CHAPTER 1

INTRODUCTION AND PRELIMINARIES

A congruence on a semigroup S is an equivalence relation p on S such that for
all z,y,z € S, = p y implies zz p yz and zz p zy. If p is a congruence on S, then
S/p is a semigroup under the multiplication defined by (zp)(yp) = (zy)p for all
z,y € S which is called the quotient semigroup of S relative to p.

Let N,Z and R denote respectively the set of natural numbers (positive inte-
gers), the set of integers and the set of real numbers.

For nonempty subsets X and Y of aring A, let ZX and XY denote respectively
the set of all finite sums of the form )" k;z; and the set of all finite sums of the
form Y z;y; where k; € Z,z; € X and y; € Y. If X consists of a single element z,
we write Zz and zY for ZX and XY, respectively. Similarly, if Y = {y}, we write
Xy for XY. A quasi-ideal of a ring A is a subring @ of A such that AQNQA C Q,
and by a bi-ideal of A we mean a subring B of A such that BAB C B. Then a
nonempty subset Q of (A, +) is a quasi-ideal of A if @ is a subgroup of (A4, +) and
AQNQA C Q. Every one-sided ideal of a ring A is clearly a quasi-ideal and every
quasi-ideal of A is a bi-ideal. The notion of quasi-ideal in rings was introduced
by O. Steinfeld [9] in 1953 while the notion of bi-ideal was introduced much later.
It was actually introduced by S. Lajos and F. Szdsz [6] in 1971. Note that if A is

commutative, then the quasi-ideals and the ideals of A coincide.

Example 1.1. Let F be a field, n € N and M, (F') the ring of all n X n matrices

over F under the usual addition and multiplication of matrices. For C € M,(F),



let C;; denote the entry of C in the i*" row and the j*" column. For k,/ €

{1,2,...,n}, let Q(F) consist of all matrices C' € M,(F) such that

Cij:() if 'L#k or ]%l

Then for k,1 € {1,2,...,n}, Q¥(F) is a subring of M,(F),
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which implies that M, (F)QF(F) N QF(F)M,(F) = Q(F), so Q¥ (F) is a quasi-
ideal of M,(F). Moreover, if n > 1, then for all k,l € {1,2,...,n}, Q¥(F) is

neither a left ideal nor a right ideal of M, (F).

Example 1.2. Let F be a field, n € Nyn > 4 and SU,(F') the ring of all strictly

upper triangular matrices over F' under the usual addition and multiplication of



matrices. Let
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Then B? = {0}, so B is a subring of SU,(F). Moreover, BSU,(F)B = {0} C B.

But
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€ (SU.(F)B N BSU,(F))\B,

so B is a bi-ideal but not a quasi-ideal of SU, (F).

Example 1.1 shows that quasi-ideals of rings are a generalization of one-sided

ideals. It is shown in Example 1.2 that bi-ideals of rings generalize quasi-ideals.
It is well-known in rings that if A is not a zero ring, then A is a division ring

if and only if A and {0} are only left [right] ideals of A. This is also true if “left

[right] ideals” is replaced by “quasi-ideals”.



Proposition 1.3. ([10], page 6). Let A be a ring such that A? # {0}. Then A is

a dwision ring if and only if A and {0} are the only quasi-ideals of A.

We also have

Proposition 1.4. ([10], page 10 and 12). Let A be a ring. Then:
(i) The intersection of a set of quasi-ideals of A is a quasi-ideal of A.

(ii) The intersection of a set of bi-ideals of A is a bi-ideal of A.

For a subset X of a ring A, let (X), and (X); denote the intersection of all quasi-
ideals of A containing X and the intersection of all bi-ideals of A containing X,
respectively. Then for X C A, (X), [(X)s] is the smallest quasi-ideal [bi-ideal] of
A containing X. Since every quasi-ideal of A is a bi-ideal, we have (X), C (X),

for every subset X of A.

Proposition 1.5. (H. J. Wilnert [12]). For a nonempty subset X of a ring A,

(X), = ZX + (AX N XA).

Proposition 1.6. (S. Lajos and F. Szdsz [6]). For a nonempty subset X of a
ring A,
(X)p=ZX +ZX*+ XAX.

A ring A is said to be a (Von Neumann) regular ring if for every r € A, r = zyx
for some y € A. These two facts are known.
Proposition 1.7. ([10], page 69). A ring A is regular if and only if QAQ = Q

for every quasi-ideal Q of A.

It is clearly seen that the intersection of a left ideal and a right ideal of a

ring A is a quasi-ideal. However, a quasi-ideal of A may not be obtained in this
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way. See [10], page 8, [7] and [3], for examples. A quasi-ideal () of A is said to
have the intersection property if Q@ = L N R for some left ideal L and right ideal
R of A, and we say that A has the intersection property of quasi-ideals if every
quasi-ideal of A has the intersection property. It is known that a ring with a
one-sided identity has the intersection property of quasi-ideals. This is a special

case of the following proposition.

Proposition 1.8. ([10], page 9) Let Q be a quasi-ideal of a ring A. If Q C AQ
or Q@ C QA, then
Q=(Q+AQ)N(Q+QA).

In this case, @Q has the intersection property (since @ + AQ and Q + QA are a

left ideal and a right ideal of A, respectively.)

H. J. Wilnert [12] and Z. Moucheng and etc. (7] characterized quasi-ideals in rings

having the intersection property as follows:

Proposition 1.9. (H. J. Wilnert [12]). Let @ be a quasi-ideal of a ring A. Then
the following statements are equivalent.

(1) @ has the intersection property.

(ii) (@+A4Q)N(Q+QA4)=Q.

(i) AQN(Q+QA) Q.

(iv) QAN(Q+AQ) C Q.

Proposition 1.10. (Z. Moucheng and etc. [7]). Let X be a nonempty subset of
a ring A. Then the following statements are equivalent.

(i) (X)q has the intersection property.

(ii) (ZX+AX)N(ZX + XA) = (X),.

(i) AXN(ZX + XA) C(X),-

(iv) XAN(ZX + AX) C (X),.



Z. Moucheng and etc. [7] also characterized rings having the intersection property

of quasi-ideals.

Proposition 1.11. (Z. Moucheng and etc. [7]). The following statements for a
ring A are equivalent.
(i) A has the intersection property of quasi-ideals.

(ii) For any finite nonempty subset X of A,
AXN(ZX +XA) CZX + (AXNXA) (= (X),)-

(iii) For any finite subset X = {z1,2,...,Zn} of A and a1, as,....a, € A, if

n
Z(aﬂ?i = kim,- & ;v,-ag) - 0,

=1

for some a; € A and k; € Z, then ) . a,x; € (X),.
t q

2=

K. M. Kapp gave a nice proof of the following result in [2].
Proposition 1.12. (K. M. Kapp [2]). Let B be a bi-ideal of a ring A. If every

element of B is reqular in A, then B is a quasi-ideal of A.

To be convenient, let us call a ring A a BQ-ring if the bi-ideals and the quasi-
ideals of A coincide, that is, every bi-ideal of A is a quasi-ideal. Then from

Proposition 1.12, we have

Proposition 1.13. Fvery regular ring is a BQ-ring.

The next proposition gives a necessary and sufficient condition of a ring to be a

BQ-ring.

Proposition 1.14. ([10], page 77). A ring A s a BQ-ring if and only if for every
finite subset X of A, (X), = (X),.



We call a nonzero quasi-ideal ) of a ring A a minimal quasi-ideal of A if @)
does not properly contain a nonzero quasi-ideal of A. The following fact is clearly

true.

Proposition 1.15. A nonzero quasi-ideal Q) of a ring A is a minimal quasi-ideal

of A if and only if (z), = Q for all z € Q\{0}.

A minimal left [right] ideal of a ring A is a nonzero left [right] ideal of A which does
not properly contain a nonzero left [right] ideal of A. There is a relation among

minimal quasi-ideals, minimal left ideals and minimal right ideals as follows:

Proposition 1.16. ([10], page 34). If L and R are a minimal left ideal and a
minimal right ideal of a ring A, respectively, then either LN R = {0} or LN R 1s

a minimal quasi-ideal of A.

Necessary conditions and a partial converse for a quasi-ideal of a ring A to be

minimal are as follows:

Proposition 1.17. ([10], pages 35 and 37). Let Q be a quasi-ideal of a ring A.

(1) If Q is a minimal quasi-ideal of A, then @ 1is either a zero ring or a division
subring of A. In the second case, Q = eAe = Ae N eA where e is the identity
of Q.

(ii) If @ is a division subring of A, then @ 1is a minimal quasi-ideal of A.

Recall that for an element z of a ring A, the principal left [right] ideal of A
generated by z is Zz + Az [Zz + xzA] which is denoted by (z), [(z),]. P. N.
Stewart [11] gave a necessary and sufficient condition for a quasi-ideal of a ring to

be minimal in terms of principal left ideals and principal right ideals as follows:
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Proposition 1.18. (P. N. Stewart [11]). A quasi-ideal @ of a ring A is a minimal

quasi-ideal of A if and only if for any two nonzero elements x,y in @,
()= (y): and (), = (y)-

Next, we shall give the definitions of Krasner hyperrings and their left [right]
hyperideals, quasi-hyperideals, bi-hyperideals, etc. accordingly as in rings.

For a set X, let P(X) denote the power set of X and let P*(X) = P(X)\{2}.

A hyperoperation on a nonempty set H is a mapping of H x H into P*(H). A
hypergroupoid is a system (H, o) consisting of a nonempty set H and a hyperop-
eration o on H.

Let (H,o) be a hypergroupoid. For nonempty subsets X,Y of H, let

X oW U(a:oy)

and let X oy = X o{y} and yo X = {y} o X for all y € H. An element e of H
is called an identity of (H,o) if ¢ € (zoe)N(eox) for all z € H. An element e
of H is called a scalar identity of (H,o)ifzoe=ecoz ={z} forallz € H. Ife
is a scalar identity of (H, o), then e is a unique identity of (H, o).

A hypergroupoid (H,o) is said to be commutative if z oy = y o 2 for all
z,y € H.

A semihypergroup is a hypergroupoid (H, o) such that (zoy)oz==z0 (yo2)
for all z,y,2 € H. A hypergroup is a semihypergroup (H, o) such that z o H =
Hox=Hforallz € H.

An element z in a semihypergroup (H, o) is said to be an inverse of an element
y in (H,o) if there exists an identity e of (H,o) such that e € (z oy) N (y o z),
that is, (z oy) N (y o z) contains at least one identity of (H, o).

A hypergroup (H, o) is called regular if every element of H has at least one

inverse in (H,o). A regular hypergroup (H,o) is said to be reversible if for



z,y,2 € H, z € yoz implies 2 € uoz and y € z o v for some inverse u of
y and some inverse v of z.

A canonical hypergroup is a commutative reversible hypegroup (H, o) such that
(H, o) has a scalar identity and every element of H has a unique inverse in (H, o).
Hence a hypergroup {H, o) is a canonical hypergroup if and only if

1. (H,o) is commutative,

2. (H,o) has a scalar identity,

3. every element z of H has a unique inverse z~! in (H, o) and

4. for z,y,z € H, z € yo z implies z €y~ lox.

For a nonempty subset X of H, let X ! denote the set {z~! | z € X} in the canon-
ical hypergroup (H,o). The following proposition shows an analogous property

between canonical hypergroups and abelian groups.

Proposition 1.19. ([1], page 98). If (H, o) is a canonical hypergroup and =, z,, . . .

T, € H, then (zy0z30 - rozy) L =arlozylo- oz L.

By a canonical subhypergroup of a canonical hypergroup (H,o) we mean a
subset H; which is a canonical hypergroup under the hyperoperation o of H

restricted to H,. By the definition of canonical hypergroups, we clearly have

Proposition 1.20. A nonempty subset H, of a canonical hypergroup (H, o) is a
canonical subhypergroup of (H,o) if and only if

1. zoy C Hy for all z,y € Hy,

2. e € H, where e is the scalar identity of (H,o) and

3. for everyz € H, z7! € H,.

Note that if H, satisfies 1.— 3. of Proposition 1.20, then for every z,y € Hj,

y€eoyCzoxtoy=zxo(ztoy) C zoH which implies that z o H, = H,
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for all z € H,. As a consequence of Proposition 1.20, the following proposition is

clearly obtained.

Proposition 1.21. The intersection of a collection of canonical subhypergroups

of a hypergroup (H,o) is a canonical subhg)pergroup of (H,o0).

By a Krasner hyperring we mean a system (A, +,-) where

1. (A,+) is a canonical hypergroup,

2. (A,") is a semigroup with zero 0 where 0 is the scalar identity of (A4, +) and
3.2-(y+2)=2z-y+z-zand (y+z)-z=y-z+z-zforallzy, z€ A
The hyperoperation + and the operation - of a hyperring (4, +,-) are called the
addition and the multiplication of A, respectively. We shall write A instead of
(A,+,-) when there is no danger of ambiguity. Hence every ring is a Krasner
hyperring. It can be seen later that there are many Krasner hyperrings which are

not rings. Hence Krasner hyperrings are a generalization of rings.

A Krasner hyperring (4,4, -) is said to be commutative if (A,-) is a commu-
tative semigroup. An element 1 € A is called an identity of (A, +,-) if 1 is the
identity of the semigroup (A4, ). A Krasner hyperring A is called a zero Krasner
hyperring if z -y =0 for all z,y € A.

Let (A,+,-) be a Krasner hyperring. The scalar identity of the canonical
hypergroup (A4, +) which is the zero of the semigroup (4, -) is called the zero of
(A,+,) and it is usually denoted by 0. For z,y € A, let —z denote the unique
inverse of = in the canonical hypergroup (A, +) which is called the additive inverse
of zin (A, +,-) and let zy and z — y denote z -y and = + (—y), respectively. Due
to the definition of a Krasner hyperring above, z- (y+2) and (y+2)-z in 3. mean
{z-t|t€y+z}and {t-z |t € y+z}, respectively. Moreover, for z,y, u,v € A, one

uses (z+y)-(u+v) to denote the set {s-¢t | s € z+y and t € u+v}. Because of these
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facts, we cannot use the notation XY in the similar meaning as in rings where X
and Y are nonempty subsets of a Krasner hyperring A. To distinguish between
the following two subsets of a Krasner hyperring A: {zy | z € X and y € Y} and
the union of all finite sums of the form ) z;y; where z; € X and y; € Y for all
nonempty subsets X,Y of A, we shall let XY and < XY > denote the first set

and the second one, respectively, that is,

XY ={zy|z€ X and y €Y},

< XY »= U (T1yr + Zoys + - + TnYn).

zieryiEY
neN

Due to our proofs in some theorems, we generally let < X;X,...X, > denote

@ . 2™ where z"

the union of all finite sum of the form Za:gl)a: ) € Xl,xﬁz) €

X, ... ,:1:2(-") € X, for any nonempty subsets X, Xo,..., X, of A where n € N.
Because of the given definition and the associative law of the multiplication, the

notation < X;X,...X, > is well-defined, not depending on parenthesis. For

n € Z and z € A, nx is defined as follows:

(

T4z 4+ -+ (n copies) if n > 0,

M=J{0} if n =0,

(—z) + (—z) +---+ (—z) (—n copies) ifn < 0.

\
For a nonempty subset X of A, let ZX denote the union of all finite sums of the
form )" n;z; where n; € Z and z; € X. Fora € A and @ # X C A, let Xa,aX

and Za denote X {a}, {a}X and Z{a}, respectively. Clearly, for a,b € A,
<Aa>={za|z€ A} =Aa, <aA>={az|z€ A} =aA,

< aAb>= {azb | z € A} = aAb.

From the notations defined above, we easily obtain the following proposition.
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Proposition 1.22. In a Krasner hyperring (A,+,-), the following statements

hold.
1. -0=0.
2. —(—z) =1z for allz € A.

(—z)y = —(zy) = z(—y) for all z,y € A (from [1], page 167).
(—z)(—y) = zy for all z,y € A.

(x+y)(z+v) Cazz+2v+yz+yv for all z,y,2z,v € A (from [1], page 167).

. Forz,y,z2€ A,z € y+ 2= —x € —y— z (from Proposition 1.19).

Forz € A andn € Z, —(nz) = (—=n)z = n(—z) (from (2) and Proposition
1.19).

Forz,y € A andn € Z, z(ny) = n(zy) = (nz)y (from (3)).

. For nonempty subsets X,Y, Z of A,

<< X >>=< X >,
< XHo=<<X XY >>;
<X <M >=<X¥XZ>HM< XY > 7 >,

< X>4+<X>=<X> if 0eX.

10. For nonempty subsets X, Y, Z,V of A, < X +Y >< Z+V >C< XZ > +

< XV>4+<YZ>4+<YV >.

11. For nonempty subsets X,Y of A, < X(ZY) >=7Z(XY) =< (ZX)Y >.

Some examples of Krasner hyperrings which are not rings are as follows:

Example 1.23. (Y. Punkla [8]). Define the hyperoperation @ on Zj as follows:

® 0 1 2
0 {0} {1} {2}

1 {1} {1} 24
2 {2} 2Zs {2}
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Then (Z3,®,-) is a Krasner hyperring where - is the usual multiplication on Zs.

Observe that 0 is its zero and 1 is the additive inverse of 2 in this hyperring.

Example 1.24. (Y. Kemprasit [3]). Let a € R be such that 0 < a < 1 and

A =[0,a] or [0,a). Define a hyperoperatioﬁ @ on A by

{max{z,y}} ifz#y,
Thy=
[0, z] iz =

Then (A, @, -) is a Krasner hyperring where - is the usual multiplication on A. In

this Krasner hyperring, 0 is the zero and the additive inverse of z € A is z itself.

Example 1.25. (Y. Kemprasit (3]). Let a € R be such that @ > 1 and A =

[a,00) U {0} or (a,oc) U {0}. Define a hyperoperation & on A by

zt®0=00z={z} forallze A,
@z = [r,00)U{0} forallze A\{0} and

2@y = {min {z,y}} forall z,y € A\{0} with z # y.

Then (A, ®,-) is a Krasner hyperring where - is the usual multiplication on A.
Note that in this Krasner hyperring, 0 is the zero and the additive inverse of z € A

is z itself.

Example 1.26. (Y. Kemprasit [3]). Let a € R be such that 0 < @ < 1 and

A = [—a,a] or (—a,a). Define a hyperoperation @ on A by

cdz={z} for all z € A,
t®y=y®z={z} forallz,ye A with |y| < |z| and

z® (—z) = [—|z|,|z|] forallz € A.
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Then (A,é, -) is a Krasner hyperring where - is the usual multiplication on A.
Note that in this Krasner hyperring, 0 is its zero and the additive inverse of z € A
I8 —i.

For a semigroup S, let S° be S if S has a zero and S contains more than
one element, otherwise, let S° be the semigroup S U {0} where 0 ¢ S with the

operation extended from S by defining 0 = 0z = 0 for all z € S U {0}.

Example 1.27. ([1], page 170 and Y. Punkla [8]). Let G be a group and define

a hyperoperation + on G° by

t+0=0+x={z} forallzeqG’
T +z =G Az} for all z € G and

z+y={zy} for all z,y € G with z # y.

It is given in [1], page 170, that if G is an abelian group, then (G +,-) is a
hyperfield where - is the operation on G°. A hyperfield is defined naturally to be a
Krasner hyperring (A, +, :) such that (A\{O}, ) is an abelian group. In fact, it was
proved by Y. Punkla [8] that (G° +,-) is a Krasner hyperring without assuming
the commutativity of the group G. In this case we also have that (G°, +,) is a
division hyperring. By a division hyperring we mean a Krasner hyperring (A, +, )
such that (A\{0},-) is a group. In this hyperring, 0 is the zero and the additive

inverse of z € G is z itself.

Example 1.28. ([1], page 170). Let (A, +,-) be a division ring and N a normal
subgroup of (A\{0},-). Set

Av={zN|ze€ A}
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Define a hyperoperation @ and an operation o on Ay by

sN®yN ={tN |texzN+yN },

xN oyN = zyN for all z,y € A.

Then (An, ®, o) is a Krasner hyperring in which ON(= {0}) is the zero, N is the
identity and the additive inverse of 2N is (—z) N where —z is the additive inverse
of z in the ring A. In fact, it is a division hyperring with (zN)~! = 27! N for all
z € A\{0}.

For a nonempty subset .S of a Krasner hyperring A = (A, +, ), one says that
S is a subhyperring of A if (S, +) is a canonical subhypergroup of (A4, +) and (S, -)

is a subsemigroup of (A,-). The following proposition is clearly obtained.
Proposition 1.29. If S is a subhyperring of a Krasner hyperring A, then ZS = S.

By a left [right] hyperideal of a Krasner hyperring A = (A, +,-) we mean a
subhyperring S of A such that AS C S [SA C S]. If S is both a left and a right
hyperideal of A, then it is called a (two-sided)hyperideal of A. A subhyperring Q
of A is called a quasi-hyperideal of A if < AQ >N < QA >C Q. Then a nonempty
subset @ of A is a quasi-hyperideal of A if () is a canonical subhypergroup of (4, +)
and < AQ > N < QA >C Q. By a bi-hyperideal of A we mean a subhyperring
B of A such that < BAB >C B. It then follows that a subhyperring B of A
is a bi-hyperideal of A if and only if BAB C B. We also have quasi-hyperideals
are a generalization of left hyperideals and right hyperideals and bi-hyperideals
generalize quasi-hyperideals (see Example 1.1 and Example 1.2). Especially, quasi-
hyperideals in Krasner hyperrings generalize quasi-ideals in rings. Note that if A
i1s commutative, then the quasi-hyperideals and the hyperideals of A coincide.
Similarly as in rings, an element a € A is said to be regular if @ = aza for some

z € A and we call A a regular hyperring if every element of A is regular.
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The intersection of a left hyperideal and a right hyperideal is clearly a quasi-
hyperideal. As mentioned on page 4, it follows that a quasi-hyperideal may not
be obtained in this way. A quasi-hyperideal of a Krasner hyperring A is said to
have the intersection property if it is an intersection of a left-hyperideal and a
right hyperideal of A and we say that A has the intersection property of quasi-
hyperideals if every quasi-hyperideal of A has the intersection property.

Let (A, +,-) be a Krasner hyperring. A nonzero left hyperideal L of A is said
to be minimal if L does not contain nonzero proper left hyperideals of A. A

minimal right [two-sided, quasi-] hyperideal of A is defined similarly.

In Chapter II, Proposition 1.3 to Proposition 1.7 are generalized to quasi-
hyperideals in Krasner hyperrings. All the qausi-hyperideals of the Krasner hyper-
rings in Example 1.23-Example 1.28 are also determined in this chapter. Observe
that the given examples of Krasner hyperrings are either commutative Krasner
hyperrings or division hyperrings. An example of a noncommutative Krasner
hyperring which is not a division hyperring is given in this chapter and its quasi-
hyperideals are also determined.

We generalize Proposition 1.8 - Proposition 1.11 to quasi-hyperideals in Kras-
ner hyperrings in Chapter III. Krasner hyperrings whose bi-hyperideals and quasi-
hyperideals coincide are studied in Chapter IV in order to generalize Proposi-
tion 1.12 — Proposition 1.14.

Finally, minimal quasi-hyperideals of Krasner hyperrings are studied in the
last chapter. Our purpose of this chapter is to provide some generalizations of
Proposition 1.15 — Proposition 1.18.

To be convenient, Krasner hyperrings are simply called hyperrings in the re-

mainder of this thesis.
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