CHAPTER II

GENERAL PROPERTIES AND EXAMPLES

In this chapter, we first generalize Proposition 1.3 — Proposition 1.7 of Chap-
ter I. After that all the quasi-hyperideals of the hyperrings in Example 1.23 — Ex-
ample 1.28 are characterized. Finally, an example of a noncommutative hyperring
which is not a division hyperring is provided. Moreover, all of its quasi-hyperideals
are investigated.

To generalize Proposition 1.3, the following three lemmas are required. The

first one is clearly true in semigroups.

Lemma 2.1. Let S be a semigroup with zero 0. Then S is a group with zero (that
is, S\{0} is a group under the operation of S) if and only if St = S = zS for all
z € S\{0}.

Lemma 2.2. If H, and H; are canonical subhypergroups of a hypergroup (H, o)

then H, o Hy is a canonical subhypergroup of H.

Proof. Let e be the scalar identity of (H,0). Then e € H, and e € H,, so
eceoeC HioH, Let z,y € HioH,. Thenz € a;oay and y € b; o by for some

ai,b, € Hy and ay, b, € H,. Since (H, o) is commutative, we have
zoy C (ajoay)o (byoby) = (ayoby)o(ayoby) C H, o H,.

Since z € a; o ay, by Proposition 1.19, 27! € a;' 0 a;' C H, o H,. Thus H, o H,

is a canonical subhypergroup of (H, o) by Proposition 1.20. O
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Lemma 23 Let (A,+,-) be a hyperring and X and Y nonempty subsets of A.

Then the following statements hold.

(i) ZX 1is a canonical subhypergroup of (A,+) containing X.

(i) < AX > and < XA > are a left hyperideal and a right hyperideal of A,
respectively.

(iii) < XAY > is a subhyperring of A.

(iv) ZX+ < AX > and ZX+ < XA > are respectively a left hyperideal and a

right hyperideal of A containing X .

Proof. (i) It is easy to see from the definition of ZX on page 11 that X C
k

ZX, ZX +ZX C ZX and 0 € ZX. Let a € ZX. Then a € Y nz; for
t1=1
some 7nq, .. nk € Z and z,,...,2, € X. By Proposition 1.19 and Proposition
k

1.22(7), —a € Z (niz;Y= Z(—ni)xi € ZX. By Proposition 1.20, (i) holds.

i=1
(ii) Clearly, < AX > 4+ < AX >C< AX >. By Proposition 1.22(9),

<< AX >< AX >>=< AXAX >,50 < AX >< AX >C< AXAX >=
< (AXA)X >C< AX >. Since {0} = 0X €< AX >,0 €< AX >. Next, let
be< AX >. Then b € Zaixi for some ay,...;a, € A,21,...,2, € X. By

i=1
Proposition 1.19 and Proposition 1.22(3), we have

—-be Zn: —(a;x;) = zn:(—ai)a:,- €< AX > .
i=1 i=1

By Proposition 1.20, (< AX >,+) is a canonical subhypergroup of (4, +). We
also have (< AX >,-) is a subsemigroup of (4,-). Hence < AX > is a subhy-
perring of (A, +,). Since A < AX >C< A < AX >>C< AAX >C< AX > by
Proposition 1.22(9), < AX > is a left hyperideal of (4, +, ).

Similarly, < XA > is a right hyperideal of (A, +, ).

(iii) We have (< X AY >, ) is a subsemigroup of (4, -) since < XAY >< XAY

C< XAYXAY >=< X(AYXA)Y >C< XAY > by Proposition 1.22(9). Since
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0 € A, we have 0 €< XAY >. Since any element of < XAY > is a member of
a set of the form inaiyi where z; € X,y; € Y and a; € A, we can conclude
that < XAY > + < XAY >C< XAY >. Next, let b €< XAY >. Then

n
b e ina,—yi for some z; € X,a; € A,y €Y and n € N. By Proposition 1.19
i=1

and Proposition 1.22(3),

-be —(z;ia;y;) = in(—ai)y,- C< XAY > .

=1 i=1

By Proposition 1.20, (< XAY >, +) is a canonical subhypergroup of (4,+).
Hence < XAY > is a subhyperring of A.

(iv) Since 0 €< AX >and 0 €< XA >, X C ZX+ < AX > and X C
ZX+ < XA >. By (i), (ii) and Lemma 2.2, ZX+ < AX > and ZX+ < XA >

are canonical subhypergroups of (A, +). Since
A(ZX+ < AX >) C A(ZX) + A< AX >
CZ(AX)+ < AX > by Proposition 1.22(11) and (ii)
CZ<AX >+ < AX >
=< AX >+ < AX > by Proposition 1.29 and (ii)

=< AX > C ZX+< AX >
and

(ZX+ < XA>)AC (ZX)A+ < XA> A
CZ(XA)+ < XA> by Proposition 1.22(11) and (ii)
CZ<XA>+< XA o
=< XA>+ < XA> by Proposition 1.29 and (ii)
=<XA> C ZX+< XA >,

it follows that ZX+ < AX > and ZX+ < XA > are a left hyperideal and a right

hyperideal of A, respectively. O
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Let A be a hyperring. Then by Proposition 1.21, the intersection of a collection
of left [right] hyperideals of A is also a left [right] hyperideal of A.

For @ # X C A, let (X)[(X),] denote the intersection of all left [right]
hyperideals of A containing X. Therefore (X),[(X),] is the smallest left [right]
hyperideal of A containing X and it is called the left [right] hyperideal of A
generated by X. For a € A, let (a),[(a),] denote ({a})i[({a}),] and it is called the

principal left [right] hyperideal of A generated by a.

Lemma 2.4. For any nonempty subset X of a hyperring A,
(X =ZX+<AX > and (X),=ZX+<XA>.
In particular, for a € A,
(@)1 =Za+ Aa and. (a), = Za + aA.

Proof. From Lemma 2.3 (iv), (X); C ZX+ < AX >. Since (X); is a canon-
ical subhypergroup of (A,+) containing X, we have that ZX C (X);. Also
< AX >C< A(X), >C (X); because (X), is a left hyperideal of A containing X.
Hence ZX+ < AX >C (X);. Therefore we deduce that (X), = ZX+ < AX >.
We can show similarly that (X), = ZX+ < XA >. Since fora € 4, < Aa >= Aa

and < aA >= aA, it follows that the last two equalities hold. O

Theorem 2.5. If A is a hyperring such that A*> # {0}, then A has no proper

nonzero quasi-hyperideals if and only if A is a division hyperring.

Proof. Assume that A has no proper nonzero quasi-hyperideals. Let a € A\{0}.

Since (a); is a quasi-hyperideal of A containing a # 0, by the assumption, (a); = A.
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Moreover,

Aa C< A(a); > =< A(Za+ Aa) > by Lemma 2.4
C< A(Za) + AAa >

C< Z(Aa) + Aa > by.Proposition 1.22(11)

=< Aa + Aa > by Proposition 1.29 and Lemma 2.3(ii)
=< Aa > by Lemma 2.3(ii)
=.Ag,

so < A(a); >= Aa. Since A% # {0}, Ao =< A(a); >=< A2 ># {0}. Since Aa
is a quasi-hyperideal such that Aa # {0}, Aa = A. Similarly, we obtain that
aA = A. Then Aa = A = a4, so by Lemma 2.1, (A4\{0}, ) is a group. Hence A
is a division hyperring.

Conversely, assume that A is a division hyperring. Then (A\{0}, ) is a group,
so by Lemma 2.1, Aa = A = aA for all a € A\{0}. Let Q be a nonzero quasi-
hyperideal of A. Then there exists ¢ € @ such that q# 0. Thus Ag = A =qA
which implies that A = AgNgA C< AQ > N < QA >C Q. Hence Q = A.

Therefore A has no proper nonzero quasi-hyperideals. O
Proposition 1.3 becomes a corollary of Theorem 2.5.

Corollary 2.6. Let A be a ring such that A? # {0}. Then A is a division ring if

and only if A and {0} are the only quasi-ideals of A.

We also have the following facts in hyperrings.

Theorem 2.7. Let A be a hyperring. Then:
() The intersection of a set of quasi-hyperideals of A is a quasi-hyperideal of A.

(ii) The intersection of a set of bi-hyperideals of A is a bi-hyperideal of A.
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Proof. (i) Let {Qs | @ € A} be a set of quasi-hyperideals of A. By Proposi-
tion 1.21, (ﬂQa, +) is a canonical subhypergroup of (A4,+). Since each Q, is a

a€EA
quasi-hyperideal of A, we have that for every 3 € A,

<A([)Qa) >N < ([ Qa)A >C< AQs > N < QpA >C Qp.

a€cA a€cA

Consequently, < A(ﬂQa) >N < (ﬂ Qo)A >C ﬂ Q.. Hence ﬂQa is a
acl a€EA aEA a€cA
quasi-hyperideal of A.
(ii) First, we note that an arbitrary nonempty intersection of subsemigroups of

a semigroup S is a subsemigroup of S Let {B, | @ € A} be a set of bi-hyperideals

of A. From Proposition 1.21, (ﬂBa, +) is a canonical subhypergroup of (A4, +).
a€A
Then ﬂBa is a subhyperring of A. Since each B, is a bi-hyperideal of A, we

aEA
have that for every 8 € A,

< ([ Ba)A([}Ba) >C< BsAB; >C By,
a€A acA

It then follows that < ({7)Ba)A([)Ba) > € ()| Ba Hence (B, is a bi-

a€A a€cA a€A acA
hyperideal of A. O

Proposition 1.4 is immediately a consequence of the above theorem.

Corollary 2.8. Let A be a ring. Then:
(i) The intersection of a set of quasi-ideals of A s a quasi-ideal of A.

(ii) The intersection of a set of bi-ideals of A is a bi-ideal of A.

Let A be a hyperring. For Q # X C A, the quasi-hyperideal of A gener-
ated by X is the intersection of all quasi-hyperideals of A containing X which is
denoted by (X),. The bi-hyperideal of A generated by X C A with X # @& is
defined similarly and it is denoted by (X),. Then for X C A, (X)ql(X)y) is the

smallest quasi-hyperideal [bi-hyperideal] of A containing X. For a € A, let (a),
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denote ({a}), and it is called the principal quasi-hyperideal of A generated by a.
Since every quasi-hyperideal of A is a bi-hyperideal of 4, (X), C (X), for every

nonempty subset X of A.

Theorem 2.9. For a nonempty subset X ‘of a hyperring A,
(X)g=ZX + (< AX >N< XA>).
In particular, for a € A,
(a)g = Za+(AanaA).

Proof. First, we show that ZX 4+ (< AX > N < XA >) is a quasi-hyperideal
containing X. Since X C'ZX and 00€< AX >N < XA >, X C ZX + (<
AX >N < XA >). We know from Lemma 2.3 that ZX,< AX > and < XA >
are canonical subhypergroups of (4, +). By Proposition 1.21 and Lemma 2.2, we
have ZX + (< AX > N < XA >) is a canonical subhypergroup of (4, +). We

also have

SA(ZX+(<AX >N<XA>)) > C< A(ZX+ < AX >) >

C<A(ZX)+ A< AX >>
C<Z(AX)+ < AX >>

by Proposition 1.22(11) and Lemma 2.3(ii)
C<Z<AX > + < AX >>
C<<AX > + < AX >>

by Proposition 1.29 and Lemma 2.3(ii)
=<< AX >> by Proposition 1.22(9)

=< AX > by Proposition 1.22(9)
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and

<(ZX+ (< AX>N<XA>)A>C< (ZX+< XA>)A >
C<(ZX)A+ < XA>A>
C<Z(XA)+ < XA >>
CKZ<XA>+<XA>>
C<<XA>+<XA>>
=<< XA >>

=< XA >.
It then follows that

SAZX+(AX>N<KXA>)>N< (ZX+ (< AX >N< XA>)A>
C<AX >N< XA >

CZX+ (< AX >N< XA>).

Hence ZX + (< AX > N < XA >) is a quasi-hyperideal of A containing X. Then
(X),CZX + (< AX >N< XA>).

Since ((X)g, +) is a canonical subhypergroup of (4, +), ZX C (X),. We also
have < AX > N < XA >C< A(X), > N < (X),A >C (X), which implies
that ZX + (< AX >N < XA >) C (X),. Therefore (X), = ZX + (< AX >
Nn< XA>). O

Theorem 2.10. For a nonempty subset X of a hyperring A,
(X)y=ZX +ZX*+ < XAX > .

Proof. By Lemma 2.2 and Lemma 2.3 ((i) and (iii)), ZX + ZX?+ < XAX > is
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a canonical subhypergroup of (A, +). Since

(ZX+ZX*+ < XAX >)?
C(ZX)(ZX)+ (ZX)(ZX?) + (ZX) < XAX > +(ZX?)(ZX) + (ZX*)(ZX?)
+(ZX?) < XAX > + < XAX > (ZX)+ < XAX > (ZX?)
+ < XAX >< XAX > from Proposition 1.22(5)
CZX?’+ZX*+Z(X < XAX >)+ZX}+ ZX* + Z(X? < XAX >)
+Z(< XAX > X) + Z(< XAX > XH)+ << XAX >< XAX >>
from Proposition 1.22(11)
CZX*+ZX*+Z < X?AX > +ZX*+ZX*+Z < X’AX > +Z < XAX* >
+Z < XAX®>+ < (XAX)® > from Proposition 1.22(9)
CZX*+7Z < XAX > +7 < XAX > +Z < XAX > +Z < XAX >
+Z < XAX > +Z < XAX >+Z < XAX >+ < XAX >
C ZX*+ < XAX >  from Proposition 1.29 and Lemma 2.3(iii)

CZX+ZX*+ < XAX >,

we deduce that ZX + ZX?+ < XAX > is a subhyperring of A. It is clear that

< XAX > A< XAX >C< XAX >. Since

(ZX+ZX*+ < XAX >)A(ZX +ZX*+ < XAX >)
C(ZX+ZX’+ < XAX >)(ZAX +ZAX*+ A < XAX >)
from Proposition 1.22(11)
CZ(XAX)+ Z(X?AX) + Z(< XAX > (AX)) + Z(X AX?)

+ Z(X?AX?) + Z(< XAX > AX?)+ Z(XA < XAX >)
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+Z(X?A < XAX >)+ < XAX > A< XAX >
from Proposition 1.22((5) and (11))

CZ<XAX >47Z < XAX >+7Z < XAX > +Z < XAX >
+Z < XAX > +Z < XAX > +Z < XAX > +Z < XAX >
+ < XAX > from Proposition 1.22(9)

C< XAX > from Proposition 1.29 and Lemma 2.3(iii)

CZX+ZX*+ < XAX >

and X C ZX +ZX?*+ < XAX >, we conclude that ZX + ZX?+ < XAX > is a
bi-hyperideal of A containing X. Hence (X), € ZX + ZX?+ < XAX >.

Since (X), is a subhyperring of A containing X, it follows that ZX C (X),
and ZX? C (X). But (X), is a bi-hyp‘erideal of A containing X, so < XAX >C
< (X)pA(X)s >C (X)p. Consequently, ZX + ZX?+ < XAX >C (X),. Hence

the theorem is proved. O

Proposition 1.5 and Proposition 1.6 are special cases of Theorem 2.9 and The-

orem 2.10, respectively.

Corollary 2.11. For a nonempty subset X of a ring A,
(X)g=ZX + (AX N XA).

Corollary 2.12. For a nonempty subset X of a ring A,
(X)y=ZX +ZX*+ XAX.

Theorem 2.13. A hyperring A is a regular if and only if < QAQ >= Q for

every quasi-hyperideal () of A.

Proof. Assume that A is a regular hyperring and let Q) be a quasi-hyperideal of A.

Since A is regular, for every z € Q, z = zyz for some y € A. Thus z € QAQ
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for all z € Q, that is, Q C< QAQ >. Since @ C< QAQ >C< AQ > and Q C
< QAQ >C< QA >, we obtain that Q@ C< QAQ >C< AQ > N < QA >C Q.
Hence @Q =< QAQ >.

Conversely, assume that < QAQ >= Q for every quasi-hyperideal () of A. To
show that A is a regular hyperring, let a € A\{0}. Then (a); N (a), is a quasi-
hyperideal of A (see page 15). By the assumption, < ((a); N (a),;) A ((a); N (a);) >=
(a)iN(a),. Since a € (a)iN(a),, a €< ((a); N (a).) A((a)i N (a);) >C< (a)rA(a); >.

By Lemma 2.4, (a), = Za + aA and (a); = Za + Aa. Then
a €< (a);A(a); > =< (Za+ aA)A(Za + Aa) >
C< Z(aAa) + Z(aAa) + Z(aA?a + aA’a >
from Proposition 1.22(11)
C< aAa + aAa + aAa + aAa >
from Proposition 1.29 and Lemma 2.3(iii)

C< ada >= aAa
which implies that a is a regular element of A. O
Proposition 1.7 becomes a corollary of Theorem 2.13.

Corollary 2.14. A ring A is regular if and only if QAQ = Q for every quasi-ideal
Q of A.

Next, we shall determine all quasi-hyperideals of the hyperrings in Example
1.23 — Example 1.28. By Theorem 2.5, we obtain that all quasi-hyperideals of the
hyperrings in Example 1.23, Example 1.27 and Example 1.28 are the only {0} and
itself. The next three propositions determine all quasi-hyperideals (hyperideals)

of the hyperrings in Example 1.24, Example 1.25 and Example 1.26, respectively.
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Proposition 2.15. Let (A, ®,-) be a hyperring where A =[0,a] or [0,a), 0 < a
<1 and

{max{z,y}} ifz#v,
TDyY=

[0,z] . if o=y
Then

{[0,0] | b€ A}u{[0,0) | b e A\{0}}
is the set of all quasi-hyperideals of (A, ®, ).

Proof. Trivially, {0} is a quasi-hyperideal of (A4, @, -) and it is clear that for every
b € A\{0}, [0,b] and [0,b) are subhyperrings of (A4,®,-). Since 0 < a < 1, we
have A[0, b] C [0, 1][0, b] = [0, b] and A[0,b) C [0,1][0,b) = [0,b) for all b € A\{0}.
Hence [0, b] and [0, b) are quasi-hyperideals of (A4, ®, -) for every b € A\{0}.

For the converse, let @) be a nonzero quasi-hyperideal of (A, ®, ). Since ) C
A C[0,1], sup @ exists in R, say b.
Case 1: b€ Q. Then Q C [0,b]. But b b=1{0,b] C Q, so @ = [0, b].
Case 2: b ¢ Q. Then Q C [0,b). Let ¢ € [0,b). Then ¢ < b. But b = sup @,
so there exists d € @ such that ¢ < d < b. Then c € [0,d] =d® d C Q. Hence

Q =[0,b). O
Proposition 2.16. Let (A, ®, ) be a hyperring where A = [a,00)U{0} or (a,c0)U
{0},a >1 and

z®0=0@z={z} forallzeA,
r®z = [z,00)U{0} forallz € A\{0} and

z@®y = {min{z,y}} for all z,y € A\{0} with z #y.

Then

{{0}} U {[b,00) U {0} | b€ A\{0}} U{(b,00) U {0} | b € A\{0}}
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is the set of all quasi-hyperideals of (A, ®,-).

Proof. Clearly, {0}, [b,00) U {0} and (b,c0) U {0} are subhyperrings of A for all
b € A\{0}. Since a > 1, we have A[b,00) C ([1,00) U {0}) [b,00) = [b,00) U {0}
and A(b,00) C ([1,00) U {0}) (b,00) = (b,00) U {0} for all b € A\{0}. We also
have A{0} = {0}. Hence {0}, [b,00) U {0} and (b,00) U {0} are quasi-hyperideals
of (A, ®,-) for all b € A\{0}.

For the reverse inclusion, let @ be a nonzero quasi-hyperideal of (A, @, -). Then
0 € Q. Since Q C A C [1,00) U {0}, inf (Q\{0}) exists in R, say b.
Case 1: b € Q. Then Q € [b,00) U {0}. But b b = [b,00) U {0} C @Q, so
Q = [b,00) U {0}.
Case 2: b ¢ Q. Then Q C (b,o0) U{0}. Let ¢ € (b,00). Then b < c. But
b = inf (Q\{0}), so there exists d € @Q\{0} such that b < d < ¢. Thus ¢ €
[d,0) C [d,00) U {0} =d®d C Q. Hence Q = (b,00) U {0}. O

Proposition 2.17. Let (A, ®,) be a hyperring where A = [—a,a] or (—a,a),
0<a<1and
z®z = {z} for all z € A,
t®y=y®z={z} foralzyec A wthly|l <|z|and
z® (—z) = [—|z|,|z|] forallz € A.
Then
{[-b,b) |be Aandb>0}U{(-b,b) | b€ A and b > 0}
is the set of all quasi-hyperideals of (A, ®,-).

Proof. Clearly, [—b,b] and (—b,b) are subhyperrings of (A, ®,-) for every b € A

such that b > 0. Since 0 < a < 1, we have A[-b,b] C [-1,1][—b,b] = [-b,b]
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and A(—-b,b) C [—1,1](=b,b) = (=b,b) for every b € A with b > 0. We also have
A{0} = {0}. Hence {0},[-b,b] and (—b,b) are quasi-hyperideals of (A, ®, ) for
all b € A with b > 0.

Conversely, let @ be a nonzero quasi-hyperideal of (A4, ®,-). Since @ C A C
[—1,1], sup @ exists in R, say b. Since for every z € A, —z is the inverse of z in

(A,®) and @ is a canonical subhypergroup of (A, ®), we deduce that
for z€ A 2€Q & —x€Q. (1)
From (1), we have
b>0, be@=Q C[=bb] and b¢ Q= Q C (-b,b). (2)

Case 1: b € Q. From (1) and (2), =b € @ and @ C [-b,b], respectively. But

b® (—b) = [—b,b], so we have [—b,b] € Q. Hence @ = [—b, b].

Case 2: b ¢ Q. By (2), Q C (=b,b). Let ¢ € (=b,b). Then there exists z € @ such
that |c| <z < bsince b =sup Q. Thus —z € Q@ and c € [-z,z] =z & (—z) C Q.

Hence we have Q = (=b,b). O

The following theorem shows that there are noncommutative hyperrings which

are not division hyperrings and its quasi-hyperideals are also determined later.

Theorem 2.18. Let (A,+,-) be a ring. Define a relation p on (A,-) by
Tpy & y=zory=—z forallzxzy€A.
Then p is a congruence on (A,-). Define a hyperoperation & on A/p by

zp@yp={(z+y)p,(x —y)p} forallz,yc A

Then (A/p,®,0) is a hyperring where o is the usual multiplication on A/p.
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Proof. Clearly, p is an equivalence relation on A. First, we shall show that
(A/p,®) is a canonical hypergroup. By [1], page 11, we have that (A/p, ®) is
a hypergroup. Since (A, +) is an abelian group, (A/p, ®) is commutative. Let

z,y € A. Then we have

Op ® zp = {zp, (—2)p} = {zp},

Op € {(22)p,0p} = {(z + 2)p, (z — 2)p} = zp ® zp.

Assume that 0p € zp®yp. But zp@yp = {(z+y)p, (x —y)p}, thus 0p = (z+y)p

or 0p = (z — y)p. This implies that
0=2z+y, 0=—(z4y), 0=2—y or 0=—(z—y).

and hence y = z or vy = —z which yields yp = zp. These prove that 0p is the
scalar identity of (A/p, ®) and for every z € A, zp is the unique inverse of zp.
To show that (A/p, @) is reversible, let z,y, 2 € A be such that zp € yp @ zp.
Then zp € {(y+ 2)p, (y = 2)p}, so we have z € {y+ 2z, —(y+ 2),y — 2, —(y — 2) }.
Consequently, y € {z — z,—(z + 2),z + z,—(z — 2)}. Since ap = (—a)p for all

a € A, we obtain

yp € {(z = 2)p, (=(z + 2))p, (z + 2)p, (= (z — 2))p}

={(z — 2)p, (z + 2)p} = zp ® zp.

If z,y,2 € A are such that z p y, then z = y or £ = —y which implies that
(i) zz = 2y or 2z = —zy and (ii) zz = yz or zz = —yz, 2z p 2y and zz p yz.
Thus p is a congruence on (A4, -).

Since 0 is the zero of (A4, -), 0p is the zero of (A/p, o) where o is the operation

on the quotient semigroup of (A, ) relative to p.



32

Finally, to show that o is distributive over &, let z,y,z € A. Then

(zp®yp)ozp={(z +y)p, (z — y)p} o zp
= {(z+y)po2p,(z —y)po zp}
= {((z +v)2)p, ((z - v)2)p}
= {(zz + y2)p, (zz — y2)p}
= (z2)p @ (y2)p
= (zpozp) @ (yp o zp).

Hence (A/p, ®, o) is a hyperring, as required. a

Example 2.19. Let n € N\{1}, 4 a ring with identity 1 # 0 and M,(A) the
ring of all n X n matrices over A with the usual addition and multiplication of

matrices. Define the equivalence relation p on M, (A) by
CpD&C=DorC=-D.
By Proposition 2.18, (M,(A)/p, ®, o) is a hyperring where

Cp® Dp = {(C + D)p, (C — D)p},

CpoDp=(CD)p forall C,D € M,(A).

Let E, F € M,(A) be defined by

1 0 ... 0 0 ... 01

00 0 0 . 00
E = and F =

00 ... 0 0O ... 00

Then (Ep) o (Fp) = (EF)p = Fp # [0]p = (FE)p = (Fp) o (Ep) where (0]
denotes the zero matrix in M,(A). This shows that (M, (A)/p, ®, o) is neither a

commutative hyperring nor a division hyperring.
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Next, we consider a relation between quasi-ideals in any ring (A, +,-) and
quasi-hyperideals in the hyperring (A/p, ®,0) defined as above. We first prove

the following lemma.

Lemma 2.20. Let (A/p, ®,0) be the hypefrz'ng defined from a ring (A, +,-) as in
Theorem 2.18. If S is a subring of (A,+,"), then {zp | z € S} is a subhyperring

of the hyperring (A/p, ®, o).

Proof. Recall that

Tp = {IE, —II)},
zp® yp = {(z +y)p, (z —y)p},

zpoyp= (zy)p forall z,ye€ A

Let S be a subring of (A4, +, ) and let S' = {zp | z € S}. Since for z,y € S, z+y
and z — y are in S, it follows that zp ® yp = {(z + y)p, (z — y)p} C S'. Also,
0p € S’ since 0 € S and for every x € A, zp is the inverse of zp in (A/p, ®). By
Propositon 1.20, S’ is a canonical subhypergroup of (A/p,®). Since zy € S for
all z,y € S, we have zpoyp = (zy)p € S’ for all z,y € S.

This proves that S’ is a subhyperring of (A/p, ®, 0), as desired. d

Theorem 2.21. Let (A/p,®,0) be a hyperring in Theorem 2.18. For each quasi-
ideal Q of A, let Q' = {zp | * € Q}. Then the map Q — Q' is a bijection
from the set of all quasi-ideals in (A, +,-) onto the set of all quasi-hyperideals in

(A/p,®,0).

Proof. Let @ be a quasi-ideal of A. We shall show that @' is a quasi-hyperideal

of A/p. By Lemma 2.20, Q' is a subhyperring of (A4/p,®,0). To show that
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<(A/p)o@ >N<Qo(A/p) >C Q', let z € A be such that zp €< (A/p)o Q" >
N< @ o(A/p)>. Then

zp € (21p) © (110) ® (72p) © (g2p) ® - - ® (Twp) © (gnp)

and

zp € (p1p) © (1) ® (p2p) © (Y2p) @ - - - & (Pmp) © (Ymp)

for some z1,...,%n,Y1,...,Yym € A and qq,...,qn,P1,--.,Pm € Q. Then we have

TpE (.qul)p (&) ($2Q2)p B D (ann)p

and
zp € (My1)p @ (P22)p @ - -+ D (PmYm)p-

Hence

zp = (Tiq1 + Toqe + - -+ ZTgn)p = (D1Y] + P2V + +  + DY) P

for some z; € {z;, —x;} and yj € {y;, —y;} fori € {1,2,...,n}andj € {1,2,...,m}.

These imply that

€ {2+ 200+ +25qn, —(Tiq1 + Thg + -+ Thgn)} N
{py1 + poys + -+ + Pl —(P1Y1 + P2y + - 4 Pmy) }
= {711 + T5q2 + - - + Ty gn, (—2) @1 + (=25) @2 + -+ (—27,)gn} N
{Py1 + p2ya + -+ + P, P2 (Y1) +P2(=2) + - -+ + P (—Yr) }

C<AQR >N<QRA>CQ.

Hence zp € Q'. This proves that Q' is a quasi-hyperideal of A/p.
Let @ and @, be quasi-ideals of (A4, +, -) such that Q] = Q5. Then {zp|z € Q:}
={zp |z € Q}. Toshow that Q, = Q3, let a € Q;. Then ap € Q) = @},

so ap = bp for some b € Q,. Hence a € ap = bp = {b, —b} C Q, since (Q2,+)
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is a subgroup of (A,+) and b € Q,. Therefore @; C Q2. We obtain @ C Q;
similarly. Hence @; = Q). Therefore the given map is one-to-one.

To show that the map is onto, let P be a quasi-hyperideal of (A4/p, ®,0). Let
Q={zeAlzpe P} Ifz,y€ Q, then zp,yp € P and hence (z — y)p €
zp@®yp C P which implies z —y € Q. Hence @ is a subgroup of (4, +). Next, let
T €ESAQ >N <KQA>. Thenz = 211 +22q2+ - - +ZTnGn = D1Y1+P2Y2+ - +PmYm
for some z1,...,%Zn,Y1,...,Ym € A and q1,...,¢n,P1,--.,Pm € Q. Therefore

gip,pjp € Pforallie {1,2,...,n} and j € {1,2,...,m}, so

Tp = (T1q1 + T2Go + -+ TnGn)p = (P1V1 + D2Y2 + - - + Pmlm)P

€ ((2101)p & (2202)p @ -+ @ (Tnn)p) N

((

(P1y1)p @ (P2y2) p B +++ B (Pmym)P)

=l (910) @ (z2p) ©(g20) © -+ ® (Tnp) © (gnp)) N
((

T1p) 0
(p10) © (y19) ®(p2p) © (Y20) @ - - ® (Pmp) © (Ymp))

< (A/p)oP>N< Po(A/p) >C P

which implies that z € ). Hence @ is a quasi-ideal of A. Clearly, Q' = P

Hence the theorem is proved. O
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