CHAPTER II

GENERAL PROPERTIES AND EXAMPLES

In this chapter, we first generalize Proposition 1.3 – Proposition 1.7 of Chapter I. After that all the quasi-hyperideals of the hyperrings in Example 1.23 – Example 1.28 are characterized. Finally, an example of a noncommutative hyperring which is not a division hyperring is provided. Moreover, all of its quasi-hyperideals are investigated.

To generalize Proposition 1.3, the following three lemmas are required. The first one is clearly true in semigroups.

Lemma 2.1. Let S be a semigroup with zero 0. Then S is a group with zero (that is, $S\setminus\{0\}$ is a group under the operation of S) if and only if Sx = S = xS for all $x \in S\setminus\{0\}$.

Lemma 2.2. If H_1 and H_2 are canonical subhypergroups of a hypergroup (H, \circ) then $H_1 \circ H_2$ is a canonical subhypergroup of H.

Proof. Let e be the scalar identity of (H, \circ) . Then $e \in H_1$ and $e \in H_2$, so $e \in e \circ e \subseteq H_1 \circ H_2$. Let $x, y \in H_1 \circ H_2$. Then $x \in a_1 \circ a_2$ and $y \in b_1 \circ b_2$ for some $a_1, b_1 \in H_1$ and $a_2, b_2 \in H_2$. Since (H, \circ) is commutative, we have

$$x \circ y \subseteq (a_1 \circ a_2) \circ (b_1 \circ b_2) = (a_1 \circ b_1) \circ (a_2 \circ b_2) \subseteq H_1 \circ H_2.$$

Since $x \in a_1 \circ a_2$, by Proposition 1.19, $x^{-1} \in a_1^{-1} \circ a_2^{-1} \subseteq H_1 \circ H_2$. Thus $H_1 \circ H_2$ is a canonical subhypergroup of (H, \circ) by Proposition 1.20.

Lemma 2.3. Let $(A, +, \cdot)$ be a hyperring and X and Y nonempty subsets of A. Then the following statements hold.

- (i) $\mathbb{Z}X$ is a canonical subhypergroup of (A, +) containing X.
- (ii) < AX > and < XA > are a left hyperideal and a right hyperideal of A, respectively.
- (iii) $\langle XAY \rangle$ is a subhyperring of A.
- (iv) $\mathbb{Z}X+\langle AX\rangle$ and $\mathbb{Z}X+\langle XA\rangle$ are respectively a left hyperideal and a right hyperideal of A containing X.

$$-b \in \sum_{i=1}^{n} -(a_i x_i) = \sum_{i=1}^{n} (-a_i) x_i \in AX > .$$

By Proposition 1.20, $(\langle AX \rangle, +)$ is a canonical subhypergroup of (A, +). We also have $(\langle AX \rangle, \cdot)$ is a subsemigroup of (A, \cdot) . Hence $\langle AX \rangle$ is a subhyperring of $(A, +, \cdot)$. Since $A \langle AX \rangle \subseteq \langle AX \rangle \subseteq \langle AX \rangle \subseteq \langle AX \rangle$ by Proposition 1.22(9), $\langle AX \rangle$ is a left hyperideal of $(A, +, \cdot)$.

Similarly, $\langle XA \rangle$ is a right hyperideal of $(A, +, \cdot)$.

(iii) We have $(\langle XAY \rangle, \cdot)$ is a subsemigroup of (A, \cdot) since $\langle XAY \rangle \langle XAY \rangle \leq \langle XAYXAY \rangle = \langle X(AYXA)Y \rangle \leq \langle XAY \rangle$ by Proposition 1.22(9). Since

 $0 \in A$, we have $0 \in \langle XAY \rangle$. Since any element of $\langle XAY \rangle$ is a member of a set of the form $\sum x_i a_i y_i$ where $x_i \in X, y_i \in Y$ and $a_i \in A$, we can conclude that $\langle XAY \rangle + \langle XAY \rangle \subseteq \langle XAY \rangle$. Next, let $b \in \langle XAY \rangle$. Then $b \in \sum_{i=1}^n x_i a_i y_i$ for some $x_i \in X, a_i \in A, y_i \in Y$ and $n \in \mathbb{N}$. By Proposition 1.19 and Proposition 1.22(3),

$$-b \in \sum_{i=1}^{n} -(x_i a_i y_i) = \sum_{i=1}^{n} x_i (-a_i) y_i \subseteq \langle XAY \rangle.$$

By Proposition 1.20, $(\langle XAY \rangle, +)$ is a canonical subhypergroup of (A, +). Hence $\langle XAY \rangle$ is a subhyperring of A.

(iv) Since $0 \in AX > \text{ and } 0 \in XA > X \subseteq ZX + AX > \text{ and } X \subseteq ZX + AX > \text{ and } X \subseteq ZX + AX > \text{ By (i), (ii) and Lemma 2.2, } ZX + AX > \text{ and } ZX + AX > \text{ are canonical subhypergroups of } (A, +). Since$

$$A(\mathbb{Z}X+ < AX >) \subseteq A(\mathbb{Z}X) + A < AX >$$

$$\subseteq \mathbb{Z}(AX) + < AX > \text{ by Proposition 1.22(11) and (ii)}$$

$$\subseteq \mathbb{Z} < AX > + < AX >$$

$$= < AX > + < AX > \text{ by Proposition 1.29 and (ii)}$$

$$= < AX > \subseteq \mathbb{Z}X + < AX >$$

and

$$(\mathbb{Z}X+< XA>)A\subseteq (\mathbb{Z}X)A+< XA>A$$
 $\subseteq \mathbb{Z}(XA)+< XA>$ by Proposition 1.22(11) and (ii) $\subseteq \mathbb{Z}< XA>+< XA>$ $=< XA>+< XA>$ by Proposition 1.29 and (ii) $=< XA> \subseteq \mathbb{Z}X+< XA>$.

it follows that $\mathbb{Z}X + \langle AX \rangle$ and $\mathbb{Z}X + \langle XA \rangle$ are a left hyperideal and a right hyperideal of A, respectively.

Let A be a hyperring. Then by Proposition 1.21, the intersection of a collection of left [right] hyperideals of A is also a left [right] hyperideal of A.

For $\emptyset \neq X \subseteq A$, let $(X)_l[(X)_r]$ denote the intersection of all left [right] hyperideals of A containing X. Therefore $(X)_l[(X)_r]$ is the smallest left [right] hyperideal of A containing X and it is called the *left* [right] hyperideal of A generated by X. For $a \in A$, let $(a)_l[(a)_r]$ denote $(\{a\})_l[(\{a\})_r]$ and it is called the principal left [right] hyperideal of A generated by a.

Lemma 2.4. For any nonempty subset X of a hyperring A,

$$(X)_l = \mathbb{Z}X + \langle AX \rangle$$
 and $(X)_r = \mathbb{Z}X + \langle XA \rangle$.

In particular, for $a \in A$,

$$(a)_l = \mathbb{Z}a + Aa$$
 and $(a)_r = \mathbb{Z}a + aA$.

Proof. From Lemma 2.3 (iv), $(X)_l \subseteq \mathbb{Z}X + \langle AX \rangle$. Since $(X)_l$ is a canonical subhypergroup of (A, +) containing X, we have that $\mathbb{Z}X \subseteq (X)_l$. Also $\langle AX \rangle \subseteq \langle A(X)_l \rangle \subseteq (X)_l$ because $(X)_l$ is a left hyperideal of A containing X. Hence $\mathbb{Z}X + \langle AX \rangle \subseteq (X)_l$. Therefore we deduce that $(X)_l = \mathbb{Z}X + \langle AX \rangle$. We can show similarly that $(X)_r = \mathbb{Z}X + \langle XA \rangle$. Since for $a \in A$, $\langle Aa \rangle = Aa$ and $\langle aA \rangle = aA$, it follows that the last two equalities hold.

Theorem 2.5. If A is a hyperring such that $A^2 \neq \{0\}$, then A has no proper nonzero quasi-hyperideals if and only if A is a division hyperring.

Proof. Assume that A has no proper nonzero quasi-hyperideals. Let $a \in A \setminus \{0\}$. Since $(a)_l$ is a quasi-hyperideal of A containing $a \neq 0$, by the assumption, $(a)_l = A$.

Moreover,

$$Aa \subseteq \langle A(a)_l \rangle = \langle A(\mathbb{Z}a + Aa) \rangle$$
 by Lemma 2.4
 $\subseteq \langle A(\mathbb{Z}a) + AAa \rangle$
 $\subseteq \langle \mathbb{Z}(Aa) + Aa \rangle$ by Proposition 1.22(11)
 $= \langle Aa + Aa \rangle$ by Proposition 1.29 and Lemma 2.3(ii)
 $= \langle Aa \rangle$ by Lemma 2.3(ii)
 $= \langle Aa \rangle$

so $< A(a)_l >= Aa$. Since $A^2 \neq \{0\}$, $Aa = < A(a)_l >= < A^2 > \neq \{0\}$. Since Aa is a quasi-hyperideal such that $Aa \neq \{0\}$, Aa = A. Similarly, we obtain that aA = A. Then Aa = A = aA, so by Lemma 2.1, $(A \setminus \{0\}, \cdot)$ is a group. Hence A is a division hyperring.

Conversely, assume that A is a division hyperring. Then $(A \setminus \{0\}, \cdot)$ is a group, so by Lemma 2.1, Aa = A = aA for all $a \in A \setminus \{0\}$. Let Q be a nonzero quasi-hyperideal of A. Then there exists $q \in Q$ such that $q \neq 0$. Thus Aq = A = qA which implies that $A = Aq \cap qA \subseteq AQ > 0 < QA > 0$. Hence Q = A. Therefore A has no proper nonzero quasi-hyperideals.

Proposition 1.3 becomes a corollary of Theorem 2.5.

Corollary 2.6. Let A be a ring such that $A^2 \neq \{0\}$. Then A is a division ring if and only if A and $\{0\}$ are the only quasi-ideals of A.

We also have the following facts in hyperrings.

Theorem 2.7. Let A be a hyperring. Then:

- (i) The intersection of a set of quasi-hyperideals of A is a quasi-hyperideal of A.
- (ii) The intersection of a set of bi-hyperideals of A is a bi-hyperideal of A.

Proof. (i) Let $\{Q_{\alpha} \mid \alpha \in \Lambda\}$ be a set of quasi-hyperideals of A. By Proposition 1.21, $(\bigcap_{\alpha \in \Lambda} Q_{\alpha}, +)$ is a canonical subhypergroup of (A, +). Since each Q_{α} is a quasi-hyperideal of A, we have that for every $\beta \in \Lambda$,

$$< A(\bigcap_{\alpha \in \Lambda} Q_{\alpha}) > \cap < (\bigcap_{\alpha \in \Lambda} Q_{\alpha})A > \subseteq < AQ_{\beta} > \cap < Q_{\beta}A > \subseteq Q_{\beta}.$$

Consequently, $< A(\bigcap_{\alpha \in \Lambda} Q_{\alpha}) > \cap < (\bigcap_{\alpha \in \Lambda} Q_{\alpha})A > \subseteq \bigcap_{\alpha \in \Lambda} Q_{\alpha}$. Hence $\bigcap_{\alpha \in \Lambda} Q_{\alpha}$ is a quasi-hyperideal of A.

(ii) First, we note that an arbitrary nonempty intersection of subsemigroups of a semigroup S is a subsemigroup of S. Let $\{B_{\alpha} \mid \alpha \in \Lambda\}$ be a set of bi-hyperideals of A. From Proposition 1.21, $(\bigcap_{\alpha \in \Lambda} B_{\alpha}, +)$ is a canonical subhypergroup of (A, +). Then $\bigcap_{\alpha \in \Lambda} B_{\alpha}$ is a subhyperring of A. Since each B_{α} is a bi-hyperideal of A, we have that for every $\beta \in \Lambda$,

$$< (\bigcap_{\alpha \in \Lambda} B_{\alpha}) A (\bigcap_{\alpha \in \Lambda} B_{\alpha}) > \subseteq < B_{\beta} A B_{\beta} > \subseteq B_{\beta}.$$

It then follows that $<(\bigcap_{\alpha\in\Lambda}B_{\alpha})A(\bigcap_{\alpha\in\Lambda}B_{\alpha})>\subseteq\bigcap_{\alpha\in\Lambda}B_{\alpha}$. Hence $\bigcap_{\alpha\in\Lambda}B_{\alpha}$ is a bihyperideal of A.

Proposition 1.4 is immediately a consequence of the above theorem.

Corollary 2.8. Let A be a ring. Then:

- (i) The intersection of a set of quasi-ideals of A is a quasi-ideal of A.
- (ii) The intersection of a set of bi-ideals of A is a bi-ideal of A.

Let A be a hyperring. For $\emptyset \neq X \subseteq A$, the quasi-hyperideal of A generated by X is the intersection of all quasi-hyperideals of A containing X which is denoted by $(X)_q$. The bi-hyperideal of A generated by $X \subseteq A$ with $X \neq \emptyset$ is defined similarly and it is denoted by $(X)_b$. Then for $X \subseteq A$, $(X)_q[(X)_b]$ is the smallest quasi-hyperideal [bi-hyperideal] of A containing X. For $a \in A$, let $(a)_q$

denote $(\{a\})_q$ and it is called the *principal quasi-hyperideal of A generated by a*. Since every quasi-hyperideal of A is a bi-hyperideal of A, $(X)_b \subseteq (X)_q$ for every nonempty subset X of A.

Theorem 2.9. For a nonempty subset X of a hyperring A,

$$(X)_q = \mathbb{Z}X + (\langle AX \rangle \cap \langle XA \rangle).$$

In particular, for $a \in A$,

$$(a)_q = \mathbb{Z}a + (Aa \cap aA).$$

Proof. First, we show that $\mathbb{Z}X + (\langle AX \rangle \cap \langle XA \rangle)$ is a quasi-hyperideal containing X. Since $X \subseteq \mathbb{Z}X$ and $0 \in \langle AX \rangle \cap \langle XA \rangle$, $X \subseteq \mathbb{Z}X + (\langle AX \rangle \cap \langle XA \rangle)$. We know from Lemma 2.3 that $\mathbb{Z}X, \langle AX \rangle$ and $\langle XA \rangle$ are canonical subhypergroups of (A, +). By Proposition 1.21 and Lemma 2.2, we have $\mathbb{Z}X + (\langle AX \rangle \cap \langle XA \rangle)$ is a canonical subhypergroup of (A, +). We also have

$$< A\left(\mathbb{Z}X + (< AX > \cap < XA >)\right) > \subseteq < A(\mathbb{Z}X + < AX >) >$$

$$\subseteq < A(\mathbb{Z}X) + A < AX >>$$
 by Proposition 1.22(11) and Lemma 2.3(ii)
$$\subseteq < \mathbb{Z} < AX > + < AX >>$$

$$\subseteq < < AX > + < AX >>$$
 by Proposition 1.29 and Lemma 2.3(ii)
$$= << AX >>$$
 by Proposition 1.29 and Lemma 2.3(ii)
$$= << AX >>$$
 by Proposition 1.22(9)
$$= < AX >>$$
 by Proposition 1.22(9)

and

$$< (\mathbb{Z}X + (< AX > \cap < XA >)) A > \subseteq < (\mathbb{Z}X + < XA >) A >$$

$$\subseteq < (\mathbb{Z}X)A + < XA > A >$$

$$\subseteq < \mathbb{Z}(XA) + < XA >>$$

$$\subseteq < \mathbb{Z} < XA > + < XA >>$$

$$\subseteq < (XA) + < (XA) >>$$

$$= < (XA) >$$

$$= < (XA) >$$

It then follows that

$$< A (\mathbb{Z}X + (< AX > \cap < XA >)) > \cap < (\mathbb{Z}X + (< AX > \cap < XA >)) A >$$

$$\subseteq < AX > \cap < XA >$$

$$\subseteq \mathbb{Z}X + (< AX > \cap < XA >).$$

Hence $\mathbb{Z}X + (\langle AX \rangle \cap \langle XA \rangle)$ is a quasi-hyperideal of A containing X. Then $(X)_q \subseteq \mathbb{Z}X + (\langle AX \rangle \cap \langle XA \rangle)$.

Since $((X)_q, +)$ is a canonical subhypergroup of (A, +), $\mathbb{Z}X \subseteq (X)_q$. We also have $\langle AX \rangle \cap \langle XA \rangle \subseteq \langle A(X)_q \rangle \cap \langle (X)_q A \rangle \subseteq (X)_q$ which implies that $\mathbb{Z}X + (\langle AX \rangle \cap \langle XA \rangle) \subseteq (X)_q$. Therefore $(X)_q = \mathbb{Z}X + (\langle AX \rangle \cap \langle XA \rangle)$.

Theorem 2.10. For a nonempty subset X of a hyperring A,

$$(X)_b = \mathbb{Z}X + \mathbb{Z}X^2 + \langle XAX \rangle.$$

Proof. By Lemma 2.2 and Lemma 2.3 ((i) and (iii)), $\mathbb{Z}X + \mathbb{Z}X^2 + \langle XAX \rangle$ is

a canonical subhypergroup of (A, +). Since

$$(\mathbb{Z}X + \mathbb{Z}X^2 + \langle XAX \rangle)^2$$

$$\subseteq (\mathbb{Z}X)(\mathbb{Z}X) + (\mathbb{Z}X)(\mathbb{Z}X^2) + (\mathbb{Z}X) \langle XAX \rangle + (\mathbb{Z}X^2)(\mathbb{Z}X) + (\mathbb{Z}X^2)(\mathbb{Z}X^2)$$

$$+ (\mathbb{Z}X^2) \langle XAX \rangle + \langle XAX \rangle (\mathbb{Z}X) + \langle XAX \rangle (\mathbb{Z}X^2)$$

$$+ \langle XAX \rangle \langle XAX \rangle \qquad \text{from Proposition 1.22(5)}$$

$$\subseteq \mathbb{Z}X^2 + \mathbb{Z}X^3 + \mathbb{Z}(X \langle XAX \rangle) + \mathbb{Z}X^3 + \mathbb{Z}X^4 + \mathbb{Z}(X^2 \langle XAX \rangle)$$

$$+ \mathbb{Z}(\langle XAX \rangle X) + \mathbb{Z}(\langle XAX \rangle X^2) + \langle XAX \rangle \langle XAX \rangle$$

$$\text{from Proposition 1.22(11)}$$

$$\subseteq \mathbb{Z}X^2 + \mathbb{Z}X^3 + \mathbb{Z} \langle X^2AX \rangle + \mathbb{Z}X^3 + \mathbb{Z}X^4 + \mathbb{Z} \langle X^3AX \rangle + \mathbb{Z} \langle XAX^2 \rangle$$

$$+ \mathbb{Z} \langle XAX^3 \rangle + \langle (XAX)^2 \rangle \qquad \text{from Proposition 1.22(9)}$$

$$\subseteq \mathbb{Z}X^2 + \mathbb{Z} \langle XAX \rangle + \mathbb{Z} \langle XAX \rangle + \mathbb{Z} \langle XAX \rangle + \mathbb{Z} \langle XAX \rangle$$

$$+ \mathbb{Z} \langle XAX \rangle + \mathbb{Z} \langle XAX \rangle + \mathbb{Z} \langle XAX \rangle + \langle XAX \rangle$$

$$\subseteq \mathbb{Z}X^2 + \langle XAX \rangle \qquad \text{from Proposition 1.29 and Lemma 2.3(iii)}$$

$$\subset \mathbb{Z}X + \mathbb{Z}X^2 + \langle XAX \rangle.$$

we deduce that $\mathbb{Z}X + \mathbb{Z}X^2 + \langle XAX \rangle$ is a subhyperring of A. It is clear that $\langle XAX \rangle A \langle XAX \rangle \subseteq \langle XAX \rangle$. Since

$$(\mathbb{Z}X + \mathbb{Z}X^2 + \langle XAX \rangle)A(\mathbb{Z}X + \mathbb{Z}X^2 + \langle XAX \rangle)$$

$$\subseteq (\mathbb{Z}X + \mathbb{Z}X^2 + \langle XAX \rangle)(\mathbb{Z}AX + \mathbb{Z}AX^2 + A \langle XAX \rangle)$$
from Proposition 1.22(11)
$$\subseteq \mathbb{Z}(XAX) + \mathbb{Z}(X^2AX) + \mathbb{Z}(\langle XAX \rangle (AX)) + \mathbb{Z}(XAX^2)$$

$$+ \mathbb{Z}(X^2AX^2) + \mathbb{Z}(\langle XAX \rangle AX^2) + \mathbb{Z}(XA \langle XAX \rangle)$$

$$+ \mathbb{Z}(X^2A < XAX >) + < XAX > A < XAX >$$

$$\text{from Proposition 1.22((5) and (11))}$$

$$\subseteq \mathbb{Z} < XAX > + \mathbb{Z} < XAX > + \mathbb{Z} < XAX > + \mathbb{Z} < XAX >$$

$$+ \mathbb{Z} < XAX > + \mathbb{Z} < XAX > + \mathbb{Z} < XAX > + \mathbb{Z} < XAX >$$

$$+ < XAX > \text{from Proposition 1.22(9)}$$

$$\subseteq < XAX > \text{from Proposition 1.29 and Lemma 2.3(iii)}$$

$$\subseteq \mathbb{Z}X + \mathbb{Z}X^2 + < XAX >$$

and $X \subseteq \mathbb{Z}X + \mathbb{Z}X^2 + \langle XAX \rangle$, we conclude that $\mathbb{Z}X + \mathbb{Z}X^2 + \langle XAX \rangle$ is a bi-hyperideal of A containing X. Hence $(X)_b \subseteq \mathbb{Z}X + \mathbb{Z}X^2 + \langle XAX \rangle$.

Since $(X)_b$ is a subhyperring of A containing X, it follows that $\mathbb{Z}X \subseteq (X)_b$ and $\mathbb{Z}X^2 \subseteq (X)_b$. But $(X)_b$ is a bi-hyperideal of A containing X, so $< XAX > \subseteq < (X)_bA(X)_b > \subseteq (X)_b$. Consequently, $\mathbb{Z}X + \mathbb{Z}X^2 + < XAX > \subseteq (X)_b$. Hence the theorem is proved.

Proposition 1.5 and Proposition 1.6 are special cases of Theorem 2.9 and Theorem 2.10, respectively.

Corollary 2.11. For a nonempty subset X of a ring A,

$$(X)_q = \mathbb{Z}X + (AX \cap XA).$$

Corollary 2.12. For a nonempty subset X of a ring A,

$$(X)_b = \mathbb{Z}X + \mathbb{Z}X^2 + XAX.$$

Theorem 2.13. A hyperring A is a regular if and only if $\langle QAQ \rangle = Q$ for every quasi-hyperideal Q of A.

Proof. Assume that A is a regular hyperring and let Q be a quasi-hyperideal of A. Since A is regular, for every $x \in Q$, x = xyx for some $y \in A$. Thus $x \in QAQ$

for all $x \in Q$, that is, $Q \subseteq < QAQ >$. Since $Q \subseteq < QAQ > \subseteq < AQ >$ and $Q \subseteq < QAQ > \subseteq < QAQ > \subseteq < AQ >$ we obtain that $Q \subseteq < QAQ > \subseteq < AQ > \cap < QA > \subseteq < QAQ >$. Hence Q = < QAQ >.

Conversely, assume that $\langle QAQ \rangle = Q$ for every quasi-hyperideal Q of A. To show that A is a regular hyperring, let $a \in A \setminus \{0\}$. Then $(a)_l \cap (a)_r$ is a quasi-hyperideal of A (see page 15). By the assumption, $\langle ((a)_l \cap (a)_r) A ((a)_l \cap (a)_r) \rangle = (a)_l \cap (a)_r$. Since $a \in (a)_l \cap (a)_r$, $a \in \langle ((a)_l \cap (a)_r) A ((a)_l \cap (a)_r) \rangle \subseteq \langle (a)_r A (a)_l \rangle$. By Lemma 2.4, $(a)_r = \mathbb{Z}a + aA$ and $(a)_l = \mathbb{Z}a + Aa$. Then

$$a \in <(a)_r A(a)_l> = <(\mathbb{Z}a+aA)A(\mathbb{Z}a+Aa)>$$

$$\subseteq <\mathbb{Z}(aAa)+\mathbb{Z}(aAa)+\mathbb{Z}(aA^2a+aA^3a>$$
from Proposition 1.22(11)
$$\subseteq$$
from Proposition 1.29 and Lemma 2.3(iii)
$$\subseteq =aAa$$

which implies that a is a regular element of A.

Proposition 1.7 becomes a corollary of Theorem 2.13.

Corollary 2.14. A ring A is regular if and only if QAQ = Q for every quasi-ideal Q of A.

Next, we shall determine all quasi-hyperideals of the hyperrings in Example 1.23 – Example 1.28. By Theorem 2.5, we obtain that all quasi-hyperideals of the hyperrings in Example 1.23, Example 1.27 and Example 1.28 are the only $\{0\}$ and itself. The next three propositions determine all quasi-hyperideals (hyperideals) of the hyperrings in Example 1.24, Example 1.25 and Example 1.26, respectively.

Proposition 2.15. Let (A, \oplus, \cdot) be a hyperring where A = [0, a] or [0, a), $0 < a \le 1$ and

$$x \oplus y = \begin{cases} \left\{ \max\{x, y\} \right\} & \text{if } x \neq y, \\ [0, x] & \text{if } x = y. \end{cases}$$

Then

$$\{[0,b] \mid b \in A\} \cup \{[0,b) \mid b \in A \setminus \{0\}\}\$$

is the set of all quasi-hyperideals of (A, \oplus, \cdot) .

Proof. Trivially, $\{0\}$ is a quasi-hyperideal of (A, \oplus, \cdot) and it is clear that for every $b \in A \setminus \{0\}$, [0, b] and [0, b) are subhyperrings of (A, \oplus, \cdot) . Since $0 < a \le 1$, we have $A[0, b] \subseteq [0, 1][0, b] = [0, b]$ and $A[0, b) \subseteq [0, 1][0, b) = [0, b)$ for all $b \in A \setminus \{0\}$. Hence [0, b] and [0, b) are quasi-hyperideals of (A, \oplus, \cdot) for every $b \in A \setminus \{0\}$.

For the converse, let Q be a nonzero quasi-hyperideal of (A, \oplus, \cdot) . Since $Q \subseteq A \subseteq [0, 1]$, sup Q exists in \mathbb{R} , say b.

Case 1: $b \in Q$. Then $Q \subseteq [0, b]$. But $b \oplus b = [0, b] \subseteq Q$, so Q = [0, b].

Case 2: $b \notin Q$. Then $Q \subseteq [0, b)$. Let $c \in [0, b)$. Then c < b. But $b = \sup Q$, so there exists $d \in Q$ such that c < d < b. Then $c \in [0, d] = d \oplus d \subseteq Q$. Hence Q = [0, b).

Proposition 2.16. Let (A, \oplus, \cdot) be a hyperring where $A = [a, \infty) \cup \{0\}$ or $(a, \infty) \cup \{0\}$, $a \ge 1$ and

$$x \oplus 0 = 0 \oplus x = \{x\}$$
 for all $x \in A$,
$$x \oplus x = [x, \infty) \cup \{0\}$$
 for all $x \in A \setminus \{0\}$ and
$$x \oplus y = \{\min\{x, y\}\}$$
 for all $x, y \in A \setminus \{0\}$ with $x \neq y$.

Then

$$\{\{0\}\} \cup \{[b,\infty) \cup \{0\} \mid b \in A \setminus \{0\}\} \cup \{(b,\infty) \cup \{0\} \mid b \in A \setminus \{0\}\}\$$

is the set of all quasi-hyperideals of (A, \oplus, \cdot) .

Proof. Clearly, $\{0\}, [b, \infty) \cup \{0\}$ and $(b, \infty) \cup \{0\}$ are subhyperrings of A for all $b \in A \setminus \{0\}$. Since $a \ge 1$, we have $A[b, \infty) \subseteq ([1, \infty) \cup \{0\}) [b, \infty) = [b, \infty) \cup \{0\}$ and $A(b, \infty) \subseteq ([1, \infty) \cup \{0\}) (b, \infty) = (b, \infty) \cup \{0\}$ for all $b \in A \setminus \{0\}$. We also have $A\{0\} = \{0\}$. Hence $\{0\}, [b, \infty) \cup \{0\}$ and $(b, \infty) \cup \{0\}$ are quasi-hyperideals of (A, \oplus, \cdot) for all $b \in A \setminus \{0\}$.

For the reverse inclusion, let Q be a nonzero quasi-hyperideal of (A, \oplus, \cdot) . Then $0 \in Q$. Since $Q \subseteq A \subseteq [1, \infty) \cup \{0\}$, inf $(Q \setminus \{0\})$ exists in \mathbb{R} , say b.

Case 1: $b \in Q$. Then $Q \subseteq [b, \infty) \cup \{0\}$. But $b \oplus b = [b, \infty) \cup \{0\} \subseteq Q$, so $Q = [b, \infty) \cup \{0\}$.

Case 2: $b \notin Q$. Then $Q \subseteq (b, \infty) \cup \{0\}$. Let $c \in (b, \infty)$. Then b < c. But $b = \inf(Q \setminus \{0\})$, so there exists $d \in Q \setminus \{0\}$ such that b < d < c. Thus $c \in [d, \infty) \subseteq [d, \infty) \cup \{0\} = d \oplus d \subseteq Q$. Hence $Q = (b, \infty) \cup \{0\}$.

Proposition 2.17. Let (A, \oplus, \cdot) be a hyperring where A = [-a, a] or (-a, a), $0 < a \le 1$ and

$$x \oplus x = \{x\}$$
 for all $x \in A$,
$$x \oplus y = y \oplus x = \{x\}$$
 for all $x, y \in A$ with $|y| < |x|$ and
$$x \oplus (-x) = \lceil -|x|, |x| \rceil$$
 for all $x \in A$.

Then

$$\{[-b,b] \mid b \in A \text{ and } b \ge 0\} \cup \{(-b,b) \mid b \in A \text{ and } b > 0\}$$

is the set of all quasi-hyperideals of (A, \oplus, \cdot) .

Proof. Clearly, [-b, b] and (-b, b) are subhyperrings of (A, \oplus, \cdot) for every $b \in A$ such that b > 0. Since $0 < a \le 1$, we have $A[-b, b] \subseteq [-1, 1][-b, b] = [-b, b]$

and $A(-b,b) \subseteq [-1,1](-b,b) = (-b,b)$ for every $b \in A$ with b > 0. We also have $A\{0\} = \{0\}$. Hence $\{0\}, [-b,b]$ and (-b,b) are quasi-hyperideals of (A, \oplus, \cdot) for all $b \in A$ with b > 0.

Conversely, let Q be a nonzero quasi-hyperideal of (A, \oplus, \cdot) . Since $Q \subseteq A \subseteq [-1, 1]$, sup Q exists in \mathbb{R} , say b. Since for every $x \in A$, -x is the inverse of x in (A, \oplus) and Q is a canonical subhypergroup of (A, \oplus) , we deduce that

for
$$x \in A$$
, $x \in Q \Leftrightarrow -x \in Q$. (1)

From (1), we have

$$b > 0, b \in Q \Rightarrow Q \subseteq [-b, b] \text{ and } b \notin Q \Rightarrow Q \subseteq (-b, b).$$
 (2)

Case 1: $b \in Q$. From (1) and (2), $-b \in Q$ and $Q \subseteq [-b, b]$, respectively. But $b \oplus (-b) = [-b, b]$, so we have $[-b, b] \subseteq Q$. Hence Q = [-b, b].

Case 2: $b \notin Q$. By (2), $Q \subseteq (-b, b)$. Let $c \in (-b, b)$. Then there exists $x \in Q$ such that |c| < x < b since $b = \sup Q$. Thus $-x \in Q$ and $c \in [-x, x] = x \oplus (-x) \subseteq Q$. Hence we have Q = (-b, b).

The following theorem shows that there are noncommutative hyperrings which are not division hyperrings and its quasi-hyperideals are also determined later.

Theorem 2.18. Let $(A, +, \cdot)$ be a ring. Define a relation ρ on (A, \cdot) by

$$x \rho y \Leftrightarrow y = x \text{ or } y = -x \text{ for all } x, y \in A.$$

Then ρ is a congruence on (A, \cdot) . Define a hyperoperation \oplus on A/ρ by

$$x\rho \oplus y\rho = \{(x+y)\rho, (x-y)\rho\} \quad \textit{for all } x,y \in A.$$

Then $(A/\rho, \oplus, \circ)$ is a hyperring where \circ is the usual multiplication on A/ρ .

Proof. Clearly, ρ is an equivalence relation on A. First, we shall show that $(A/\rho, \oplus)$ is a canonical hypergroup. By [1], page 11, we have that $(A/\rho, \oplus)$ is a hypergroup. Since (A, +) is an abelian group, $(A/\rho, \oplus)$ is commutative. Let $x, y \in A$. Then we have

$$0\rho \oplus x\rho = \{x\rho, (-x)\rho\} = \{x\rho\},$$

$$0\rho \in \{(2x)\rho, 0\rho\} = \{(x+x)\rho, (x-x)\rho\} = x\rho \oplus x\rho.$$

Assume that $0\rho \in x\rho \oplus y\rho$. But $x\rho \oplus y\rho = \{(x+y)\rho, (x-y)\rho\}$, thus $0\rho = (x+y)\rho$ or $0\rho = (x-y)\rho$. This implies that

$$0 = x + y$$
, $0 = -(x + y)$, $0 = x - y$ or $0 = -(x - y)$.

and hence y = x or y = -x which yields $y\rho = x\rho$. These prove that 0ρ is the scalar identity of $(A/\rho, \oplus)$ and for every $x \in A, x\rho$ is the unique inverse of $x\rho$.

To show that $(A/\rho, \oplus)$ is reversible, let $x, y, z \in A$ be such that $x\rho \in y\rho \oplus z\rho$. Then $x\rho \in \{(y+z)\rho, (y-z)\rho\}$, so we have $x \in \{y+z, -(y+z), y-z, -(y-z)\}$. Consequently, $y \in \{x-z, -(x+z), x+z, -(x-z)\}$. Since $a\rho = (-a)\rho$ for all $a \in A$, we obtain

$$y\rho \in \{(x-z)\rho, (-(x+z))\rho, (x+z)\rho, (-(x-z))\rho\}$$
$$= \{(x-z)\rho, (x+z)\rho\} = x\rho \oplus z\rho.$$

If $x, y, z \in A$ are such that $x \rho y$, then x = y or x = -y which implies that (i) zx = zy or zx = -zy and (ii) xz = yz or xz = -yz, $zx \rho zy$ and $xz \rho yz$. Thus ρ is a congruence on (A, \cdot) .

Since 0 is the zero of (A, \cdot) , 0ρ is the zero of $(A/\rho, \circ)$ where \circ is the operation on the quotient semigroup of (A, \cdot) relative to ρ .

Finally, to show that \circ is distributive over \oplus , let $x, y, z \in A$. Then

$$(x\rho \oplus y\rho) \circ z\rho = \{(x+y)\rho, (x-y)\rho\} \circ z\rho$$

$$= \{(x+y)\rho \circ z\rho, (x-y)\rho \circ z\rho\}$$

$$= \{((x+y)z)\rho, ((x-y)z)\rho\}$$

$$= \{(xz+yz)\rho, (xz-yz)\rho\}$$

$$= (xz)\rho \oplus (yz)\rho$$

$$= (x\rho \circ z\rho) \oplus (y\rho \circ z\rho).$$

Hence $(A/\rho, \oplus, \circ)$ is a hyperring, as required.

Example 2.19. Let $n \in \mathbb{N}\setminus\{1\}$, A a ring with identity $1 \neq 0$ and $M_n(A)$ the ring of all $n \times n$ matrices over A with the usual addition and multiplication of matrices. Define the equivalence relation ρ on $M_n(A)$ by

$$C \ \rho \ D \Leftrightarrow C = D \ \text{or} \ C = -D.$$

By Proposition 2.18, $(M_n(A)/\rho, \oplus, \circ)$ is a hyperring where

$$C\rho \oplus D\rho = \{(C+D)\rho, (C-D)\rho\},$$

 $C\rho \circ D\rho = (CD)\rho \text{ for all } C, D \in M_n(A).$

Let $E, F \in M_n(A)$ be defined by

$$E = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \quad \text{and} \quad F = \begin{bmatrix} 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 0 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{bmatrix}.$$

Then $(E\rho) \circ (F\rho) = (EF)\rho = F\rho \neq [0]\rho = (FE)\rho = (F\rho) \circ (E\rho)$ where [0] denotes the zero matrix in $M_n(A)$. This shows that $(M_n(A)/\rho, \oplus, \circ)$ is neither a commutative hyperring nor a division hyperring.

Next, we consider a relation between quasi-ideals in any ring $(A, +, \cdot)$ and quasi-hyperideals in the hyperring $(A/\rho, \oplus, \circ)$ defined as above. We first prove the following lemma.

Lemma 2.20. Let $(A/\rho, \oplus, \circ)$ be the hyperring defined from a ring $(A, +, \cdot)$ as in Theorem 2.18. If S is a subring of $(A, +, \cdot)$, then $\{x\rho \mid x \in S\}$ is a subhyperring of the hyperring $(A/\rho, \oplus, \circ)$.

Proof. Recall that

$$x\rho = \{x, -x\},\$$

 $x\rho \oplus y\rho = \{(x+y)\rho, (x-y)\rho\},\$
 $x\rho \circ y\rho = (xy)\rho \text{ for all } x, y \in A.$

Let S be a subring of $(A, +, \cdot)$ and let $S' = \{x\rho \mid x \in S\}$. Since for $x, y \in S, x + y$ and x - y are in S, it follows that $x\rho \oplus y\rho = \{(x + y)\rho, (x - y)\rho\} \subseteq S'$. Also, $0\rho \in S'$ since $0 \in S$ and for every $x \in A$, $x\rho$ is the inverse of $x\rho$ in $(A/\rho, \oplus)$. By Proposition 1.20, S' is a canonical subhypergroup of $(A/\rho, \oplus)$. Since $xy \in S$ for all $x, y \in S$, we have $x\rho \circ y\rho = (xy)\rho \in S'$ for all $x, y \in S$.

This proves that S' is a subhyperring of $(A/\rho, \oplus, \circ)$, as desired.

Theorem 2.21. Let $(A/\rho, \oplus, \circ)$ be a hyperring in Theorem 2.18. For each quasiideal Q of A, let $Q' = \{x\rho \mid x \in Q\}$. Then the map $Q \mapsto Q'$ is a bijection from the set of all quasi-ideals in $(A, +, \cdot)$ onto the set of all quasi-hyperideals in $(A/\rho, \oplus, \circ)$.

Proof. Let Q be a quasi-ideal of A. We shall show that Q' is a quasi-hyperideal of A/ρ . By Lemma 2.20, Q' is a subhyperring of $(A/\rho, \oplus, \circ)$. To show that

 $<(A/\rho)\circ Q'>\cap < Q'\circ (A/\rho)>\subseteq Q',$ let $x\in A$ be such that $x\rho\in <(A/\rho)\circ Q'>\cap < Q'\circ (A/\rho)>.$ Then

$$x\rho \in (x_1\rho) \circ (q_1\rho) \oplus (x_2\rho) \circ (q_2\rho) \oplus \cdots \oplus (x_n\rho) \circ (q_n\rho)$$

and

$$x\rho \in (p_1\rho) \circ (y_1\rho) \oplus (p_2\rho) \circ (y_2\rho) \oplus \cdots \oplus (p_m\rho) \circ (y_m\rho)$$

for some $x_1, \ldots, x_n, y_1, \ldots, y_m \in A$ and $q_1, \ldots, q_n, p_1, \ldots, p_m \in Q$. Then we have

$$x\rho \in (x_1q_1)\rho \oplus (x_2q_2)\rho \oplus \cdots \oplus (x_nq_n)\rho$$

and

$$x\rho \in (p_1y_1)\rho \oplus (p_2y_2)\rho \oplus \cdots \oplus (p_my_m)\rho.$$

Hence

$$x\rho = (x_1'q_1 + x_2'q_2 + \dots + x_n'q_n)\rho = (p_1y_1' + p_2y_2' + \dots + p_my_m')\rho$$

for some $x_i' \in \{x_i, -x_i\}$ and $y_j' \in \{y_j, -y_j\}$ for $i \in \{1, 2, ..., n\}$ and $j \in \{1, 2, ..., m\}$. These imply that

$$x \in \{x'_1q_1 + x'_2q_2 + \dots + x'_nq_n, -(x'_1q_1 + x'_2q_2 + \dots + x'_nq_n)\} \cap$$

$$\{p_1y'_1 + p_2y'_2 + \dots + p_my'_m, -(p_1y'_1 + p_2y'_2 + \dots + p_my'_m)\}$$

$$= \{x'_1q_1 + x'_2q_2 + \dots + x'_nq_n, (-x'_1)q_1 + (-x'_2)q_2 + \dots + (-x'_n)q_n\} \cap$$

$$\{p_1y'_1 + p_2y'_2 + \dots + p_my'_m, p_1(-y'_1) + p_2(-y'_2) + \dots + p_m(-y'_m)\}$$

$$\subseteq \langle AQ \rangle \cap \langle QA \rangle \subseteq Q.$$

Hence $x\rho \in Q'$. This proves that Q' is a quasi-hyperideal of A/ρ .

Let Q_1 and Q_2 be quasi-ideals of $(A, +, \cdot)$ such that $Q_1' = Q_2'$. Then $\{x\rho \mid x \in Q_1\}$ = $\{x\rho \mid x \in Q_2\}$. To show that $Q_1 = Q_2$, let $a \in Q_1$. Then $a\rho \in Q_1' = Q_2'$, so $a\rho = b\rho$ for some $b \in Q_2$. Hence $a \in a\rho = b\rho = \{b, -b\} \subseteq Q_2$ since $(Q_2, +)$

is a subgroup of (A, +) and $b \in Q_2$. Therefore $Q_1 \subseteq Q_2$. We obtain $Q_2 \subseteq Q_1$ similarly. Hence $Q_1 = Q_2$. Therefore the given map is one-to-one.

To show that the map is onto, let P be a quasi-hyperideal of $(A/\rho, \oplus, \circ)$. Let $Q = \{x \in A \mid x\rho \in P\}$. If $x,y \in Q$, then $x\rho, y\rho \in P$ and hence $(x-y)\rho \in x\rho \oplus y\rho \subseteq P$ which implies $x-y \in Q$. Hence Q is a subgroup of (A,+). Next, let $x \in AQ > \cap AQ$. Then $x = x_1q_1 + x_2q_2 + \dots + x_nq_n = p_1y_1 + p_2y_2 + \dots + p_my_m$ for some $x_1, \dots, x_n, y_1, \dots, y_m \in A$ and $x_1, \dots, x_n, y_1, \dots, y_m \in Q$. Therefore $x_1, x_2, x_3 \in P$ for all $x \in \{1, 2, \dots, n\}$ and $x_1, x_2 \in Q$. Therefore

$$x\rho = (x_1q_1 + x_2q_2 + \dots + x_nq_n)\rho = (p_1y_1 + p_2y_2 + \dots + p_my_m)\rho$$

$$\in ((x_1q_1)\rho \oplus (x_2q_2)\rho \oplus \dots \oplus (x_nq_n)\rho) \cap$$

$$((p_1y_1)\rho \oplus (p_2y_2)\rho \oplus \dots \oplus (p_my_m)\rho)$$

$$= ((x_1\rho)\circ (q_1\rho) \oplus (x_2\rho)\circ (q_2\rho) \oplus \dots \oplus (x_n\rho)\circ (q_n\rho)) \cap$$

$$((p_1\rho)\circ (y_1\rho) \oplus (p_2\rho)\circ (y_2\rho) \oplus \dots \oplus (p_m\rho)\circ (y_m\rho))$$

$$\subseteq < (A/\rho)\circ P > \cap < P\circ (A/\rho) > \subseteq P$$

which implies that $x \in Q$. Hence Q is a quasi-ideal of A. Clearly, Q' = P.

Hence the theorem is proved.