has total unimodularity property.  

Proof    

Let A  be a constraint coefficient matrix for the single line case with n  blocks. 

From Hoffman and Kruskal’s Theorem, it is sufficient to show that the basic feasible 

solutions (BFS) of A  have integral solution. This is also equivalent to prove that the 

square matrix of matrix [ | ]i=B A S  which is basic feasible solutions have 

determinant value 1, 0, -1. Therefore, TUM property holds. 

Let [ | ]i=B A S , which S contains coefficients of additional slack variables. Then we 

consider all basic feasible solutions that maintain consecutive property. It is the 

square matrix obtained by the combination of column in of B as the following n 

cases: 

Case 1 the feasible solutions are the columns represent the bundle containing all 

blocks and slack variables column; e.g., 

 

0 1 0
1 0 0

0 0 1
0 0 0

1
1

1
1

… 
 … 
 …
 … 
 … 

     

Obviously, this matrix can be converted to triangular matrix by row operation of 

which the diagonal element contains 1. Therefore, the determinant of this matrix is 1. 

Case 2 the feasible solution are the set of two bundles and slacks variable column 
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1 0
0 0

0 1
0 0

1 0
1 0

1 0
0 1

… 
 … 
 …
 … 
 … 

   , 

1 0
0 0

0 1
0 0

1 0
1 0

0 1
0 1

… 
 … 
 …
 … 
 … 

   ,…,

1 0
0 0

0 1
0 0

1 0
0 1

0 1
0 1

… 
 … 
 …
 … 
 … 

   , and so on 

By determinant operation, we can make those matrices to be a matrix which can have 

determinant 1, 0, or -1. 

Analogously, it can be shown for each feasible solution by strong induction. 

Case n-1 the feasible solutions have n-1 bundles and one slack variable column. 

0
0

1
0

1 0 1
1 0 0

0 0 0
0 1 0

 
 
 
 


…
…
…


 
  

…
…

   ,

0
0
1
0
0

1 0 0
0 0 1

0 1 0
0 1 0

 
 
 
 
 
 
  

…
…
…
…
…

   , … , 

0

0
0

1
0

1 0 1
1 0 0

1 0 0
1 0

 
 
 
 
 
 
  

…

…
…

…
…

    , and so on. 

By the determinant operation, those matrices have the determinant value 1, 0, or -1. 

Case n the feasible solution is the bundle with a single block, so the matrix is a 

identity matrix. It is obvious that its determinant is 1. 

As the result of each case, it concludes that all feasible solutions that make the square 

matrices have the determinant of 1, 0, or -1. Indeed, this yield TUM for A .   

 

Proposition 2:  The constraint coefficient matrix structure in the integer programming 

for a double line booth auction has total unimodularity property.  

Proof 

Let A be the constraint coefficient matrix structure for the single line case with n  row 

blocks, and iA is of the individual bidder. Those are defined as the following: 

1  ,  for    i i
i n i

i i

  = =     

A 0 A
A A A A A

0 A A
    

 

. 
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It is analogous to proposition 1 that it is sufficient to prove TUM of iA . 

Since  iA  is TUM, 1 : i
i i

i

 
⊕ =  

 

A 0
A A

0 A
 is also TUM by Seymour’s characterization 

(1-sum).  

Further that i

i

 
 
 

A
A

 is also TUM by Seymour’s decomposition – the repeating of row. 

For the reason that iA is the composition of iA , we conclude that the TUM property 

is preserved.    
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