CHAPTER IV
HYPERRINGS WHOSE BI-HYPERIDEALS AND

QUASI-HYPERIDEALS COINCIDE

In this chapter, we shall study hyperrings whose bi-hyperideals and quasi-
hyperideals coincide in order to generalize Proposition 1.12 to Proposition 1.14.

We know that quasi-hyperideals are bi-hyperideals. Example 1.2 shows that
a bi-ideal of a ring need not be a quasi-ideal. The following example shows that
in a hyperring which is not a ring, the quasi-hyperideals and the bi-hyperideals

need not coincide.

Example 4.1. Consider the ring (SU,(F), +, -) and the hyperring (SU,(F)/p, ®, o)

as in Example 1.2 and Theorem 2.18, respectively. Let
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From Example 1.2, we have B is a subring of (SU,(F), +, -). By Lemma 2.20, B’ =
{Cp | C € B} is a subhyperring of (SU,(F)/p,®,0). Since BSU,(F)B = {0}, it
follows that for all C, D € B and E € SU,(F), (Cp)o(Ep)o(Dp) = (CED)p = 0p.
Then we deduce that < B'(SU,(F')/p)B" >= {0p}. Hence B’ is a bi-hyperideal
of (SU(F)/p,®,0). From Example 1.2, B is not a quasi-ideal of (SU,(F), +, )

and hence B’ is not a quasi-hyperideal of (SU,(F)/p,®, o) by Theorem 2.21.
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The next theorem gives a generalization of Proposition 1.12.

Theorem 4.2. Let A be a hyperring and B a bi-hyperideal of A. If every element

of B 1is regular in A, then B is a quasi-hyperideal of A.

Proof. Assume that every element of B is regular in A. We shall show that B
is a quasi-hyperideal of A, that is, < AB > N < BA >C B. Let z €< AB >

N < BA >. Then

RE Z b,-ai (1)
i=1
for some b; € B, a; € Aand z € < AB >. We proceed the proof inductively. By

regularity of B in A, by = byt by for some t; € A. By (1), Proposition 1.19 and

reversibility of (A, +), we have that bja; € T — byay — bsaz — - - - — b,a,. Thus
bia; = bitibia; € biti(z — bray — bzaz — -+ - — bpay)
=bitix — bitibyay — - - - — bitibray,
=t —bitibrar — -+ - — bitibaay

where b{" = b,t,z. By Proposition 1.22(9), b\") € BA < AB >C< BAB >C B

since B is a bi-hyperideal of A. From (1), we have

T € bay + bras + - + bra,
C (0" — bytibyag — -+ — bit1bnan) + baaz + - - + bpay
= b)) + (—byt1by + by)ag + - - - + (—bitrbn + bn)an.
Since for each i =1,2,...,n, —bit1b; € BAB C B, we have that —b;t,b;+b; C B
forall i € {1,2,...,n}. Thus
zeb) +bMay+ - +bWa, (2)

for some b,(-l) € —bit1b; + b; where ¢ = 2,3,...,n. By the regularity of B in A,

bgl) = bgl)tgbgl) for some t; € A. From (2), Proposition 1.19 and reversibility of
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(A, +), we have that b"a, € z — b{") — b{ag — - — bV a,. Thus
bMay = bMt0May € bPty(z — b — bag — - — bVay)
= bV tyz — B850 — M0 ag — - - — b 150V,

Since b{"'t,z € BA < AB >C< BAB >C B and b{"t,b") € BAB C B, we have
bV tyz — bV1,6 C B. Then 6" ay € 87 — b 1,6 ag — - - - — V1,6, for some

52 € bV tyz — b4, C B. Tt then follows from (2) that,

T € bgl) + bgl)ag 4+ bWa,
C o) + (0 =1 a0y = - — oV, )
+b$as 4 /4 0ay,
= o + b4 (<016 +4) as

4o F (-bgl)tgbﬁj) + bﬁl‘)) n.

Thus z € bgl) + bg) + bgz)a3 + -+ bPa, for some bSQ) € —bgl)tgbfl) + bgl) €
BAB+ B C B+ BC Bwherei=23,4,....n.

We continue in the same above argument. Finally, we obtain z € b(ll) + bgz) +
oo+ 0™ for some bgi) € B where ¢ = 1,2,...,n. Since (B,+) is a canonical
hypergroup, z € B. Thus < AB > N < BA >C B. Therefore B is a quasi-

hyperideal of A. O
Clearly, Proposition 1.12 becomes a special case of Theorem 4.2.

Corollary 4.3. Let B be a bi-ideal of a ring A. If every element of B is reqular

in A, then B is a quasi-ideal of A.

To be convenient, let us call a hyperring A a BQ-hyperring if its bi-hyperideals
and quasi-hyperideals coincide, that is, every bi-hyperideal of A is a quasi-hyperideal.

Then from Theorem 4.2 we have
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Theorem 4.4. Every reqular hyperring is a BQ-hyperring.

Proposition 1.13 can be considered as a corollary of Theorem 4.4 as follows:
Corollary 4.5. Every regular ring is a BQ-ring.

Next, a necessary and sufficient condition for a hyperring to be a BQ-hyperring

is given.

Theorem 4.6. Let A be a hyperring. Then A is a BQ-hyperring if and only if

for any finite subset X of A, (X)p = (X)q-

Proof. We know in general that (X), C (X), for every subset X of A(page 23).
To prove the theorem, it suffices to prove that A is a BQ-hyperring if and only if
for every finite subset X of A, (X); is a quasi-hyperideal of A.

Assume that A is a BQ-hyperring. Since every bi-hyperideal of A is a quasi-
hyperideal of A, (X), is a quasi-hyperideal of A for every finite subset X of A.

Conversely, suppose that (X), is a quasi-hyperideal of A for every finite subset
X of A. Let B be a bi-hyperideal of A. Claim that < AB >N < BA >C B. Let
z €< AB >N < BA >. Then z € iaibi and z € ib'ja; for some a;,a; € A

=1

j=1
and b, b. € B. Set X = {by, ba, ..., b, b, b, ..., 0 }. Then (X), C B and by the

]
assumption, (X), is a quasi-hyperideal of A. Then < AX), >N < (X)pA >C
(X)p. Since z € Zaibi C< A(X)y > and z € Z a C< (X)pA >, we have

i=1

T €< A(X)y >N < (X)pA>C (X), C B. Hence B is a quasi-hyperideal of A. O
The following corollary is Proposition 1.14.

Corollary 4.7. A ring A is a BQ-ring if and only if for every finite subset X
of A, (X)» = (X),-
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