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Chapter |

Introduction

Auction is a well-known process to determine allocation of some scarce
objects which are highly demanded by many.agents . In a general auction’, there is
only one owner, so-called auctioneer, and" several agents, so-called bidders to
participate in the event . For.the purpose of-maximizing revenue, the auctioneer
imposes justifiable competition rule such as price submission method and payment
method for bidders. On"the oiher hand, bidders submit their competitive price
according to their willingness to'pay in order to maximize their utilities. At the end of
an auction period; the auctioneer evaluétq_s those offers and determines the most
advantageous bidder to /be; the winner;bf the auction. This kind of revenue

maximization problemis known as the winner determination problem (WDP) .

]
i

Combinatorial auction

Combinatorial auction is the advarige: study in auction theory. To illustrate
difference, the general auction usually refer.s‘tg'._a single object auction, while the
combinatorial auction refers to multiple objeﬁswa:uction as well as the characteristics
of objects such as divisibitity of goods,"'}déﬁii’cal or. nonidentical objects, and
continuous or. discrete quantities. Moreover, bidding optionas.and expression are
another concern<Bidders offer price for the bundle of objects feliowing the rule set by
the auctioneer such as permitted bidding options, bidding language and payment
method. Consequently, it is a complex process not only for the auctioneer to decide
his optimal allocation, but alsosfor,the bidders.to.determine-their-optimal strategies for
individual best pay-off.. Therefore, the characteristics of a combinatorial auction,
which relax bidding options and additional rules, incur tremendous calculation cost to
bothethesauctioneerand-thezbidders:

It is quite reasonable taithink that the utilization of two.or more abjects yield
better benefit, so the bidders who wish to consume those objects can offer higher

price to the auctioneer. For example, in 1994, the spectrum auction of Federal

! In the open procurement, it is called inverse auction to search for lowest price offers from suppliers who try to
bid for purchase order acquisition.



Communication Commission (FCC)? sets up rules of bidding multiple licenses over
regions. This is because geographical synergy of telecommunication industry exists
and companies have motivations to gain profit from such situation. It claimed for $60
billion USD at that time. Some similar spectrum auctions also occur in Germany, UK
and Sweden. As well, a combinatorial auction still appears to wider areas; e.g., U.S.
Treasury note; electricity grid auctions in UK.

A plenty evidences of combinatorial auction‘are available in industry practice,
too. For instance, airport-arrival-departure time-slot-approach for New York’s
LaGuardia airport;-bus route.market in London; sponsored search for ad-slot service
in Google and Yaheo. Example from the procurement in the combinatorial auction
styles are such as milk precugement for public school in Chile; the procurement of
freight transportation #services; findustrial: procurement. and so on. Thus, these
evidences represent thesusefulness—and-expectation of a combinatorial auction in
practice. y

Those real” world applications attract. many scholars from economics,
operations research, and computér science i‘!t‘o-"progressively conduct researches in
combinatorial auction in both thedry and é‘[';pﬁca}tions. First, theoretical economists
explore the possibility of the‘auction theory to é’ﬁﬁance the efficiency of market-like
mechanism for a combinatorial. auction in: aé_pegt of game theory and mechanism
design. As well,: package bidding in operations research emphasizes the necessary
techniques to solve the combinatorial optimization via the state-of-art optimization
solver. Finally, computer scientists extensively make effort on an algorithmic design
to improve speed-and inspect the expressiveness for bidding languages. Indeed, the
crossing of these threeracademic collaborations describes the development and the

importance of combinatorial auctions.

Booth auction

Boothrauetion is one of the combinatorial auctions that bidding-auction must
be the consecutive objects. The bidders are not allowed to bid booth and skip or make
a hole, but they can propose every bidding option at the same time. This type of

auction is classified as geometry-based structure , linear alignment , consecutive

2 http://www.fcc.gov/wib/auctions/



objects , etc. Those auction structures can be proved to be tractable that it is possible
to solve in polynomial time . After the work of Rothkopf et al introduced the dynamic
programming style for this problem, there is no further investigation of its extension
in a double line case. This thesis contribution is the extension of previous work and
the acceleration of algorithms relevant to a beoth auction.

Note the characteristics of booth auction‘are widely observable. Basically the
objects in the booth auction refer to the blocks lnsthe hall space which located back-
to-back. This correlates-to-the auction which depends-en geographic adjacency such
as pieces of land,~paddles _or space; the spectrum auction for radio licenses, the
territory for milkedelivery and  advertisement space in the classified. Other
applications could be‘the problem to.determine time schedule or time slot; priority
queue for server timesslot, meeting appointment allocation and so on. The booth
auction thus has application for allecation of multiple objects which has synergy
effect among those consecutive bundles. :

As the perspective of a rational auctionee_r, this thesis would be able to provide
a tool for solving WDP as well as a suggestioh to those auction practitioners who will
set up an auction alike the problems in this"fn‘esis — the linear alignment of multiple

objects.

Research objectives, questions and scope il

Under therésearch interest of the combinatorial auction, the objectives of this
thesis are to devetop an approach to obtain the optimal solution for WDP and to study
an incentive compatible mechanism for a certain structure“of auction scenario. The
former means that this thesis develops an algarithm for WDP, and the latter refer to
the review of study to"analyze the property of the algorithm in a mechanism design
aspect. This thesis scope is limited to the specific domain of the problem, booth
auction, which the characteristic of linear alignment.dependents on the: geographic
layout. The preblem specification is described in the next chapter.

Specifically, the research question is to solve an allocation problem of booth
layout in an exhibition space. The work is an extension of Rothkopf et al who studied
the computationally feasible case of a combinatorial auction in the geographic
problem domain. They illustrated polynomial time algorithm for linear objects

allocation. Consequently, this thesis contributes to a general case not only for a single



line booth auction but also for a double line booth auction and some additional
obstructions.
The structure of this thesis is as the followings. Chapter 2, problem

background, introduces the problem specification, some necessary theorems and

notations of this thesis. Thereafter, th grature reviews of related work will be

AULINENTNEYINS
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Chapter II

Problem background

According to numerous details of a combinatorial auction, this chapter
provides preliminary information, such as apreblem specification, a bidding scenario,

and a theoretical notation, which are used in this.thesis.

]

2.1 Problem specification

Rather study_fer a general case of a combinatorial auction, this thesis narrow
its scope to a specifigiproblem domain,“llinear alignment of a booth auction. It is a
geographic allocation problem of conseeutjlve blocks Fig. 2.1. Rothkopf et al first
introduce this strueture of auctibn objégts regarding to the merit of obtaining
telecommunication ligenses of the northe'En to the southern region consecutively in

spectrum auction. Fhis case is also known as a tractable combinatorial auction .

G&'.&-li Ga{e /| Gate C

P e T S ey
Ablock | =~ \t e TR A booth with
i P two blocks.
[ — — :
Azone oo ot A i b -
e e e == i e il | o B

Figure 2.1: A layout in the exhibition hall

2.1.1 Linear alignment of a booth auetion

Linear alignment-of ‘a ‘boeth auction' refers to-the allocation of blocks as a
singleton of its geographic adjacency. Given an empty space in a hall, the,organizer
plans an event and divides:the hall ‘space into a certain size of blocks, fora booth
layout as in Fig. 2.1. A booth could contain more than one adjacent block. The'layout
of booth can be one line of blocks or double line of blocks with a pathway in between.
Definitely, there could be more than one block in the booths, but the blocks must be

located consecutively back-to-back in a rectangular form. For the argument



simplicity, the case of one row of a single line and a double line is given, as in Fig.
2.2. Hence, the bidding options are set up by the layout of booths.

Gate Gate
—_—

L4

R4

Bidders can of a réctangular form, which
lie consecutivel noted by starting and

side. The following exa valid bundli ions. The bundle only S1 is

indicated by [S1,S1]. (s ¢ ,52]. Bundle L1, L2 and L3

appears as [L3,L1], and bundife " ]l R2 to R4 appears as [R4,L2].
B :

Qﬂon-rectangular blo a-bundle S4 and S2 or

abundle R3, R2:aRd-l-2-are-ivalic-bundie:

Unconnected

Entrance

0/

Figure 2.3: Notation for a bundle of blocks in both single and double line case.



The method to count the number of options is straightforward using the
mathematical induction®. In the case of a single line, if we have n blocks, the number

n(n+1)

of possible bundle is . An example of the booth of three blocks is displayed in

Table 2.1 that there are 6 possible bidding options. If n=4, there are 10 options:
[S1,S1], [S2,S1], [S3,S1], [S4,51], [S2,52], [S2,S3], [S2,54], [S3,S3], [S3,54], and
3n(n+1)

[S4,54]. In the case of.a double line, the number of possible bundles is

providing rectangular bleeks. These combinations are from two times of single line,
left and right case, plusserossingline case. Therefore, the option in this combinatorial
auction does not grow. exponentially. Thi§ IS a special structure of the linear alignment
in our problem demain. s 4

In the actual bogth layout, theré_Ja'lre some obstacles that may prohibit a
location of some booths stch as multiple zones and physical obstructions. These
conditions restrict bidding options, and Woilud probably increase the complexity of the
problem. First, the multiple zZones are thei~-'di's'tinct area for booths which locate
sporadically from each other. For exampjlsf_jn Fig. 2.1, three distinct zones are
displayed. The number of zores €xpands the bidding options for the discontinuous
selection of booths. Bidders ean choose a ba?lx_(rileﬂ of blocks in the same zone which
does not cross+over anotﬁér;ﬂzrone. Similafl'y;' -t_ﬁ'e_ bhysical obstructions also cause
additional restrictions-in-bidding-options-—TFhe-auctioneer-must explicitly identify the
obstruction positions, so that bidders can avoid including those positions. Hence, both
sources of restriction increase the complexity to obtain optimal solutions.

In order to handle a combination of restriction for both the multiple zones and
the physicalobstructions, e add’ some«<constraints totheswinner determination
problem, ‘using ‘the integer ' programming solver-and ' dynami¢ programming
application, to obtain the solution. Their specific details are explained in the chapter 4
methadolagy.

¥ See the sketch proof in appendix A.



2.1.2 Failure of a simple greedy algorithm

It is known that a combinatorial auction is related to a knapsack problem . To
explain shortly, auctioneer has to choose various bids to maximize his revenue instead
of selecting items to maximize utility as in the knapsack problem. The greedy
algorithm is a common method to solve asknapsack problem. Since the greedy
algorithm chooses the local optimal solution.witheut considering every feasible
substructures, it could not guarantee t_r_}e global-eptimal which lead to an inferior
solution. Moreover, this may-lead to the complaint of unfair allocation which deprives
bidders’ incentive to offera high-valued submission price.

Generally the rational auctioneer wants to select the best offers from many
bidders to maximize hissrevenue./ The gf_ee}dy algorithm is useful for a single-object
case, but it would pet bg suitable for a "m'ulti-objects case. The following instance
demonstrates a failure of the simple greed;alguorithm“:

Considering.the situation of three-t;Lock-Iong single line, it has the price offer

from each option — §1,52, S3, SlUS:Z, S2US3, S1US2US3 - as in Table 2.1.

There are bidders /A and B competé‘,-’jr_li the auction. If the auctioneer begins

with the biggest bundie SluSZUSS,f.-heigbtains bid value 7. Next step, the

auctioneer compares resutt with its I,@!a] partition [S1, S2US3]; the revenue
becomes,1+4=5: This new partition returns the total prige-less than the former;
therefofes.the—greedy—algorithmterminates—with=the-tesult [S1US2US3].

However; the partition [S1, S2, S3] provides a better solution which the bid

result is 1+5+2=8. Hence, the greedy algorithm might not give the optimal

solution for the auctioneer.
Indeed,this iresearch /employs ©ther: methods: tol find «the «optimal solution of a
determination‘problem ifi'a linear-alignment’of a baoth.auction. Gne‘common method
to determine the solution is to use the integer programming which is, one of the
mathematical programming.technique. The atheris'the dynamic prograiming which
determines the ‘optimal substrueture via recursive technique: Their specific details are

explained in chapter IV.

4 In this context, we set up the greedy algorithm that will terminate if it discovers a result which is not better off
than the former.

® We assume that the greedy algorithm terminates when it cannot obtain strictly better-off solution in the next
comparison.



Table 2.1: Combinatorial bidding case which a greedy algorithm cannot achieve global optimal

Bundle

S1

S2

S3

S1US2
S2US3
S1US2US3

Max S1US2US3

*/ \*

S1.S2uUS3 S1US2, 83

'\ . /
~3 &
S1, 82,83

-

N D AN WR|I>
(o) IRV IR C, I = o)

~N B 0Ny 0

2.2 Auction scenario

This section explains .the setup'for a combinatorial auction scenario with
notation remarked fog'the rest ‘of this thesis. As well, bidding process, winner

determination and payment rules are.discussed here.

2.2.1 Type of auctions

There are many ways to categorize auctidn price submission methods and the
payment rules . The sealed-bid auction is a statlc type which allows bidders to submit
price only one time. The bidders cannot a prlory“ know the other bidders’ submitted
price. Usually the highest offer-price obtains the right to acquire that target; however,
the payment would probably be the first-price or the second-price depending on the
payment rules. In the first-price sealed bid auction, the winner is obliged to pay the
winning price. O the other hand, the winner is allowed to pay the next winning price
for the second-price sealed bid auction. This second-price sealed bid auction (Vickrey
auction) is famous forsits incentive compatible property which motivate bidder to
submit their estimated value as bidding price truthfully.

Next, the dynamic aspect of auction is used in an ascending-bid auction
(English auction) and a descending-bid auction (Duteh auction). These “‘mechanisms
devise price/discavery system which. motivate bidders tend to offer price closed to
their estimated valuation to win the auction. In an ascending-bid auction, bidders will
raise their price gradually in order to win his target. However, in a descending-price
auction, the auctioneer will decrease the price until a bidder agrees with it. As a result,
both mechanisms lead to discover the highest price bidders who will be the winner of

the auction.
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Table 2.1: The matrix displays categories of some well-known auctions

Payment Rules

First-price Second-price
Static First-price . sealed- | Vickrey auctions
Price Submission _ bid a_uctlons_
Method Dynamic | English auctions
Dutch auctions

_ |

In fact, many.bidding.methods and. payment rules are invented to enhance
some preferable outcemes in a mechanism design sueh as the truthfulness of bid
prices. The combinatorial auctions are eé”pecially the motivation for the invention. For
instance, Ausubeland Milgrom propose a mlultiple unit auction in . It is an alternative
ascending-price fopmat of which oUtcome:Qquivalent to the Vickrey auction. Iterative
combinatorial auction:method by Parkes‘l} and Ungar Invents another method for
auction agents that assign mnon-additive “values to resources, such as distributed
scheduling and task assignment problems'i; Both are a few examples for a special
auction which is made for specifie ‘—circumst’élﬁ%es.

Finally, bidding language is a necéé,'s?’ai‘;')‘/ tool to understand category of
auctions . It considers how fhe expressi_q?_;ir']_zil combinatorial auction creates
complexity for WDP. The rﬁ;jor ideas is ini“tiét(-a_(.:i in OR and XXOR type. OR means
each bidder is Wiling-to-obtain-any-bundie-options-forwhich-they submit price, while
the individual desire at most one bundle in XOR. Further_that, many complicated
expressiveness are the combination of OR and XOR for_some specific options;
theoretically, it refers'to.analysis of a Boolean lpgic in the various expression.

In summary, basic categories for auctions are the price Submission method and
payment rules.”Since the potential“of ‘the combinatorial auction”is ‘studied, scholars
invent new auctions rule to achieve the equivalent property once inherit in the
Viekery’s auetion.- As' welly, bidding ‘expressiveness emphasizes the criiical ‘issue of
bidding lahguage. Indeed, these categories are important to understand both operation

and outcome of auctions.
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2.2.2 Setup and process

As stated in the introduction, auction is a market-like process to determine
allocation decision. The auction process is simple or not depends on type of auction
and payment rules. It usually starts with calling for bidders to compete by submitting
the price offer according to their financial abuity. Bidders know their objects values,
but they might not be able to determine thesbest submitting price accurately. After
bidders submit price in the permitted method, which'may end in one round or several
rounds, the auctioneer determings the final winner of the auction. In a combinatorial
auction, there would be“several winners. Finally, the auctioneer requests for the

payment of allocation result. ‘

A. Definition and.notations

The followings aré netations-used-in this thesis. They are explained according
to the auction processbased on game theoﬁetiéél notations.
o Players: Let Z&{0d.,...,i}be a fi‘ﬁit.e set of players; the number 0 is an
auctioneer and the others representl b_;idd'ers. An auctioneer and i bidders are
the players in thisauctiongame. o,

e Goods: Let G ={1,..., g}bea finite set of g"oods. The auctioneer sells m goods
to n potential bidders. - The bundlé,"'ong'oods is denoted bySc g, S=J.

Hence'sthe_possible bidding options set - is the-nowes sét 27 excluded empty
set, H =27 \{@} for everyS € H. H has t=2%—1 bidding options® since
empty set+s excluded.

e Bidding: Biddersshave a nonnegativie/valuation for each bundle, V' (5)=0
andV'(@) =0, sand | submit | bidding! (price | b'(S)>0such that
V'(S)-b'(S) >0 in their bitiding profile.

e | Payments, Since auctioneer can arrange the!payment to motivate-bidders

submit truthful information, the payment p(S,) , could not be greater than the

® However, in our problem specification the number of options is fewer due to the alignment restriction.
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bidding price corresponding to the bundle, p(S,)<b'(S,). For simplicity, let
p(S,) =b'(S,) be the payment rule.

e Profile: Let X ={X°,X",...,X'}be the total profile. To allocate all goods,
auctioneer intakes profile, &', from each bidder, then he will determine the
winner and announce allocation profile, "

X' ={x =(S,b(S) 1), X = (S,,b(S) DT is-the bidding profile of bidder i.
X0 ={x) = (S, p(S)W)s-.., X = (S, p(S), W)} is the allocation profile of

the auctionger:” Thesthird element of tuplex. W, &Z represents allocation

decision — a biflderatha obtains that bundle or nobody does.

e Payoff: utility(profit) functions are defined for the auctioneer and bidders.

Bidder’s Utility A EV (;!](‘).-— p(XY) = Zt:(v‘ (x) - p(x‘k))

t
Auctioneer’s ugility s u® (%) =>"p(x, )"
i 2] 4

e Optimization problem:

o

Bidders are to maximize-their utilities by 'oiéfering a bidding price vector,

b = argmax u' (&) for b= <bi(31),“_;_‘-; BL(£$)> under the budget constraint,

if any.

Auctioneer is to maximize his revenue by searching the decision vector,

t
X" =argmax ) p(x,), forx:<xf,...,xt°>, under constraint of no duplicated
k=1

goods allocation.

B. Auction process: an example

The behavior of bidders and“auctioneer in" an auction. are to eptimize each
individual. Their scope of actions is reviewed in this section along with the timeline.
To illustrate, the FCC spectrum auction , Simultaneous Multiple Round (SMR)
Auction, is an instance for this study. SMR is conducted in Web-Based Bidding
System. The auction rule contains that each individual submission is offered at the

same time, and it will be repeated for multiple bidding rounds. Bidding is confidential
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during a round. When a round ends, results are processed and made public. The

auction will be terminated when nothing happened at that round.

Pre-auction

First of all, the auctioneer announces the auction event for public notice. He
will disclose all necessary infarmation: objects information, price submission
method, decision method, prohibited action, payment rules. Consequently, the
participants in auction, bidders, are measured for their bidding eligibility. It is
to prevent forseollusions among bidders; to-elarify financial status, and to
underwrite their provisional price submission.

Bidding

Bidders musirbid .throughout th"e auction. According to the bidding rules,
bidders offer the price which could maximize their expected utility. In this
case simultaneous multiple sround; Minimum opening bids are established
prior to the auction. Al smeissiob pFices are disclosed at the end of a round
to see provisionally, winning bidS:f(.ID.V\./_Bs), all bids, bid withdrawals, and

proactive waivers. £,
Winner determination A ‘_
The Auctioneer Is respons:ible for finﬂiné!jt'iwe combination of the best offer in
order to maximize.his-benefit from‘-"thbse proposed bidding at the end of
bidding..Ehe comparison for the best offer is the core.of price discovery. In the
final stagé, usually the combinations of highest subrhission that do not
duplicate objects allocation are the optimal solutions.

Payment request

Finally, the auctioneer issues the bill 6fpayment’ to the winners to pay for the

amounts intheir price'submission.

Actually the above is an auction design of combinatorial auctions. ;There are

four hasic sieps,td understand a certain-auction.” It is' possible” to generate other

mechanisms “to enhance price" discovery fTor "auction objects. However," those

mechanisms should hold some preferable properties in mechanism design theory to

" The payments usually do not exceed their submission as well as their anticipated valuation.
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correspond to bidders’ strategic behaviors. Those concepts are reviewed in section
2.3.2.

2.3 Theoretical concepts

This section describes some theoretical concepts, preference and valuation and
mechanism design, which are necessary to all following chapters. These concepts can
be found in the standard text book for the“auetion theory and multiagent system

analysis .

2.3.1 Preferenceand valuation
|
Specific relationship @mong set of objects Is considered. When the auction
goods have nonidentical gharacteristics and they are being sold altogether, bidders
would evaluate the additional goods to takTé in option in two different ways, substitute

or complement. | will follew the formal deﬁnition in Krishna..

e Substitute: bidder i'consides the gac;és m G 1o be substituted if forall ae G
and bundle S and" 7. not containih&é? Such that ScT,
V (S Ufal—v (SY2V(T Ufah)-v'(T) 2.1)
The inequality (2.1) is equivalent to r'éfdi.j_i'r'i;r{g‘that for allbundles S and 7,
V(S)=V{(T) 2V (SUT)+V(SNT) (2.2)
Functioné satisfying (2.2) are called submodular. Inparticular, if SNT =,
then, since V' (@) =0, the inequality in (2.2) reduces {0
V(S)e W (B2pn'(S @ h)
Hence, the substitute property implies that V' (?)is a subadditive function over

the bundle of goods.

s Complement: Itis similar to the substitute case, but the-opposite Side of inequality.
Vi(Su{a}) -V (S) <v'(T u{a}) -V (T) (2.3)
The inequality (2.3) is equivalent to requiring that for all bundles S and 7,
VI(S)-V(T) SV(SUT)+V(SNT) (2.4)
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Functions satisfying (2.4) are called supermodular, In particular, if
SNT =, then, sinceV' (D) =0, the inequality in (2.4) reduces to
V'(S)-VI(T) <V(SUT)

This implies complement propertyof V' (-) is a superadditive function over the
bundle of goods.
e Additive: If both (2.1) and (2.3) are held,.ihen the value are additive. That is,

the value of any'bundle § is simply the sum of the values of the individual
objects in that bundlesIn.this case, it is useful o think of the different objects

as being completely unrelated since the value derived from a particular object

a does not dependionwhether ar;other object b is obtained.

2.3.2 Mechanism design

An auctionegr has a particular obj"écti-‘\'/e - maximizing revenue. Although he
has an algorithm t0 determine the best solu}i_gn from several bid options, the solution
could be improved when the bids.are set to t}rne highest price. Because the participant
bidders have incentive t@ maximize their pé}}c;ffﬁ-_;hey would not tell their valuation
and lower submission price. Therefore, in order to maximize the auctioneer expected
revenue, it is necessary to-desigh‘a mechariié'm"%hat enhance bidders participate and
offer bidding priceg as high as possible.

Mechanism design is a very important topic in Microeconomic and gain much
attentions in Multiagent Systems . It studies for a property in the mechanism to induce
some preferable outcome, which is a reverse engineering of the game theory. It is
implemented. under the Bayesian game setting. Hereafter, the mechanism refers to the
auction and the agent as the bidder. Those- praperties to be 'shortly introduced are
participation constraint (PC), incentive compatibility (IC), and Efficiency (EF). See
for.the rigorous definition.,

o' Participation constraint

Participation constraint or Individual rationality is that the agent has incentive
to participate in the mechanism because of the non-negative utility, u' (Xi) >0,

e Incentive compatibility
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Incentive compatibility or Truthfulness refers to the situation that agent i is to
adopt the strategy b"(S)=V'(S,) for the Bayesian-Nash equilibrium. The

revelation principle claims that the truthful mechanism always exists;
however, it is very difficult to find for a computational view point .

e Efficiency

The mechanism i . icient, U(X™®)>u’(X°). The

most famous cl ech iSr fomﬁ‘,js Vickrey—Clarke-Groves
mechanisms_(VC@)." It motivates agents to.choose the socially efficient

allocation evenyif‘agents. have privately know uations and even though it

In fact, the mg niSm/desigr ) ) ‘ ropertles which are also
preferable. This .the i 'S /e justTa fe hat direct ates to strengthen the
maximization of auctionegr’s revenue. over, the forn al analysis of a mechanism
to prove for the € istefice 4 l ot vet been conducted in this

research. Therefore, t s of auction as a mechanism

which considers all pa aspect will be discussed later in

future.

ﬂ‘UEﬂ’J‘VIEMﬁWEJ’]ﬂi
QW’]@Nﬂ‘iﬂJ UANINYA Y



Chapter 111

Literature review

Combinatorial auction has been studied in both theoretical and algorithmic
aspects. The former focuses on an auction sdesign and the latter on an efficient
algorithm. Auction design constructs and .analyzes.the auction rules whether it
achieves some preferable properties. Hlowever;~the auction rules would be used
inefficiently if the computation is costly and impractical. Therefore, many scholars
make some attempts on.the research of specific domains observed in reality, propose
manageable solving meihod, and evaluate efficiency.

This chapier reviews: sgme Iiteré_turges on WDRP for some specific domains,

such as, internet ad-slot auction and geometr'ic allocation.

3.1 Tractablegtructures of WDP

The structure of combinatorial auct‘i‘d'hs imposes complexity to search for the
optimal solution in WDP.. Firstythe numbe’r—fé)f- objects in auction is the major source
of complexity to determine the-winner in the éijcii‘dn. The bidding strategy for a single
object is simple, but WDP becomes unmanag;é_tyle when bidders have more options to
bid their targets:in addition, ifthe object is ihdi\;i-éibie, It is.negessary to identify only
the integer solulion==As=well;~the=case~of-non=1dentical=multiple objects imposes
computational burden on the auctioneer in searching for the optimal solution. Indeed,
WDP is an NP-hard problem because its decision variable sparsely growing in
number of bidders and combination of options.

A. 'Rothkopf, Peke¢ and Harstad (1998)

Tractable structure of WDP has been firstly introduced by Rothkopf et al . In
this famous paper,.they. discuss.the importance of a computable combinatorial auction
that the algorithm'should be in a class-ef palynomial time compléexity. Alang with the
structure of a combinatorial auction in practice, they prove and introduce algorithms
for the problem structures which are solvable in polynomial time; i.e., nested
structures, cardinality-based structures and geometry-based structures. Nested

structures are that only one type of combination is able to bid together, while the
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cardinality-based structures illustrate more than one type of groups. The geometry-
based structure is the most relevant to our problem which binding biding options
depending on their adjacency as explained in the problem background.

In this paper, the geometry-based allocation is our main concern. Based on
their proof of the optimality for the dynamic programming substructure , they begin
with the single line and then followed by the eireular case and propose the polynomial
time algorithm. Furthermore, they show that_ihe generalization of mxn blocks
allocation is NP-complete: The linear alignment of eonsecutive blocks in this thesis is
influenced by Rothkepf et al.in addition, this thesis has introduced a faster algorithm
to solve for a singledine case, and then a double line case which does not exist in their
work. The approach#to the general Jayout that has multiple zones and physical

obstruction are the extensions (o Rothkopf et al work.

B. Tennenheltz (2000)

Tennenoltz further investigates the‘!r“[ractable case for a combinatorial auction.
He proves polynomial running time for a cembinatorial network auctions, various
sub-additive combinatorial auctions; and some restricted forms of multiple-objects
auctions. The allocation'of objects in geome,.try—_p_ased structure could be one of the
restricted forms. In his proofs fof polynomiar'éorm-plexities solutions, he elaborates b-
matching technigues in graph algorithms fdﬂl ‘-’ib"eh‘tify those tractable combinatorial
auctions . Ewven. though there are no implementation results’ in this work, the
computationally-tractable in a polynomial complexity is guaranteed for combinatorial

auction in the geometry-based structure.

C. Sandholm (2002)

This" paper initiates 'an' analysis"in ‘some bidding,"languages with full
expressiveness called XOR-bids and OR-of-XORs as well as tractable algorithms, .
His bidding language enhances ‘expression of the. general preference; both of
complementaritysand substitutability. 'He also proposes the optimal search algorithm
and preprocessors to cope with the problem of new bidding languages. The optimal
search algorithm is constructed by four approaches: allow bidding on combinations,
find the optimal solution, completely avoid loop and redundant generation of vertices
and capitalize heavily on the sparseness of bids. For preprocessing, he also suggests

three jobs: keep only the highest bid for a combination, remove provable
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noncompetitive bids, and decompose the set of bids into connected components. In
sum, this paper extensively demonstrates a constructive method to solve WDP in a

general case of a combinatorial auction.

3.2 Mechanism design for WWDP

The analysis of strategic behaviors ameng.bidders is an important issue for a
mechanism design for.an auctioneer to reap the*maximum revenue. Especially, in a
combinatorial auction, the auctioneer would gain more or lose some benefit from
bidders’ strategic behavigr They always have a motivation to submit price below
their valuation. Therefore, the auctioneer has to design an incentive compatible
mechanism® to generate sufficient incent%ve for bidders to submit price as high as the
valuation. These follewing regsearches have proposed the mechanism which equip
with the preferable properties of mechaﬁism_ design, and also relate to this thesis

problem specification.

A. Parke and Shneidman{2004)

From an iterative method algorithm iBundle in ', Parke and Shneidman suggest
the partition principle to prove equivalent of a meehanism to Vickrey—Clarke-Groves
mechanism (VCG) in . Unlike the centralize r}jéchanism design, the partition principle
is implemented«by computation of each selnf.-i‘h“t:e—'résf agent. They also recognize the
weakness of metheds-based-on-the-principle-and-propese-several-principles to conduct
the distribution of this computation focusing in particular on VCG mechanisms for
implementing outcomes that maximize the total utility. However, many problems still
remain such as costlys=computation, restricted. communication networks, self-enforcing

outcome and specific inStantiations.

B. Petcu, Faltings and Parke (2006)

The decentralize mechanism for an efficientailocation has been introduced by
Petcu et al i Their research highlights a combinatorial auction as an'.instarce of a
social choice problem which can be implemented by M-DPOP, their algorithm. The
special characteristics of the algorithm will redistribute a problem to each agent to

perform computation, report information, and send messages that is in its own best

® In mechanism design, this term is said as truthful mechanism or incentive compatible mechanism.
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interest. At the same time, it provides a faithful distributed implementation for an
efficient social choice to self-interest agents. The proof of truthfulness in their
proposed algorithm is based on the partition principle of Parke and Shneidman and
can be applied efficiently to social choice problems, not limited to just a

combinatorial auction.

C. Feldman, Muthukrishnan, Nikolove and«Pal (2006)

Internet ad slot auetion is anotherl importaniresearch target actively conducted
by researchers not only in academicst-but in Yahoo and Google. Internet ad slot
auction is similar to a hoeth auction that bidders want the best position with the high
rate of visits. Regarding to bidcers’ pricing for different positions and budget
constraints, Feldman et al set.up an al“location rule for an advertisement slot and
algorithms to solve \WDP .Since the unit Of.‘é marginal benefit to acquire from ad slot
in this auction is‘the number of clicks, th—eiJna}ture of auction object is divisible when
consider the allocation as‘proportion occuﬁ'i_ed' each slot. Moreover, bidder is not able
to request for a specific ad slot position, while he could obtain just clicks which
redistribute after eachwinners being deterrﬁi_p_egl. Thus, the bidders’ specific option in

position arrangement has not yet been studied,_foif!me internet ad slot auction.

In sum, this thesis will concentrate on.g_-s‘pgcial case - the linear alignment of a
multiple-object auction, and explain the succéss of a dynamic programming approach
to maximize the“auctioneer’s revenue. The new algorithms are /developed based on
Rothkopf et al with the explanation of Tennenoltz and Sandholm . Unfortunately, it
is beyond the scepe of this thesis to exhibit a comparison analysis of the search
algorithm approach by Sandholm . Besides, it is also important to know the limitation
of the 'solution under a certain ‘bidding environments which bidders probably act
differently;. Therefore, this thesis provides discussion about the properties in a
mechanism design to the solution method of WDP.



Chapter IV

Methodology

This chapter is the main econtribution of this thesis. It explains the
methodology in this research. First, it begins with the solution method for winner
determination problem using the integer programming approach and the dynamic
programming approach. After introducing the simplified case, it describes the method

for extensional cases:multiple zones and physical obstructions.

4.1 Simplificationofdayout problem

In this sectiony the" selution meEth for WDP is explained: integer and
dynamic programming. Ihe integer-programming is a flexible methodology to solve
WDP ; the computation complexity reIieé;. on the optimization solver. Note that the
bidding option grews rapidly as the number of decision variables increase which
incurs computation c@st. GQn the other hahrd-,'".a-.'c-jynamic programming approach can
alternatively be used to avoid an-expensive &@Iqtion. While the efficient calculation
is guaranteed, the disadvantage is the limitati'gnttjé‘ adopt various problem constraints
in the solution step, unlike integer programmi'r:;g‘f_lqr a general WDP. The explanations

of both methodologies are followed.

4.1.1 Integer‘programming

Winner determination problem (WDP) is based on the assignment problem .
The problem objectiveis to maximize the.auctioneer’s revenue. In the problem
formulation, binary decision variables/are used to indicate the optimal selection and
allocation constraints.

There is a finite set of bidders, A/, with*n* bidders, and a finite set of
indivisible objectsy G, with-m distinct blocks: Each hidder | € Al has anan-negative,
integer valuation for each bundle of objects S ¢ G denoted by b (S) € Z,. The binary

decision variables are defined by X (S) €{0,1}; X, (S) =1 means that the bundle S is

allocate to bidder i and otherwise; it will not allocate to this bidder i.
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The possible bundle is illustrated as S =[a,b]: a is the begin block position

and b is the end block position. For example, [S2,52] means only one single block at
S2 in the single line case. For the double line case, [R3,L1] is a rectangular six blocks
from L1 to R3, and [L4,L2] is a bundle of three blocks on the left side from L2 to L4
consecutively. Thus, we can represent all possible options as index of column in a
coefficient matrix — the decision variables.

(IPD) A > 3 b S)x, (S)

=l Scg

n

D (P foralljcgG

i=l S&6,57)
x(S) 10,13 |
WDP is formulated sas in (IP)l)i The interpretation of each line is
straightforward. The objective function is to maximize the revenue for all possible
bidding options, and the constraints are to pre{)ent duplicated allocation of each object.

One bidder is allowed 0 have more than one object. Specifically, this WDP is in the
OR bidding language defined in: .- The matrix A, is the coefficient matrix in the

constraint for the bidder'i, and.the sparse structure of coefficients is observed. For

example, considering the size of G to be Zf'is used to explain the structure of a

coefficient matrix.

Single line case
Let m be the number of row blocks, m=g| -

S1S1 S2S1 S3S1i SAS%+.S2S2 S3S2 S4S2 S3S3 SAS3: S4S4 <::| S:[a b]

0 0 0 0 0

for all i bidder
A, ~mx0.5m(m+1)

OO O
O O
o RrIEYR
[T
R =)

1 1 0 0
0 1 1 1
0 0 0 1

= O O

IALES [A1 LA %Y. An]

Double line case

- A 0 A L -
A = { } for each i bidder, A, ~2mx1.5m(m+1)

A=[A - A - A]
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According to the special structure of the layout booths, the coefficient matrices
have the total unimodularity property® . For the sake of integral values in the right
hand side and the total unimodularity, the integer formulation (IP1) is reducible to
(LP1) which is equivalent to a linear programming model. This yields an integer
outcome, in this case just 1 or 0. Hence, .it is eligible to employ just linear

programming methods, (LP1) and (LP2), insteadof the integer programming model.

(LP1)  max > bx, ., (EPwmax > bx,
i1 ! i1
D AX <1 Ax <1
i=1 i=1
X; >0 | X

4.1.2 Dynamic programming

A dynamic programming‘can be W:uséc-‘i to solve the optimization problem .
Optimality in dynamic program_mi_ng can béi_prqyed by the mathematical induction as
regarded in . We exert a two-dimensionél';‘arr”ay as in Fig. 4.1 and its index to
construct a data structure. It ts suitable t‘!o fspl_ve for the dynamic programming
approach since the bundle notation corresp&}déj"io the index and easy to call and

update the memory in this structure. o foad=-

o EnLFance. + + " + # # " # " " = Entrance

1 |31 32 58 54 1 (51 52|53 54

s1 - s1 F o
s2 J » s2 I*
s3 o s3 ] -
s4 s4
[52,53] [53,53]

Entrgncel Entrance
2/ |lR1 R2 R3 R4 T 3 (L 12 13 14 I
R1 » L4 | R4 R1 1 ‘ 11| R4
g, © ‘ ERLE Rz = 13 | R
R3 H L2 [R2 R3 q} 12 (IR3
R4 1 [Ri R4 - 11 a1
[R2,R1] [L4,R3]

Figure 4.1: The two-dimensional array data structure corresponding to the bundle notation.

° More explanation of total unimodularity in Appendix B.
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Furthermore, the method of Rothkopf et al which is related to the setup for the
single line'® is the third algorithm in . We shortly called RPH’s method.
Consequently, the new method proposed in this thesis is called PK method by the
initial letter of the authors of. Although both methods are different in the step to

update memory, the optimal value is obtained by the final comparison.

A. RPH’s method
RPH method, their algorithm is rewrittehin-pseudo code 1 and 2. RPH’s

complexity is O(n*) for.thessingle line with a fixed start, say [1,n]. Pseudo code 1

n(n-1)
2

demonstrates this.methodisspeciiically, it has Z(k—l) =

| k=1

comparison works.

However, the method which'is suitable to our problem. is the intervals on the line.
They interpreted as.the intervals on the Ci[éle of which computational complexity is
O(n®). The reason is'that it repeats each.i block to start again by renumerating the
objects. The first round s [1,n], then the slécond round is [2,n+1] which n+1 refer to
the first block, and sa‘on. The first block connects to the end and the second block
becomes a new fixed start. After that, we b'hng those n outcomes to contest for the
most valuable solution. This method is dlsgl!ayed in pseudo code 2. Precisely, the

2 ¥ "] 1 - - -
count™ is w+n. The-former part is to repeat the previous algorithm n time,

and the latter i$ to-compare-the-results-of-each-round-torthe-gichal maximum value.

Pseudo code 1: Fixed start
step 0 Input p(iJ) forall i,
stepl Set w(l) =p(1,1). Setr=2.
step2 Set w(r) = p(L0):
step 3/ .Forii=2ior
If w(i-1) + p(L,r) > w(r)
Then w(r)=w(i-1)+p(l,r)
step4 Ifr<n,thensetr=r+ 1andgo to step 2
Otherwise, terminate with'optimal reVefnue w(n).

1011 their manuscript, they call this case the consecutive asset in geometry-based structures.
1 See the sketch proof in Appendix A.
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Pseudo code 2: Intervals on the circle
step0 Input p(ij) foralli,j
stepl Fork=1ton
1.1 Set w(k)=p(k, k). Setr=k + 1.
1.2 Set w(r) =p(kr).
1.3 For i=k+1tor
If w(i - K) + p(k,r) > w(r)
Then w(r) =w(i - k) + p(k;r)
1.4 Ifr<n+1-k thenset r=r+1and.go tostep 1.2
Otherwise, get the k" round optimality-w(n+1-k)
step 2 w(opt) = Max{ w(n),..., w(2n-1)}.

To implement™ each algorithm, the bidding values must be sorted into a
descendent order. The'most valuable bid in each option becomes the first input in a
square matrix of the algorithm. For.a single line case, only one matrix is sufficient to
keep the highest hid for every option. Thén we can begin our algorithm to search for

the optimal value whigh will be at the final element of the calculated matrix, [1,n].

B. PK’s methods

On the other hand, our modified meghods for a single line case and a double

line case are in pseudo code 3 and 4 respec_tdiIy. Firstly, the single line case has

computational complexity equivalent to O(?)‘..Precisely, the work is counted as

DS ) which is less than the case/of algorithm in pseudo

i(k ~D(n—k11) =

code 2. PK’s method, algorithm in pseudo code 3, works more efficiently since we
reap the benefit of the data structure more effectively than the RPH’s method in

pseudo code 2 which has to reorder the block position to move. Further that, our
approach. cafl easily lapply ©/a doubl@ line“case Wwhich 'hasicemplexity in O(n*) as

well, see.pseudo code 4."The calculation burden‘is obviously three times of the single
line case, since it works repetitively for the left, right and crossing line.sThus, we
improve RPHES dynamic programming far ‘both configurations.

To implement pseudo code 3 and 4, WDP is characterized and recursively
defined by the two-dimensional array. Step 1 informs the stage of computation. Next,
step 2 characterizes the maximum value referred to a related value from the previous
stage. Subsequently, it leads to the maximum value in the final stage. In another word,

the final result depends on comparisons of their substitutable pair that each
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component, and also relies on the relevant pair backwardly. Those previous
comparison results are put conveniently in the callable memory in our data structure.

Certainly, the optimal value is obtained from the final calculation of the final element.

Pseudo code 3: Single line algorithm
step 0 Given square matrix array size nxn, say B ~ nxn
Let k = 0 be the diagonal line in thefmatrix; k+1 is the consecutive lower

diagonal line.
stepl Fork=>1
For j=1ton
w=J+Kk
If -w<n
Fog Ka= j.t0/(W-1)
L B j) < B(k,j)+ B(w,k+1)
Thefl /BM4) =Blk,j) + B(w k+1)
step 2 Terminate Whenk = i. v

-

—

Pseudo code 4: Double line algonthm \ &

step 0 Run single golumn algorithm: for the"left and right column and keep result in the
square matrix L.and R respectlvely i
Given a squarg matrix C fof cross- Slde optlons value

step1l Let k = 0 be the diagonal, dine in tl]é matrlx k+1 is the consecutive lower

diagonal line. : =
step2 Fork>0 — ;f:] ;
For j=1ton — .
W= | bkt e -
W w=]j
e i CGj) < LGH+REH ——
W ThenC(.j) = LG.J) +R(.J) )
H-w<k i

For k =jto(w-1)
If C(w,)) < C(k,)) + C(w,k+1)
Then C(w,j) = C(k,j) + C(w,k+1)
step 3 Terminate whentk= n.

In ‘pseudo”code 4, a double line case, the"sequence is more complex. It is
necessary to utilize three matricesgfor valuation inputs; i.e., left line, right line and
crossing lines~These three matrices represent the best price of each optien. Next, we
optimize for the single left'line and the single right line. Moreover, there are more
calls to compare the option crossing between left and right; however, the main idea, to
compare bidding price from the lowest single level first and consecutively move to

the biggest bundle later, is unchanged. Finally, the optimal value is located in the final
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element of the crossing line matrix. Thus, with some adjustments in pseudo code 3 we

can precede a double line booth auction as in pseudo code 4.

4.2 Extensions

In this section, two methods t0 solve WDP for the multi-block booth
allocation are explained. It is straightforward torextend the integer programming
method for the layout. with multiple zones.see Eig. 4.2, even the layout with
obstruction in Fig. 4.3. The method is t'a nullify the coefficient of decision variables
of which options must be.excluded. Contrastingly, the extension of the problems in
the dynamic programming method is required some additional techniques. In this
section, we extendemethed for dynami‘c programming to cope with the realistic

conditions, multiple zones and obstructibn’é, which still maintain its computational

advantage. i
Gate A Gate-E TGa_t:E CV -'i Gate A Gate B Gate C
p— —;— r m® — L ..-.__':! —— - — ) —
1alra| (La|clll (R W Yslral [La|ral [La[ra
L3|r3| |3R3| J{L3[R3|, TN B |3|r3] |ER3
L2|r2| |L2|R2|fF| 26 j__” 12|rR2| [2|r2| |L2|R2
t|r1| |u|ri] (¥R o (1R [u|r1] |ufra
;_ _'_‘ -
Figure 4.2: Layout with multiple zones. Figure 4.3: Layout with multiple zones and

physical obstructions

4.2.1 Integer programming

To add some constraints in a mathematical model is straightferward. First, we
determing " allowable combinations”and ‘mark prohibited blocks. Next, we convert
those logical statements into variables and inequality.=~Considering situatien in Fig. 4.2
the layout withs three multiple zones, we just construct decision weriable of a
selectable bundle. For example, if the bundle of block crossing over the multiple

zones is not allowed, we can construct a decision variable as the following coefficient

matrix A, =[A} A} A;]. A7 represents ‘zone a’, which hold the same structure

as Ai in the previous section. In the case of physical obstructions, we just eliminate
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the decision variables of a bundle that contains such blocks. This treatment thus
reduces the number of decision variables, which would be an advantage for
mathematical programming, unlike the method in dynamic programming that still

maintains full connection structure.

4.2.2 Dynamic programming

We consider multiple zones for a double.dine case, Fig. 4.2 and Fig. 4.3. There
are three zones with the'same amount of blocks. To apply the dynamic programming
algorithm explained in pseudo code 4, we connect all three zones from left to the right
to maintain the same"strueture as the case of a double line. Now it looks as if the
bidder bids for the teiple-long size of one zone; our proposed algorithm is enabling to
solve this optimally. In fact, it is necessary to avoid the combination of options that
crossing over the zone. Therefare, we ignore the final round calculation result in our
algorithm but pick up'the golution from ou‘]r féésible options; just the substructures are
adequate to yield the optimal outcome. Ih_‘ft_h_e case of Fig. 4.2, we have four rows,
double columns and three zones. The soluti}oh comes from three elements of the final
two-dimensional array, \C(A4,AL); C(B4J§i1§ ‘and C(C4,C1), the left-low-corner
elements. These are the maximum revenue fri;;m:"z!jf;ne A, B and C respectively and the
summation is the optimal value for the auctibnéér: The data structure of this case is

represented in Fig. 4.4.

MAZ A3 A4 Bl B2 B3sB4IC1 C2/C3 C4 IlAl A2 A3 A4 B1 B2 B3 B4 C1 C2C3C4 Al A2 A3 A4B1B2B3B4C1C2C3C4
Al ! ALl § Al

22| A2 gl
A3 A3 A3
Al d" = A4 Ad|

:\"m R ‘WEE?&

B4 B4 B4

c1 N c1 N 1 N
NN ENNNNNY A ENNNR

A : ca [0’

Figure 4.4: The illustrations of data structure corresponding to the layout in Fig. 4.2, the multiple zones

Next, it is possible to apply both multiple zones and obstructions together in our
dynamic programming. The similar tactic from the previous case is still applicable to
overcome these difficulties. The layout of Fig. 4.3 is an example that block R3 of
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zone A and block L3 of zone C become the obstructions. First, we combine three
zones into one and mark invalid element in the data structure which are prohibited
options due to cross-over zone restriction. Moreover, the positions of obstruction
blocks are marked in the data structure to avoid those impossible options. Fig. 4.5

ly, the options related to prohibited
selection, the elements with ‘ , m | d the obstruction-related blocks,
the element with crossing ma Ker, a { ) cially in the matrix for the
flect thle influenees-from the left-line and right-line
matrix to avoid prehibited blec s o ons, see Fig. 4.5. Finally, the

\\ which are the low-left

_:‘ o \.\ C4) to be combined.

crossing-line options;i

answer for optima
corner, C(A2,A1), C(

-2 a3 a081 8283 B2
Al r
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Figure 4.5 The |||ustrat|ons€$~'f';€ta"srr e COrTespor o the layout in Fig. 4.3,
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Chapter V

Experiment and analysis

Simulation experiments and analysis of our results are summarized in this
chapter. To demonstrate the advantage of ‘our method, we report the experimental
results comparing with other algorithms. For the short notation, the Rothkopf et al
method is noted as RPH method and our methed is'noted by PK method. The main
result is that the dynamic pregramming approach eensumes less time than the integer

programming approach,and PK method is faster than RPH method.

5.1 Simulatign environments

The experimentalienvironments, p;arjameter setting and simulation results are
described in this section. First, the simul‘qtion experiments are performed on Intel®
Core™ i3 Processor 3.07 GHz GPU Wifh_ RAM 2 GB. The operating system is
Windows 7. Linear jprogramming solver ‘and the other algorithmic codes are
implemented by Matlab. As well, bidding valuies vector for each option are generated
by the method explain insection 5.2, in Matlalbiih-férnal pseudorandom environment.

The time measurement is recorded frbfn their actual jobs. The solver for the
linear programming model is the simplex methbci,!and the timess measured soon after
the optimal solution=reveaied==For-the-dynamic-programming;.ihe running time in the
preprocess, to select the best offer for each option, I1s included and add with the

computation time.of the comparison process.

5.2 Random,sample simulatien-precess

To avoid the selection bias and the unrealistic sample, the simulation must
maintain two assumptions. One is a bundling assumgptien: the more combining blocks,
the greater valuation = supermodular property. The other is a position advantage: the
nearer the gate, the more expected benefit. See Fig. 4.1 and Fig. 4.2 to conceptualize
the image. As well, the random number of bidding price vector is converted to the
ceiling integer number to represent each individual evaluation.

First, we generate the random variables for an individual block from uniform

distribution between zero and one. According to the assumption that the nearer the
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gate the more expected benefit, it is necessary to construct ordered statistics

distribution from the uniform distribution. The standard beta distribution, Beta(e, ),

can bring about the random number generation in shorter time; n is total number of

block and j the position, then X ., ~ Beta(j,n+1— j). For example, if we have 4

(i)
blocks, the value for the block label 1 is drawn from the beta distribution with the

following parameter, X, ~ Beta(l,4) .

In addition to generate a random value for a consecutive-blocks bundle, we
add generate the random-number from the summation of random number of the
corresponding block._Fer example, the value for the bundle [S3,S1] is obtained by

generating X, + X, # X 4 Alsorwe impose the condition on the value for the

bundles that the"more combining blacks, the greater valuation. Moreover, the sub-
additivity and thesSuper-additivity condi,tion could be applied into effect. These
condition leads to tremendous time consumption in generating random valuation for
n>>5.

In the case of a double line auctioh, "t'-he process to generate the random
number for bidding price Is similar. First, We generate for a single left row and right
row. Next we combine both values for the cfbséih'g options and add a small value to
increase the bid price to preserve the super modulxarity price structure in the simulated
bids. Each case of @ generated price Is storéd in a different matrix data structure
according to pseudo code 6.

Finally, the generated value is multiply by a thousand and rounded up to
obtain integer valuation. The generated values are stored-in a ready-to-use data

structure and will besrandomly drawn again te use as a sample in the simulation.

5.3 Comparisonsofialgorithms running.time

There_are two_cases of simulation as the foliowing: a single line“Case_and a
double line case. The single line case.is the'comparison among three methods: linear
programming relaxation (LP), RPH and PK. On the other hand, the double line case is
the comparison between two methods: LP and PK. To grasp the basic performance of
each algorithm, the case of 10 bidders and corresponding with the number of blocks,
the average running time from the 1,000 simulation experiments are shown in Table

5.1 and Table 5.3. Next, we also investigate when the number of blocks and bidders
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increase progressively, Table 5.2 and Table 5.4. In such situations, the problem size is
enlarged in the direction of variables and memory usages in calculation for each
method. The experiments are carried out under the limited computing resource as

mentioned in section 5.1.

5.3.1 Single line case

The experime
programming appro?, '
programming appr : ”

A. Basic si

The line K’s method over the

linear programmin

less than RPH’
This simulation restlt co _Qf" PD ical computation in the

time in our method is
the two-tailed t-test.

methodology.

Table 5.1: The averag gle line case

unit: micro seconds
No. of blocks 1 : 7 8 3 1
Lin Prog | 6917 6, 608y, 7,205 w4830, 8, 8,905 9733 10597 11,772
RPH L 120 - ' 164 186 211
PK E&)ﬁtﬂ , 74 B0 B8
t-statistics | | 280" 1855 1565 20; ' 727  28.90 5235 26.72
p-value . ﬁlx o o’ 0 0 0|
Single line case
Average time in log scale
100,000 ¢ = @
10,00 . J Q. LLLS.E}--GF ,
1,000 ¢ = /s
N -l LifPrag: .
' - OO — =T
q e B
10
l T T T T T T T T T T 1
1 2 3 4 5 & 7 8 g 10 Number of blocks

Figure 5.1: The comparison of average time among three methods (single line)
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The box plot in Fig. 5.2 displays the scatter of the running time results from the
experiments. The trend is that the more blocks, the more running time. It is noticeable
in the linear programming, but it is not very obvious in the dynamic programming in
both RPH’s and PK’s method. It seems that the running time results of RPH’s and

PK’s method do not change much in these controlled experiments, 10 bidders.

Time unit: us Linear prog
15000 F e
14000} " i %
.
13000 i o ] : |
12000} e ; f D
11000 W $ T Wi
10000 t " ; T I ETI ' [
000 ; ;: 4 i g 7 a 3 ‘
| L LI B 1
oo 7 A ' L=
I |
7000} =
T
B0} | r 0
- * - blocks
000} ] 1
1 2 34 s @ s ool Y
RPH ; PK
500 1 <400
+ 4 +
700} ] o) 3
o |
600 - & + 4 o] | —
- =31
500} : 9 4 iy
L . |
400+ wl 205 2 ] §
smf+ £ = % i 1501 % * i % ]
200-%_% $ % i 8 mué : § % £ iii
rjigeEis gy A1 o
10 | E g =02 B -l- -; '% 1 blocks
"= s 7 58 7 8 3 0 2 9 7 5 8 7 © 9w

Figure 5.2:The distribution of running time among three*methods (single line)

B. JAncrementalisimulation results

The results-from“the ‘experiments clearly'show-that LP"suffers the most when
the number of bidders and blocksgincrease. In Table 5.2, it displays that LP cannot
operate ‘at all.when the humber-of bidders'reach 10 for 70 blocks single,line auction.
Consequently, it gets worse in the situation”of 50 bidders and 100 biddersthat it
cannot work for 40 blocks and for 20 blocks, respectively.

On the other hand, the dynamic programming approach performs well on each
situation control. When considering for the average running time, PK’s method

performs faster than RPH’s method. As well, the box plots in Fig. 5.3 illustrate that
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Table 5.2: The average running time for the single line case when the number of bidders

increases

Single line case unit: micro seconds
Mumber of bidders
10 ' g0 : 100

Linear Prog RPH PKE Linear Prog RFH PKE Linear Prog RFH PK
10 10,898 216 BEE 3'_\2.‘3?I 28 2 '_ESE 56,425 378 2559
20 32,397 463 170, 1180523 _69; 313} M.A. 713 440
JE 30 120,184 Ll 318; ?EB._-iEIE -232; 1,58?3. ML.A. 2,096 1,434
% 40 320,774 27201 592; A 377ET 2.493: ML.A. 3,506 2,188
= 50 693,506 =,129/ ‘_,TBL'—.‘E M.A. 4543 2,835 ML.A. 5,334 3,013
E o0 1,271,859 E—JS' :._,E_ﬂ’? ._ M_A. 7630 S ML.A. 7,875 4131
E 70 N A5 I-EJI :,?~5 -H.:J.. g.484 3.5 1 WA 11,009 5,339
Z 280 M.A | LR 1 -—JJ.CEIE N-l. 1808 5'“'3. M.A. | 14998 6,835
a0 P-lﬁ.l—’_ﬁ_-',ﬁ»; 5—.18-6-5— I:‘,I.-'!-.._ 158/027F G658 I M.A. | 15,5595 8,520
100 M.A. ;1.599| 4 3,*::!8?-‘5 : N-»“-‘-.*' 23 308 ke M.A. 25301 9,948

o

Remarks: N.A. means the data i§ not available due to'the unsuccessful performance of the algorithm.
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Figure 5.3: The distribution of running time for each algorithm for the single line case when
the number of bidders increases
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the maximum running time of PK’s method likely lie below the minimum running
time of RPH’s method. Therefore, it could be concluded that PK’s method is the most

efficient among three methods in the experiment for the single line case.

5.3.2 Double line case

In the double line case, the result is consistent to the single line case. The
dynamic programming approach hereafter refeis*to the authors’ method only since

RPH’s method is not adaptable to the dolible line'case:

A. Basic simulation.resuits

From the resultdn Table 5:3 and box plots, the average time operated in the
dynamic programming approach is far stgrior to the linear programming approach.
The first reason is the structure of coefficigﬁt matrix in the linear programming bears
too many feasible solutions. . .In addi}ioni iteratively solving for the linear

programming approdach is very costly becai]§e it has to update sparsely matrix .

Table 5.3: Theaverage running time of .gach algorithm for the double line case

— ¥ unit: micro seconds
No. of blocks 1 24 fasd Ardoiiin 6 7 8 9
Linear Prog i 7,006 7,329 _B2ay sosat-a#igs 13237 15690 18,896 22,882 27,784
PK P 115 1@ A d . oI, 154 169 193 207 256
100,054

1,000
e A AL B s = miuigear Prog
tod ¥ I Flr ——rd
10

1 2 3 4 5 = 7 B 9 10
Figure 5.4: The comparison of average time between two methods (double line)
The box plots displayed in Fig. 5.5 show more details to our simulation
results. The vertical axis is the running time in micro seconds and the horizontal axis

is the total number of bidders in the auction. It is obvious that the running time
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monotonically increase when the number of bidders grows up for both algorithms.
The dynamic programming shows some outliers that may need to be investigated

more.
Exm" RPH PK
B
af +
+ ¥ %
3t * g
2F $ : % %_
I it
= = Ef e i
7 i blocks
Figure 5.5: Thedistribution Ftningdi? e among three methods (double line)

B. Incremental s |
The experiment res| | f.the double lir o G2 e similar to the single line
case. The LP perfor anceis e | : or t _greater number of bidders
and blocks. Fig. 5.5 demons -._r th {-' C rks from the case of 10 bidders
and 40 blocks in the single ithe.
50 bidder and 100 bidders &
incomplete -qe 20
Althoug

‘that, the performances in the case of

P method: The operations are

-

,-ﬂ st cases, there is a

signal of its Weaiﬁss i 80 Iy. The reason is similar

to LP’s weakness' that the requirement of memory allocation prior to the main

algorithm is not suﬂ'Eiﬂ Fromgj. 5.6, it MW that the trend of PK’s method is
t

e L 03 ) Bl i e

resourcesjand yet slower.
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Table 5.4: The average running time for the double line case when the number of bidders

increases
Double line case unit: micro seconds
Number of bidders
10 i 50 : 100
Linear Prog ' P‘Ki Linear Prog PK
425 257,550 2,032
' M_A. 2,337
;.;‘”__ MLA. 5,855
Q
= FLA. 5,745
= M., 8,564
| =
2 FLA. 11,607
E MLA. 16,027
= FLA, 21,748
. N.A. M.A.
100 M. M_A.
Remarks: N.A. méans the data is not available due to the unsucece performance of the algorithm.
Time unit:  >< g
+
2
+
10 1.5 ?
bidders t o
$¥ 5"
=
045 & B
0 70 80790100
y | it blocks

AIfaE -
a EDDD 10100

blocks

iy a/
b 1 j
T o+
10 20 30 40 50 60 70 80 90100 10 20 30 40 50 B0 70O 80 90100

blocks
Figure 5.5: The distribution of running time for each algorithm for the double line case when
the number of bidders increases.
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5.4 Discussion of simulation results

The evidence that the integer programming solved by the LP relaxation is
slower than the dynamic programming approach has been obtained from the
experimental results of both the single line case and the double line case. The major
reason is that the simplex itself work slowly 4n gur large coefficient matrix of WDP
for a booth auction, because the size of .matriX_in the simplex boost the more
computation time, . Moreover, the number of bidders multiplies the size of decision
variables in the integer-programming also leads to more feasible solutions which
require a heavy load foirthe simplex.in LP.

For the comparisons.of the dynafpic programming algorithm, it is shown that
the average running time of PIK’s methad is significantly different and smaller than
RPH’s method, by two-sample {Ftests forE difference in mean. In the box plot, there
could be some cases that RPH’S running time is equivalent to PK’s when the number
of blocks is smalleg than 10, Howewver, the.comparison of running time in Table 5.2
and the box plots of Fig. 5.3 exhibit the rob‘QZSt tendency that PK’s method is superior
to RPH’s method. Thus, the, ,theoreticéEL*festimation of the number of work,
demonstrated in chapter4, isistpported by the experiments.

The running time resulted in the ex?’eﬁments Is measured at micro seconds
level for every eontrols. It |s ﬁ'o:t a great burd‘éﬁ:-i-ﬁ: bfactice to use any of the methods.
However, it was found-thai-the-integer-programiming-consuimes the great number of
memory resourcés and may halt during the coefficient matrix preparation process. On
the other hand, the dynamic programming approach is still workable to optimize the
solution. Although the economical memory usage of the dynamic programming
algorithm isfanother/advantage showniin the expériments; it is-neeessary to improve

the memory usage to operate PK’s-method in-a limited-ecomputing environment.



Chapter VI

Conclusion

This thesis has developed methods: to solve the winner determination problem
(WDP) in a combinatorial auction for a multi-block booth allocation. It is much
influenced by Rothkopf et al who proposed«the .integer programming and the
dynamic programming algorithin. Thisi_lthesis alsorexplains the detailed structure in
the integer programming.-related to the model of a booth auction and linear
programming relaxationfor inteéger programming.

By the worst case analysis of the computation complexity, it is shown that the
new method in this thesis, PK method, |s f_aster than the method of Rothkpf et al ,
RPH method. Aswelly the experimerﬁal results suggest that the dynamic
programming performance is more superigr to the integer programming performance
in our setting envigonment. When changfl[]g the quantity of blocks or bidders, the
results reinforce this tendeney. - -

In addition, another contribution of this, thesis is to model a double line booth
auction and to develop an algorithim for WDP.-dfia:doubIe line booth auction. Thank to
the merit of the matrix data structure for fdynamic programming algorithm, the
algorithms for a double line Booth auction maintains the:same complexity as the case
of a single line auction.

Furthermore, this thesis extends geometry-based structures of the booth
allocation with restriction of multiple zones and obstructions. Not only the integer
programming model is well-known for its flexibility, but our proposed algorithm by
the dynamicspragramming is alsoextensible:to overceme these-restrietions due to the
data structureytwo-dimensional array. This data structure can control state and renew
memory for each stage effectively.

The futurefwork: of this thesis is/discussed onythe ground ofithe limitation of
this work.' This work is developed justialgorithms to solve WDP by the auctioneer
stand point, not yet completed the full auction design. From the game theoretical
aspect and the mechanism design, it is necessary to consider strategic behavior

bidders which might report untruthfully bid price. This strategic behavior will reduce
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the auctioneer revenue. Therefore, the complete design for a booth auction should
consider this mechanism.

In the aspect of algorithms design, PK’s method is very useful for
superadditive valuation of each bidder and guarantees optimal solution in WDP for

the auctioneer. However, the solution mig t be unjustified in the case: the same
bidder submits the bids that valt 9 5‘\ !

a bundle and all substructure opt gorithm is weak in a more
complex bidding language-t dample OR-of-XOR offer

bidding condition it

d become the maximum value for

ation of Iropo algorithm would not be

Last but noisléast ‘_;.

N

limited to the allocation of spa J e er nilar bundles bidding which have a
specific directional relationvould be solved by th s algorithm.
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Appendix A

Sketch proofs of counting

Proof

Basicstep: Letn

Induction step: As )
Whenin =k+1, t nore )0ssi e options additionally.
k(k+D) S . ‘

2

Asaresult, P(k+1)is tr {’g—l,%)

F’T‘HEJ’JVIEJ 811N

Flgure A.1: The induction fI@/ of the selectable ﬂ)ns the single line caw

YRIANNIUNNTINE TN ELD

Claim 2: The number of possible bundles in a double line booth auction is

bundles for n is the number of row blocks.

Proof
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Let P(n) be the number of possible options, P(n) = M

Basic step:  Let n=1. When we have one row block, there are three possible
bidding options, L1, R1 and L1R1. So P(1) =3 is true.

_ 3k(k+1)
.

ler” nal possible options from left
da‘ ch case contributes more

le line case.

Fig

n(n-1)

Claim 3: The nurmer ijObS in the pseudo code 1 (fixed stamls Z(k 1= 5

T AN

In the péudo code 1, there is no ‘;omparlson in stage 1 since it is the initial step.

IRLRT TNAATINTIRY™

The total jobs is calculated as the following summation, Z(k 1= _t(t2 L)
k=1

When there is an additional block the comparison increase t jobs, because the

possible options increase t options.
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t
Therefore, the total jobs become Z(k ~D+t= t(t+1)
k=1
n(n-1) :
By the mathematical induction, we conclude that the number of job is —
n’(n-1)

rval in the circle) is

Proof
It is obvious that e n times repetition of

pseudo code 1.

Claim 5: The number off jobs in psetido code 3 is k+1)_n(n 1)(n+1)

a single line case, isithey “stage and N is the number of block.

Proof

total compansonﬂs

n(in-1)(n+1)
Z(k DH(n- k+1)_r7

- A UBA R I oo

n+1is G,1...,n respectively.

TR PRSI 6

n(n— 1)(n+1) n(n+1) n(n+1)(n+2)

This is l|&}Iuct|on step.

Hence the total comparison for n+1 block is

2 6

u]
By the mathematical induction, we conclude that the number of job is w
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n(n®+1
Claim 6: The number of jobs in pseudo code 4 (double line case) is % for n

is the number of row block.

Proof

AULININTNEINS
AR TUNNINGAY
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Appendix B

Total unimodularity

es of other related works, based on the book

of Schrijver (1990), “Theory of linea /rogramming”, Chapter 19.

=

This appendix is written sum

Definition: Unimodula

A square integer mat

Let A be an integralimatgix. Th :',"

edron 4x | x 2 0;.

el
i*ﬁ'.“r.l‘f.i:‘ i

ah

odular matrices.

Total unimodularity is pre /
1) e
2) Takingthet
3) Multiplyi

o‘
4) Pivoting; "

5) Adding aII-z‘o.:gN or column, or adding a row or column with one nonzero,

el ANENINEINT

6) eating a row or column.

operation

Permuting

Moreover, by Seymour’s characteriation, total unimGalularity is preservet.under the

PR I NNTIVIER E

12 p D. Seymour, “Decomposition of regular matroids,” Journal of Combinatorial Theory Series B, vol.
28, issue 3, pp. 305-359, June 1980.
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(I-sum) A®,B:= {A 0}

0 B
b| |A ab
(2—sum) [A a]@Z[B]_[O B}
A a a i
(3—sum) [c 0 1

Proof

Let A be a co case with n blocks.

From Hoffman aneg that the basic feasible

solutions (BFS) of asrhave Juivalent to prove that the

square matrix © easible solutions have

determinant value

i - vy 4 'y ~
Let B=[A, [S], whichS gontains ‘coefficients of add jonal slack variables. Then we

consider all basic feasible Col secutive property. It is the

square matrix obtained by ti ,_,' : [ eolumn in of Bas the following n

cases:

ndle containing all

10 1

“P%ljﬂ; ’J‘l’lEJ‘V]ﬁWEJ’]ﬂ‘i

RIALNIUNRINEN AL

Q)bwously, this matrix can be converted to triangular matrix by row operation of

blocks and slack Eiable 0

which the diagonal element contains 1. Therefore, the determinant of this matrix is 1.

Case 2 the feasible solution are the set of two bundles and slacks variable column
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i 0] [1 0 1 0] 10 1 0
0 0 .0 010 0
: S N ,and so on
1 1 0 1 0 10 1
010 ..0] (01 o O B a0 10 ... 0]
By determinant operatlon k“*\::“ ake /ﬂ)o be a matrix which can have
determinant 1, 0, or -1. >
——

ng induction.

Case n-1 the feasib e slack variable column
o . ‘
1 0
: , and so on.
0
0
By the determinant oper, ‘those matrices ‘determinant value 1, 0, or -1.

Case n the feasible solution is the 't e block, so the matrix is a

identity matrix. Itis' J
Nl - ]

Y. A
As the result w" e olutions that make the square
deed, this yie I} UM for A.

matrices have the‘terminan of 1,0, or -1. :

mpo@,uﬂ ANENINENDT. oo

for a double line booth auction has total ummodular;&property

wwmmmwnwmaa

et Abe the constraint coefficient matrix structure for the single line case with n row
blocks, and A\ is of the individual bidder. Those are defined as the following:

A-[A -~ A — A] forA - {’3 N ﬂ
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It is analogous to proposition 1 that it is sufficient to prove TUM of Ai .

Since A; isTUM, A @, A, = [Aoi 0 } is also TUM by Seymour’s characterization

(1-sum).
Further that [2‘} is also TU y Sey I’'s decomposition — the repeating of row.
For the reason that mpositic con ude that the TUM property

is preserved. .

X

¥
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