CHAPTER II1
HYPERRINGS HAVING THE INTERSECTION

PROPERTY OF QUASI-HYPERIDEALS

The purpose of this chapter is to generalize Proposition 1.8 to Proposition 1.11
by characterizing when quasi-hyperideals in hyperrings have the intersection prop-
erty and when hyperrings have the intersection property of quasi-hyperideals.

The first theorem of this chapter is to generalize Proposition 1.8. We first give

a lemma which follows directly from Proposition 1.29 and Lemma 2.3(iv).

Lemma 3.1. If S is a subhyperring of a hyperring A, then S + < AS > and S +

< SA > are respectively a left hyperideal and a right hyperideal of A containing S.

Theorem 3.2. If Q is a quasi-hyperideal of a hyperring A such that Q@ C< AQ >

or Q@ C< QA > then
R=(Q+<AQ >)N(Q + < QA >).
In this case, Q) has the intersection property.

Proof. Suppose that @ is a quasi-hyperideal of a hyperring A such that Q C
< AQ > or Q C< QA >. Let D= (Q + < AQ >)N(Q + < QA >). The
inclusion @ C D is evident. Now assume that Q C< AQ >. Then Q + < AQ >
=< AQ >, 50 D =< AQ >N (Q + < QA >). Let d € D. Then d €< AQ >
and d € k + c for some £k € Q and ¢ €< QA >. Since (A,+) is reversible,

c€ —k+dC Q+ < AQ >. Since Q@ C< AQ >, then ¢ belongs to both
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< AQ > and < QA >, whence c €< AQ > N < QA >C @ since @ is a quasi-
hyperideal of A. Then d € k + ¢ C . Therefore D C . Hence D = @, as
required. If @ C< QA >, then we obtain D = @ similarly. e conclude that
Q=(@Q+<AQ >)N(Q + < QA >). By Lemma 3.1, @ has the intersection

property. a
Proposition 1.8 becomes a corollary of Theorem 3.2.

Corollary 3.3. Let Q be a quasi-ideal of a ring A. If Q C QA or Q C AQ, then

Q=(Q+AQ)N(Q+ QA).
In this case, Q) has the intersection property.

The following theorem gives some equivalent conditions for a quasi-hyperideal

of a hyperring to have the intersection property.

Theorem 3.4. Let Q be a quasi-hyperideal of a hyperring A. Then the following
statements are equivalent.

(i) @ has the intersection property.

i) (Q+<A4Q>)N(Q+<QA>)=Q.

(iii) <AQ >N (Q +<QRA>)CQ.

(iv) <QA>N(Q +< AQ >) C Q.

Proof. (i)=(ii). Since @ has the intersection property, there exist a left hyperideal
L and a right hyperideal R of A such that @ = LNR. Then Q@ C L and Q C R and
s0< AQ >C< AL>C Land < QA >C< RA>C R. ThusQ + < AQ >C L and
Q@ + < QA >C R. Consequently, (Q + < AQ >)N(Q +<QA>)CLNR=Q.
But Q C (Q + < AQ >) N (Q + < QA >), so (ii) holds.

(ii)=>(i). This follows from Lemma 3.1.

(ii)=(iii). It is obvious since < AQ >C Q + < AQ >.
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(ii)=>(ii). Assume that < AQ > N (@ + < QA >) C Q. We have that
QC (Q+ < AQ >)N (@ + < QA >). To prove the reverse inclusion, let
€ (Q+ < AQ >) N (Q + < QA >). Thenz € t+candz € s+d
for some s,t € Q, ¢ €< AQ > and d €< QA >. Since (A, +) is reversible,
cezrz—tCs+d—-t=(s—-t)+dC Q + < QA >. Now, we have that
ceE<AQ >N (Q + < QA >), s0 ¢ € Q. This implies that z € t + ¢ C (). Hence
(ii) holds.

Similarly, we can prove that (ii)<(iv). O
The following theorem strengthens the result in Theorem 3.4.

Theorem 3.5. Let X be a nonempty subset of a hyperring A. Then the following
statements are equivalent.

(i) (X)q has the intersection property.

(i) (ZX + < AX >)N(ZX +< XA >)= (X),.

(ili) < AX >N (ZX +<XA>)C (X))

(iv) < XA>N (ZX + SAX >)C(X)q

Proof. (i)=(ii). Since (X), has the intersection property, there exist a left hy-
perideal L and a right hyperideal R of A such that (X), = LN R. Then X C L
and X C R. This implies that ZX C L, ZX C R, < AX >C< AL >C L and
< XA >C< RA >C R. Hence ZX + < AX >C Land ZX + < XA >C R.
Therefore (ZX + < AX >)N(ZX + < XA >) C LNR = (X),. By Theorem 2.9,
(X)g=ZX+ (< AX >N<XA>),50 (X),=ZX+ (< AX >N< XA>)C
(ZX + < AX >)N(ZX + < XA >). This proves that (ii) holds.

(ii)=(i). It is true because of Lemma 2.3(iv).

(ii)=-(iii). This implication is clear.

(iii)=>(ii). Assume that < AX >N (ZX + < XA >) C (X),. By Theorem

2.9, (X), = ZX + (< AX > N < XA >). It then follows that (X), C (ZX +
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< AX >) N (ZX + < XA >). To show that (ZX + < AX >)N(ZX +
<XA>)C (X)plette (ZX + < AX >)N(ZX + < XA>). Thent €t +1t,
and t € q; +q, for some t;,q; € ZX,t; €< AX > and ¢ €< XA >. Since (A, +)
is reversible, t, € —t; +t C —t1 + (1 + @) = (-t + 1) + 2 CZX + < XA >.
Hence t, €< AX > N (ZX + < XA >). By the assumption, t, € (X),. This
implies ¢t € t; +t; CZX + (X), = (X),. Therefore (ii) holds.

We obtain (ii)<>(iv) similarly. O

Proposition 1.9 and Proposition 1.10 become special cases of Theorem 3.4 and

Theorem 3.5, respectively.

Corollary 3.6. Let @ be a quasi-ideal of a ring A. Then the following statements
are equivalent.

(i) @ has the intersection property.

(i) (@+AQ)N(Q+QA)=Q.

(i) AQN(Q+QA) C Q.

(iv) QAN(Q+A4Q) C Q.

Corollary 3.7. Let X be a nonempty subset of a ring A. Then the following
statements are equivalent.

i) (X), has the intersection property.

(i
(i) (ZX+AX)N(ZX + XA) = (X),.
(i) AXN(ZX + XA) C (X),.

(

iv) XAN (ZX + AX) C (X),.

The following theorem gives some equivalent conditions for a hyperring to have

the intersection property of quasi-hyperideals.
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Theorem 3.8. Let A be a hyperring. Then the following statements are equiva-
lent.
(i) A has the intersection property of quasi-hyperideals.

(ii) For any finite nonempty subset X of A,
<AX>N(ZX + < XA>)CZX + (< AX >N< XA >)(= (X))

(iii) For a finite subset X = {z1,Z,...,Z,} of A and a;,as,...,a, € A, if

Za i ) 0V (D (Kizi + zia) ) )
=1
for some a; € A, k; € Z, then y € (X),.

Proof. (1)=(ii). Suppose that A has the intersection property of quasi-hyperideals
and let X be a finite nonempty subset of A. Then (X), has the intersection
property. Therefore (ii) holds by Theorem 3.5.

(ii)=>(i). Assume that (ii)is true. Let @ be any quasi-hyperideal of A. We need
to show that < AQ > N(Q + <QA>)C Q. Letye< AQ >N (Q + < QA >).
Then y € Zn:aiqi and y € ¢+ z"l:q;‘bj for some a;,b; € A and ¢,¢;,¢; € Q.
Consider Xi::1 {q,ql,...,qn,q’l,..J..:,;;n}. Then X C @ and |X| < oo. By (ii),

<AX>N(ZX +<XA>)CZX +(<AX >N < XA>), so we have

YEKAX >N(ZX + < XA>)CZX+ (< AX >N<XA>)

CR+(KAQ>N<RA>)CQR+QCQ.

This shows that < AQ >N (Q + < QA >) C Q. Therefore @ has the intersection
property by Theorem 3.4. Hence (i) is proved.

(ii)=(iii). Assume that (ii) holds. Let X = {z1,z9,...,2,} C Aand ay, ay, ...,

n

a, € A,and let y € Za-zi N ( Z( kiz; + z;a; ) ) for some a} € A and k; € Z.

=1
Then y € ( Zazmz ka,+zx, C< AX >N (ZX + < XA >).

But<AX>ﬂ(ZX+<XA >) C (X) by (ii), so y € (X),.
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(iii)=>(ii). Assume that (iii) is true. To prove (ii), let X be a finite nonempty
subset of A say X = {a:l,asg,.. :En} and y €< AX >N (ZX + < XA >).

Then y € Za,x, and y € ka, + sza for some a;,a; € A and k; € Z. This

1=1 i=1 1=1
n n

implies that y € ( Z a;z; ) N ( Z( kiz; + z;a; ) ) It then follows from (iii) that
1=1 =1

y € (X),. Hence (ii) is proved. O
A corollary of Theorem 3.8 is Proposition 1.11.

Corollary 3.9. The following statements for a ring A are equivalent.
(i) A has the intersection property of quasi-ideals.

(i1) For any finite nonempty subset X of A,
AXN(ZX ¥ XAy CZX + (AXNXA)(= (X),).

(iii) For any finite subset X = {zy,22,...;2n} of A and ay,as,...,a, € A, if

n

Z(aﬂ?i + iz + zia;) = 0,

i=1

n
for some a; € A and k; € Z, then Zaixi e(Xx),.

i=1
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