CHAPTER IV

HYPERRINGS WHOSE BI-HYPERIDEALS AND QUASI-HYPERIDEALS COINCIDE

In this chapter, we shall study hyperrings whose bi-hyperideals and quasihyperideals coincide in order to generalize Proposition 1.12 to Proposition 1.14.

We know that quasi-hyperideals are bi-hyperideals. Example 1.2 shows that a bi-ideal of a ring need not be a quasi-ideal. The following example shows that in a hyperring which is not a ring, the quasi-hyperideals and the bi-hyperideals need not coincide.

Example 4.1. Consider the ring $(SU_n(F), +, \cdot)$ and the hyperring $(SU_n(F)/\rho, \oplus, \circ)$ as in Example 1.2 and Theorem 2.18, respectively. Let

$$B = \left\{ \begin{bmatrix} 0 & \dots & 0 & x & 0 \\ 0 & \dots & 0 & 0 & y \\ 0 & \dots & 0 & 0 & 0 \\ \vdots & & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix} \middle| x, y \in F \right\} \text{ and } B' = \{C\rho \mid C \in B\}.$$

From Example 1.2, we have B is a subring of $(SU_n(F), +, \cdot)$. By Lemma 2.20, $B' = \{C\rho \mid C \in B\}$ is a subhyperring of $(SU_n(F)/\rho, \oplus, \circ)$. Since $BSU_n(F)B = \{0\}$, it follows that for all $C, D \in B$ and $E \in SU_n(F), (C\rho) \circ (E\rho) \circ (D\rho) = (CED)\rho = 0\rho$. Then we deduce that $\langle B'(SU_n(F)/\rho)B' \rangle = \{0\rho\}$. Hence B' is a bi-hyperideal of $(SU_n(F)/\rho, \oplus, \circ)$. From Example 1.2, B is not a quasi-ideal of $(SU_n(F), +, \cdot)$ and hence B' is not a quasi-hyperideal of $(SU_n(F)/\rho, \oplus, \circ)$ by Theorem 2.21.

The next theorem gives a generalization of Proposition 1.12.

Theorem 4.2. Let A be a hyperring and B a bi-hyperideal of A. If every element of B is regular in A, then B is a quasi-hyperideal of A.

Proof. Assume that every element of B is regular in A. We shall show that B is a quasi-hyperideal of A, that is, $\langle AB \rangle \cap \langle BA \rangle \subseteq B$. Let $x \in \langle AB \rangle \cap \langle BA \rangle$. Then

$$x \in \sum_{i=1}^{n} b_i a_i \tag{1}$$

for some $b_i \in B$, $a_i \in A$ and $x \in AB >$. We proceed the proof inductively. By regularity of B in A, $b_1 = b_1t_1b_1$ for some $t_1 \in A$. By (1), Proposition 1.19 and reversibility of (A, +), we have that $b_1a_1 \in x - b_2a_2 - b_3a_3 - \cdots - b_na_n$. Thus

$$b_1 a_1 = b_1 t_1 b_1 a_1 \in b_1 t_1 (x - b_2 a_2 - b_3 a_3 - \dots - b_n a_n)$$

$$= b_1 t_1 x - b_1 t_1 b_2 a_2 - \dots - b_1 t_1 b_n a_n$$

$$= b_1^{(1)} - b_1 t_1 b_2 a_2 - \dots - b_1 t_1 b_n a_n$$

where $b_1^{(1)} = b_1 t_1 x$. By Proposition 1.22(9), $b_1^{(1)} \in BA < AB > \subseteq < BAB > \subseteq B$ since B is a bi-hyperideal of A. From (1), we have

$$x \in b_1 a_1 + b_2 a_2 + \dots + b_n a_n$$

$$\subseteq (b_1^{(1)} - b_1 t_1 b_2 a_2 - \dots - b_1 t_1 b_n a_n) + b_2 a_2 + \dots + b_n a_n$$

$$= b_1^{(1)} + (-b_1 t_1 b_2 + b_2) a_2 + \dots + (-b_1 t_1 b_n + b_n) a_n.$$

Since for each $i=1,2,\ldots,n,\,-b_1t_1b_i\in BAB\subseteq B$, we have that $-b_1t_1b_i+b_i\subseteq B$ for all $i\in\{1,2,\ldots,n\}$. Thus

$$x \in b_1^{(1)} + b_2^{(1)} a_2 + \dots + b_n^{(1)} a_n \tag{2}$$

for some $b_i^{(1)} \in -b_1t_1b_i + b_i$ where i = 2, 3, ..., n. By the regularity of B in A, $b_2^{(1)} = b_2^{(1)}t_2b_2^{(1)}$ for some $t_2 \in A$. From (2), Proposition 1.19 and reversibility of

(A, +), we have that $b_2^{(1)}a_2 \in x - b_1^{(1)} - b_3^{(1)}a_3 - \cdots - b_n^{(1)}a_n$. Thus

$$b_2^{(1)}a_2 = b_2^{(1)}t_2b_2^{(1)}a_2 \in b_2^{(1)}t_2(x - b_1^{(1)} - b_3^{(1)}a_3 - \dots - b_n^{(1)}a_n)$$

$$= b_2^{(1)}t_2x - b_2^{(1)}t_2b_1^{(1)} - b_2^{(1)}t_2b_3^{(1)}a_3 - \dots - b_2^{(1)}t_2b_n^{(1)}a_n.$$

Since $b_2^{(1)}t_2x \in BA < AB > \subseteq < BAB > \subseteq B$ and $b_2^{(1)}t_2b_1^{(1)} \in BAB \subseteq B$, we have $b_2^{(1)}t_2x - b_2^{(1)}t_2b_1^{(1)} \subseteq B$. Then $b_2^{(1)}a_2 \in b_2^{(2)} - b_2^{(1)}t_2b_3^{(1)}a_3 - \cdots - b_2^{(1)}t_2b_n^{(1)}a_n$ for some $b_2^{(2)} \in b_2^{(1)}t_2x - b_2^{(1)}t_2b_1^{(1)} \subseteq B$. It then follows from (2) that,

$$x \in b_1^{(1)} + b_2^{(1)} a_2 + \dots + b_n^{(1)} a_n$$

$$\subseteq b_1^{(1)} + \left(b_2^{(2)} - b_2^{(1)} t_2 b_3^{(1)} a_3 - \dots - b_2^{(1)} t_2 b_n^{(1)} a_n \right)$$

$$+ b_3^{(1)} a_3 + \dots + b_n^{(1)} a_n$$

$$= b_1^{(1)} + b_2^{(2)} + \left(-b_2^{(1)} t_2 b_3^{(1)} + b_3^{(1)} \right) a_3$$

$$+ \dots + \left(-b_2^{(1)} t_2 b_n^{(1)} + b_n^{(1)} \right) a_n.$$

Thus $x \in b_1^{(1)} + b_2^{(2)} + b_3^{(2)} a_3 + \dots + b_n^{(2)} a_n$ for some $b_i^{(2)} \in -b_2^{(1)} t_2 b_i^{(1)} + b_i^{(1)} \subseteq BAB + B \subseteq B + B \subseteq B$ where $i = 3, 4, \dots, n$.

We continue in the same above argument. Finally, we obtain $x \in b_1^{(1)} + b_2^{(2)} + \cdots + b_n^{(n)}$ for some $b_i^{(i)} \in B$ where i = 1, 2, ..., n. Since (B, +) is a canonical hypergroup, $x \in B$. Thus $\langle AB \rangle \cap \langle BA \rangle \subseteq B$. Therefore B is a quasi-hyperideal of A.

Clearly, Proposition 1.12 becomes a special case of Theorem 4.2.

Corollary 4.3. Let B be a bi-ideal of a ring A. If every element of B is regular in A, then B is a quasi-ideal of A.

To be convenient, let us call a hyperring A a BQ-hyperring if its bi-hyperideals and quasi-hyperideals coincide, that is, every bi-hyperideal of A is a quasi-hyperideal. Then from Theorem 4.2 we have

Theorem 4.4. Every regular hyperring is a BQ-hyperring.

Proposition 1.13 can be considered as a corollary of Theorem 4.4 as follows:

Corollary 4.5. Every regular ring is a BQ-ring.

Next, a necessary and sufficient condition for a hyperring to be a BQ-hyperring is given.

Theorem 4.6. Let A be a hyperring. Then A is a BQ-hyperring if and only if for any finite subset X of A, $(X)_b = (X)_q$.

Proof. We know in general that $(X)_b \subseteq (X)_q$ for every subset X of A(page 23). To prove the theorem, it suffices to prove that A is a BQ-hyperring if and only if for every finite subset X of A, $(X)_b$ is a quasi-hyperideal of A.

Assume that A is a BQ-hyperring. Since every bi-hyperideal of A is a quasi-hyperideal of A, $(X)_b$ is a quasi-hyperideal of A for every finite subset X of A.

Conversely, suppose that $(X)_b$ is a quasi-hyperideal of A for every finite subset X of A. Let B be a bi-hyperideal of A. Claim that $AB > \cap AB > \subseteq B$. Let $x \in AB > \cap ABA > \cap AB$

The following corollary is Proposition 1.14.

Corollary 4.7. A ring A is a BQ-ring if and only if for every finite subset X of A, $(X)_b = (X)_q$.