CHAPTER V

MINIMAL QUASI-HYPERIDEALS

The purpose of this chapter is to study minimal quasi-hyperideals of hyperrings

in order to generalize Proposition 1.15 — Proposition 1.18.

Theorem 5.1. A nonzero quasi-hyperideal @ of a hyperring A is a minimal quast-

hyperideal if and only if (z), = @ for all x € Q\{0}.

Proof. Let @ be a nonzero quasi-hyperideal of a hyperring A. Suppose that @)
is a minimal quasi-hyperideal and let z € Q\{0}. Since (z), is a nonzero quasi-
hyperideal of A contained in @, by the minimality of @, (z), = Q.

Conversely, assume that (z), = @ for all « € Q\{0}. Let Q" be a nonzero
quasi-hyperideal of A contained in @). Then there exists a nonzero element in @',
say ¥, 50 (y)q = Q. Then Q = (y); C Q' since y € Q'. Hence Q = Q'. Therefore

@ is a minimal quasi-hyperideal of A. O
We obtain Proposition 1.15 as an immediate consequence of Theorem 5.1.

Corollary 5.2. A nonzero quasi-ideal @ of a ring A is a minimal quasi-ideal of A

if and only if (z), = Q for all z € Q\{0}.

There is a relation among minimal quasi-hyperideals, minimal left hyperideals

and minimal right hyperideals of a hyperring as follows:

Theorem 5.3. The intersection of a minimal left hyperideal L and a minimal
right hyperideal R of a hyperring A is either {0} or a minimal quasi-hyperideal
of A.
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Proof. We have that Q = LN R is a quasi-hyperideal of A. Assume that @ # {0}.
We shall show that @ is minimal. Suppose that there exists a quasi-hyperideal
@' of A such that {0} # @ G Q. Then @ G L. Since < AQ" > is a left
hyperideal of A contained in L and L is a minimal left hyperideal, it follows that
< AQ' >= {0} or < AQ' >= L. If < AQ' >= {0}, then Q' is a left hyperideal
of A such that {0} # Q" & L which contradicts the minimality of L. Then
< AQ' >= L. Similarly, one can show that < @A >= R. Hence Q = LN R =
< AQ' > N < QA >C @, which contradicts that @' & Q. Therefore Q is a

minimal quasi-hyperideal of A. O
We then have Proposition 1.16 as a corollary of Theorem 5.3

Corollary 5.4. If L and R are a minimal left ideal and a minimal right ideal of
a ring A, respectively, then either LR = {0} or LN R is a minimal quasi-ideal

of A.

Necessary conditions and a partial converse for a quasi-hyperideal of a hyper-

ring A to be minimal are as follows:

Theorem 5.5. Let A be a hyperring.

(i) A minimal quasi-hyperideal Q of A is either a zero subhyperring or a division
subhyperring. In the second case, Q = eAe(= eAN Ae) where e is the identity
of Q.

(ii) If a quasi-hyperideal Q of A is a division hyperring, then Q is a minimal

quasi-hyperideal of A.

Proof. (i) Suppose that @ is a minimal quasi-hyperideal of A which is not a zero
hyperring. Then there exist a,b € Q\{0} such that ab # 0 and so Q? # {0}.
Since 0 # ab € AbNaA C< AQ > N < QA >C @, AbN aA is a nonzero quasi-

hyperideal of A contained in Q. But @ is a minimal quasi-hyperideal of A, so we
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have Q = AbN aA. Then there exist 7, s,t,u € A such that
a=rb=as and b=1tb=au.

Then tha = ba = bas, that is, ba € Aba NbaA. Since Q = AbN aA, we have
Q C Ab and Q C aA and so Q* C AbaA. But Q* # {0}, so ba # 0. Because
0 # ba = tha = bas € AbaNbaA C< AQ > N < QA >C @ and Aba N baA
is a quasi-hyperideal of A, we deduce that @ = Aba N baA. Thus there are

v,w,z,y € A such that
a =vba =baw and b= zba = bay.
Consequently, the element vbay is of the form
ay = vbay = v(bay) = vb. (1)

It then follows that ay # 0 (since 0 # b = bay) and ay = vb € AbNaA = Q.
From (1), we have that (ay)(ay) = (vb){ay) = vbay = ay. Let e = ay € Q. Then
e # 0 and e? = e, so we have 0 # e € eA N Ae. It is clear that eA N Ae = eAe.
Thus eA N Ae = eAe is a nonzero quasi-hyperideal of A contained in @, so by
the minimality of @, @ = eA N Ae = eAe. Consequently, e is the identity of
(@\{0},-).

To show that every nonzero element in () has a left inverse element in @, let
z € A be such that eze € Q\{0}. By Lemma 2.3(iii), eAe(eze) is a subhy-
perring of A. We have that < (eAe(eze)) A > N < A(edAe(eze)) >C< eA >
N < Ae(eze) > = eAN Ae(eze) C eAe(eze), thus eAe(eze) is a quasi-hyperideal
of A. Since 0 # eze = (eee)eze € eAe(eze) = Q(eze) C @ and eAe(eze) is a
quasi-hyperideal of A, by the minimality of ), eAe(eze) = Q. Then e = ez'e(eze)
for some 2’ € A, that is, ez’e is a left inverse element of eze. Consequently,

(Q\{0},-) is a group. Therefore @ is a division subhyperring of A.
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(ii) Let Q' be a quasi-hyperideal of A such that {0} # Q' C Q. Then < Q'Q >
N<RE >C<RA>N<AQ >C @', so Q' is a quasi-hyperideal of (). Since @
is a division hyperring, by Theorem 2.5, Q" = (). This shows that () is a minimal

quasi-hyperideal of A. ’ a
The following consequence is Proposition 1.17.

Corollary 5.6. Let @Q be a quasi-ideal of a Ting A.

(i) If Q is a minimal quasi-ideal of A, then Q is either a zero ring or a division
subring of A. In the second case, Q = eAe = Ae N eA where e is the identity
of Q.

(il) If Q is a division subring of A, then @ is a minimal quasi-ideal of A.

Next, a necessary and sufficient condition for a quasi-hyperideal of a hyperring
to be minimal in terms of principal left hyperideals and right hyperideals is given

as follows:

Theorem 5.7. A quasi-hyperideal @ of A is minimal if and only if for any ele-

ments z,y € Q\{0},
(@)= () and (z)r = (y)r.

Proof. Assume that @ is a minimal quasi-hyperideal of A. Let z,y € Q\{0}.
Then (z); N Q is a quasi-hyperideal of A containing z # 0 and (z),NQ C Q. By
the minimality of @}, we have that Q = (z), N Q. This implies that Q C (z);, so
"y € (z);. Hence (y); C (z);. By a similar argument, we obtain (z); C (y); so that
(z); = (y);. Dually, we can show that (z), = (y),.

Conversely, assume that (z); = (y); and (z), = (y), for all z,y € Q\{0}.
To show that @ is a minimal quasi-hyperideal of A, let @' be a nonzero quasi-
hyperideal of A contained in Q.

Case 1: < AQ" > N Q = {0}. Let y € Q\{0}. Then for any z € Q\{0},
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(z)i = (y)i, so z € (y); = Zy + Ay. Thus z € ¢+ ry for some ¢ € Zy and r € A.
By the reversibility of (A4, +), ry € z — ¢ C @, so that ry €< AQ' > N Q = {0},

that is, 7y = 0. Then z € ¢+ 0= {c} C Zy C Q'. Hence z € @', that is, Q@ C Q".
Case 2: < @A >N Q = {0}. Dually to Case 1, one can prove that @ C Q".

Case 3: < AQ' >N Q # {0} and < QA >N Q # {0}. Let ¢ € (< AQ" >
N Q)\{0} and p € (< QA > N Q)\{0}. Let z € Q\{0}. Then (z), = (¢q), and
(z)r = (p)r, s0 z € (¢); and z € (p),. Thus z € (¢); = Zg+ Aq C Z < AQ' >
+A < AQ' >. By Proposition 1.29 and Lemma 2.3(ii), Z < AQ' > +A < AQ' >
C< AQ' > + < AQ' >=< AQ' >. Also,z € (p), =Zp+pACZ < QA >
+<QA>AC<K<QA>+<QA>=<QA> (Proposition 1.29 and Lemma

2.3(ii)). Hence z €< AQ" >N'< Q'A>C @', that is, Q C Q'.

In any cases, we obtain @@ = @'. Therefore @) is a minimal quasi-hyperideal

of A. O
Proposition 1.18 is an immediate consequence of the above theorem.

Corollary 5.8. A quasi-ideal Q of a ring A is a minimal quasi-ideal of A if and

only if for any two nonzero elements x,y in @,

(@)= () and (2); = (y)-
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