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CHAPTER I
HYPERRINGS AND HYPERMODULES

The theory of hyperstructures (also called multialgebras) started with the
communication of F. Marty in 1934 at the 8" Congress of Scandinavian Math-
ematicians. Marty introduced the notion of hypergroups and since then many
researchers have worked on and developed this topic. The concept of hyperrings
was introduced by M. Krasner. Later, J. Mittas and D. Stratigopoulos, two stu-
dents of Krasner, earned their theses by studying the structure of hyperrings.
These details can be found in [15].

P. Corsini gathered the fundamental concepts in his book “Prolegomena of
hypergroup theory” and its applications in “Application of hyperstructure theory” .
The structure of hypermodules over hyperrings is defined analogously to that
of modules over rings. It has been known that there are many different types of
hyperrings, for examples, a Krasner hyperring, a feeble hyperring, a multiplicative
hyperring, a D-hyperring and a V-S-hyperring. As a result, it is not surprising
that a hypermodule over a hyperring can be defined in various ways. However, in
this research, we choose hyperrings and hypermodules such that all operations are
hyperoperations. These can be viewed as generalizations of Krasner hyperrings
and hypermodules over Krasner hyperrings, respectively. In fact, hypermodules
over hyperrings generalize modules over rings.

This chapter contains three sections. The first section introduces the basic
notations and examples of hyperstructures. The second section gives definitions
of hyperrings and hypermodules and provides with proofs of some elementary
properties. Moreover, hyperideals and subhypermodules are introduced and some
properties which will be used in this dissertation are investigated. The last sec-
tion discusses the differences between modules over rings and hypermodules over

hyperrings.



1.1 Preliminaries

In this section, we give some definitions of hyperstructures gathered by P. Corsini,
[9]. Many examples of hyperstructures are also given.

For a set H, let p(H) denote the power set of H, p*(H) = p(H) \ {&} and
|H| the cardinality of H.

Definition 1.1.1. [9] A hyperoperation on a nonempty set H is a mapping
of H x H into p*(H). A hypergroupoid is a system (H, o) consisting of a nonempty
set H and a hyperoperation o on H.

Let (H, o) be a hypergroupoid. For nonempty subsets X and Y of H, let

XoY=|J(oy)

rzeX
yey

and let X oy =Xo{y} and yo X = {y} o X for all y € H.
A hypergroupoid (H, o) is said to be commutative if

roy=yox forallz,ye H.
A semihypergroup is a hypergroupoid (H, o) such that
(xoy)oz=zo(yoz) forall x,y,z€ H.
A hypergroup is a semihypergroup (H, o) such that
roH=Hox=H forallxze H.

Definition 1.1.2. [9] Let (H, o) be a hypergroupoid.
An element e of H is called an identity of H if

r€(xoe)N(eox) forallx e H.
An element e of H is called a scalar identity of H if
roe=ceox={x} foralazeH.

In general, an identity of a hypergroupoid may not be unique. However, a
scalar identity is unique since if x and y are scalar identities of a hypergroupoid

(H,0), then {z} =z oy = {y}, so that z = y.



Definition 1.1.3. [9] Let (H, o) be a semihypergroup. An element x of H is said

to be an inverse of an element y of H if there exists an identity e of H such that
e € (zoy)N(youx),
that is, (z oy) N (y o x) contains at least one identity of H.
Example 1.1.4. [17] Let H be a nonempty set. Define
xoy=H forall x,y € H.
Then (H, o) is a commutative hypergroup with the following properties.

(i) Every element of H is an identity of H. Consequently, H has a scalar
identity if and only if [H| = 1.

(ii) All pairs of elements of H are inverses of each other.
This hypergroup (H, o) is usually called the total hypergroup.
Definition 1.1.5. [9] A hypergroup (H, o) is called a canonical hypergroup if
(i) (H,o) is commutative,
(ii) (H,o) has a scalar identity,
(iii) every element z of H has a unique inverse, denoted by z~!, in H, and

1

(iv) z € yo z implies z € y " oz for all z,y,z € H.

Note that if (H,o) is a canonical hypergroup, then z € y o z also implies

z€xoytforall z,y,z€ H.

Definition 1.1.6. [9] Let (H,o) be a canonical hypergroup. For a nonempty
subset X of H, let

Xt={a12zeX}
Proposition 1.1.7. [18] Let (H,o) be a canonical hypergroup. Then (=)' ==z

and (xoy)t =z loy™ forallx,y € H.



Proposition 1.1.8. Let (H,o) be a canonical hypergroup with the scalar iden-
tity 0. Then for all nonempty subsets A, B and C' of H, we have

(i) Ao B=DBo A,

(i) Ao{0} = A4,

(iii) (Ao B)oC = Ao (BoC), and
(iv) (Ao B)"' = Ao B\,

Proof. (i), (ii), (iii) are straightforward.

(iv) First, let x € (Ao B)~'. Then 27! € Ao B. There exist a € A and b € B
such that 7' €aob,sothat b€ atox ! =271 oa ! Then a=! € box. Thus
rebloatl=atob?!. Hencex e A'oB™ L

Conversely, let x € A=Y o B7'. Then 2 € aob for some a € A~ and b € B~!.
Thenb€atox,sothata ! €box ! Thusa ' €bloa!=a'tob ! Hence

r'eAoB ie,re (AoB)". O
We give some examples of canonical hypergroups.

Example 1.1.9. [18] Let H be a nonempty set of cardinality at least 2. Choose
an element in H and denote it by 0. Define a hyperoperation o on H by, for any

a,be H,
(

{a}, ifb=0,

{b}, if a =0,

aob =

H, ifa=b+#0,

\{a,b}, ifa#b, a#0andb+#0.
Then (H, o) is a canonical hypergroup with 0 as the scalar identity and a as the

inverse of a € H.

The next examples are examples of canonical hypergroups constructed from

real intervals. Let R be the set of real numbers.



Example 1.1.10. [18] Let a € R be such that 0 < a <1 and R = [0,a] or [0, a).

Define a hyperoperation @ on R by, for any xz,y € R,

{max{z,y}},  ifaz#y,

0, x], if z =y.

rPdy =

Then (R, ®) is a canonical hypergroup.

Example 1.1.11. [18] Let a € R be such that « > 1 and R = [a,00) U {0} or

(a,00) U {0}. Define a hyperoperation & on R by

r®0=00z={x} for all = € R,
r@x=[r,00)U{0} for all x € R~ {0} and
z®y = {min{z,y}} for all =,y € R~ {0} with = # y.

Then (R, ®) is a canonical hypergroup.

Example 1.1.12. [18] Let a € Rbesuch that 0 < a < 1and R = [—a, a] or (—a,a).

Define a hyperoperation & on R by

r®x={z} for all x € R,
z @ (—x) = [—|z|, |z]] for all x € R and
r@y=ydx={z} for all x € R with |y| < |z|.

Then (R, ®) is a canonical hypergroup.

Definition 1.1.13. [9] Let (H, o) be a canonical hypergroup. A nonempty subset
H' of H is called a canonical subhypergroup of (H, o) if

(i) xoy C H for all z,y € H,
(ii) e € H" where e is the scalar identity of H and
(iii) «~' € H' for every x € H'.

Remark 1.1.14. [18] Let H' be a canonical subhypergroup of a canonical hyper-
group (H,o). It is easy to see that (H', o) is a canonical hypergroup such that the
scalar identity of H is the scalar identity of H' and the inverse of x in H' is the

same as the inverse of x in H for each x € H'.



The following proposition gives a practical method for verifying whether a

nonempty subset of a given canonical hypergroup is a canonical subhypergroup.

Proposition 1.1.15. [18] Let (H, o) be a canonical hypergroup and H' a nonempty
subset of H. Then H' is a canonical subhypergroup of (H, o) if and only if xoy™! C
H' for all x,y € H'.

In group theory, if A C BUC, then A C B or A C C for all subgroups A, B

and C of the same group. We extend this result to canonical hypergroups.

Proposition 1.1.16. Let (H, o) be a canonical hypergroup and A, B and C' canon-
ical subhypergroups of H. If AC BUC, then AC B or ACC.

Proof. Assume that A C BUC. Suppose that A € B and A ¢ C. There exist
ce€ ANBand b e A~ C. By assumption, b € B and ¢ € C. Since b,c € A,
bocCA. Letx €boc. Thenx € AC BUC,sox € Borxz e C. If x € B, then
ce€xzlobC B, a contradiction. If z € C, then b € z7! o ¢ C C, a contradiction.
Hence AC Bor ACC. O

For a canonical hypergroup (H, o), we define na, where n is an integer and

a € H, by

ia}o{a}o---o{a}, it n >0,
n_ copies
na = \{ail}o{cfl}m--o{cfl}j if n <0,
—n copies
{0}, if n =0,

\

where 0 is the scalar identity of H.

1.2 Hyperrings and Hypermodules

First, we introduce hyperrings and hypermodules in which both operations are

hyperoperations.

Definition 1.2.1. A hyperring is a structure (R, +, ®) that satisfies the following

peroperties:



(i) (R,+) is a canonical hypergroup with scalar identity 0.
(ii) (R, ®) is a semihypergroup.

(iii) For all a,b,c € R,
a®(b+c)Cab+taccand (b+c¢)®albOa+cOa.

(iv) Foralla,be R, a ® (=b) = (—a) ©b= —(a ®b).

Note that —r is the inverse of 7 in (R, +) for any r € R. If equality holds for both
subset relations in (iii), the hyperring is called strongly distributive. A hyperring
is commutative if a © b =0b® a for all a,b € R. For convenience, we abbreviate a

hyperring (R, +,®) by a hyperring R and a ©® b by ab for all a,b € R.

Definition 1.2.2. Let R be a hyperring. An R-hypermodule is a structure
(M, +,0) such that (M,+) is a canonical hypergroup and o is a multivalued
scalar operation, i.e., a function R x M — ©*(M) such that for all a,b € R and

x,y e M,
(i) ao(x+y) Caocx+aoy,
(ii) (a+b)ox Caox+bouw,
(iii) (ab)ox =ao (box), and

(iv) ao(—x) = (—a) oz = —(a o x) where —a and —z are the inverses of a and

x, respectively, and —(aoz) ={—y |y € aox}.

If equality holds in (i), the R-hypermodule is said to be strongly distributive on the
right. Similarly, if equality holds in (ii), the R-hypermodule is said to be strongly
distributive on the left. Moreover, if equality holds in both (i) and (ii), then the
R-hypermodule is said to be strongly distributive. For convenience, we abbreviate
an R-hypermodule (M, +,0) by an R-hypermodule M and a o m by am for all

a€ Rand me M.

It is easy to see that every hyperring R is an R-hypermodule.



This definition generalizes modules over rings. Moreover, it is a generalization
of hypermodules over Krasner hyperrings.

To avoid any confusion about the meanings of AB and AX for any nonempty
subsets A and B of a hypering R and a nonempty subset X of an R-hypermodule
M, we define the following notations.

For nonempty subsets A and B of a hyperring R and a nonempty subset X of
an R-hypermodule M,

AB = U{azbz | a; € A,bz S B}

[AB] :U{zn:aibi |a; € Ab; eB,neN}

i=1

AX:U{CLZZZ l a; EA,Ii GX}

[AX] —U{iaixi la; € A, x; GX,nEN}.

i=1
In particular, let aB = {a}B, Ab = A{b}, Az = A{x} and aX = {a}X for all
a,be Rand x € M.
Next, we give some basic properties by extending the properties in the def-
inition of hypermodules from the element point of view to the subset point of

view.

Proposition 1.2.3. Let M be an R-hypermodule. Then for nonempty subsets A
and B of R and X and'Y of M,

(i) A(X+Y)CAX + AY,
(ii) (A+B)X C AX + BX,
(i) (AB)X = A(BX), and
(iv) A(—=X) = (-A4)X = —(4X).
Proof. These are straightforward. O]

Proposition 1.2.4. Let M be an R-hypermodule. Then for nonempty subsets A
and B of R and X and Y of M,



() if X,Y C X +Y, then [A(X +Y)] = [AX] + [AY], and
(ii) if A, B C A+ B, then [(A+ B)X] = [AX] + [BX].

Proof. (i) Assume that X, Y C X + Y. Let m € [A(X +Y)]. There exist n € N,
a; € Aand l; € X +Y such that m € > | a;l;. For each i € {1,2,...,n}, there
exist ; € X and y; € Y such that [; € x; + y;. Then

meY ali ©Y airi+y:) €Y awi+ Y ay; C [AX] +[AY].
i=1 i=1 i=1 i=1
For the reverse inclusion, since X,Y C X +Y,
[AX]+[AY] CJAX +Y)|+[AX+Y)] C[AX +Y)).

Therefore [A(X +Y)] = [AX] + [AY].
(ii) The proof is similar to (i). O

Since a hyperring R can be considered as an R-hypermodule, we obtain the

following corollaries.

Corollary 1.2.5. Let R be a hyperring. Then for all nonempty subsets A, B and
C of R, we have

(i) (=A4)B = A(-B) = =(4B),
(i) A(B+C) C AB+ AC, and
(iii) (A+ B)C C AC + BC.

Corollary 1.2.6. Let R be a hyperring. Then for all nonempty subsets A, B and
C of R, we have

(i) if B,C C B+ C, then [A(B+ C)] = [AB] + [AC], and
(i) if A, B C A+ B, then [(A+ B)C] = [AC] + [BC].

Let M be an R-hypermodule. From the above notations, Rx and [Rz] may
not be equal for any x € M. We give a condition which guarantees that equality

holds in the next proposition.
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Proposition 1.2.7. Let (M, +,0) be a strongly distributive R-hypermodule. Then
for every a € R, x € M, subhypergroup P of (R,+) and subhypergroup N of
(M,+), we have Pz = [Pz]| and aN = [aN].

Proof. 1t is obvious that Px C [Pz]. Let m € [Pz]. Then m € > " | r;x where
r; € P for all 7. Thus

m € (rz) + (rox) + (r3x) + -+ - 4 (rpx) = (11 + ro)x + (r3x) + -+ - + (r,x).

Then there exists I; € r1 + 1o C P such that m € (liz) + (rsz) + -+ + (rpz) =
(I4 + r3)x + -+ + (rpx). Continuing this process, we eventually obtain m €
(ln—2 + 7,)x C Pz. Hence [Px] C Px.

Consequently, Px = [Px]. Similarly, aN = [aN]. O

Corollary 1.2.8. Let (R, +,-) be a strongly distributive hyperring. Then for every
a € R and subhypergroup P of (R,+), Pa = [Pa] and aP = [aP].

The remainder of this section is divided into 3 subsections: hyperideals, sub-

hypermodules and examples of hyperrings and hypermodules.

1.2.1 Hyperideals

In this subsection, we give a definition and some properties of hyperideals.

Definition 1.2.9. Let R be a hyperring. A nonempty subset [ of R is called a
subhyperring of R if I is a hyperring under the same hyperoperations. A subhy-

perring is a hyperideal of R if ra C I and ar C [ for all r € R and a € [.
The immediate result is the following.

Proposition 1.2.10. Let I be a subhyperring of R. Then I is a hyperideal of R
if and only if [RI| C I and [IR] C I.

Proof. This is obvious. O

The next result follows from Proposition 1.1.15.
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Proposition 1.2.11. Let I be a nonempty subset of a hyperring R. Then I is a
hyperideal of R if and only if for every a,b € I andr € R, a—bC I, ra C I and

ar C I.
Proof. This proof is clear. m

The next proposition shows two ways to create new hyperideals from two

hyperideals.

Proposition 1.2.12. Let R be a hyperring and I, J hyperideals of R . Then
I+ J and [1J] are hyperideals of R.

Proof. First, we show that [ + .J is a hyperideal of R. Let z,y € I + J. Then x €
a;+by and y € ag+ by for some ay, a9 € [ and by, by € J. Thenz—y = x4+ (—y) C
(a14b1)+(=(az+b2)) = ar+bi+(—az2)+(—b2) = (a1+(—a2))+(b1+(=b2)) C I+J.
Let r € R. Then rx C r(ay 4+ b1) € ra; +rby € I+ J. Similarly, zr C I + J.
Hence I + J is a hyperideal of R.

Next, we show that [I.J] is a hyperideal of R. Let z,y € [[J]. Then = €
Soraibjand y € YO ¢;d; where a;.¢; € I and bj,d; € J for all ¢ and j. Then

x—1y C iaibi + <— i Cidi> - iaibi + ( 3 _(Cidi>>
i1 i=1 i=1 i=1

= abi+ (Z(—q)di) C [1J].

; i=1

Let » € R. Then rz C T(Z?:l aibi) C Y rlaby) = >0 (rag)b; € >0 Ib;.
Let I € ro. Then ! € > . | p;ib; for some p; € I. Hence [ € [I.J] so that rx C [IJ].
Similarly, r C [IJ]. Hence [I.J] is a hyperideal of R. O

Definition 1.2.13. An element e of a hyperring (R, +, -) is called an identity of R

ifrcernreforall r € R.

In ring theory, it is well known that an ideal which contains an identity is the

whole ring. The following proposition shows that this is also true in hyperrings.

Proposition 1.2.14. Let (R,+,-) be a hyperring with an identity e and I a
hyperideal of R. If e € I, then I = R.
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Proof. Assume that e € I. Let r € R. Then r € er C I. Hence r € I. O]
Next, we introduce the hyperideal generated by a subset of a hyperring.

Proposition 1.2.15. Let A be a nonempty subset of a hyperring R. Then [RA]+
[AR] + [RAR] + [ZA] is a hyperideal of R where [ZA] = {37 n;a; | m € N,n; €
Z,a; € A}

Proof. For any b,c € [RA] + [AR] + [RAR] + [ZA], it follows that

b—cCb+(—c)
C [RA] + [AR] + [RAR] + [ZA] + (=]|RA]) + (—[AR]) + (—[RAR]) + (—[ZA))
C [RA] + [AR] + [RAR] + [ZA] + [(=R)A] + [A(—R)] + [(—R)AR] + [(—Z) A]
C [RA] + [AR] + [RAR] + [ZA] + [RA] + [AR] + [RAR] + [ZA]
C [RA] + [AR] + [RAR) + [Z.A].

In particular, 0 € b—b C [RA] + [AR] + [RAR] + [ZA] for some b € [RA]+ [AR] +
[RAR] + [ZA]. Let r € R. Then

rb C r([RA] + [AR] + [RAR)| + [ZA]) C (r[RA] + r[AR] + r[RAR] + r[ZA)])

N

([(rR)A] + [(rA)R] + [(rR)AR] + [Z(rA)])

N

[RA] + [RAR]

N

[RA] + [RAR] + 0
C [RA] + [AR] + [RAR] + [ZA].

Similarly, br C [RA] + [AR] + [RAR] + [ZA]. Thus [RA] + [AR] + [RAR] + [ZA]
is a hyperideal of R. O

Definition 1.2.16. Let A be a nonempty subset of a hyperring R. Define (A)
to be the smallest hyperideal of R containing A. The hyperideal (A) is called the

hyperideal generated by A.

Proposition 1.2.17. Let I\ be a hyperideal of a hyperring R for all A € A.
Then (Nyea In is a hyperideal of R. Moreover, for any nonempty subsets A of R,
(A) = (I | I is a hyperideal of R containing A} which is a hyperideal of R.
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Proof. We know that 0 € (., Ix. Let a,b € (),c, Ix and r € R. Then a,b € I,
for all A € A. Since I, is a hyperideal of R, a — b C I, and ra,ar C I, for all
A€ A. Hence a — b,ra,ar C (), In. Thus (N, 1) is a hyperideal of R.

Let A = {I | I is a hyperideal of R containing A}. It follows that [].A is a
hyperideal of R containing A. Then (A) C [).A. Since (A) is a hyperideal of R
containing A, (A) € A. Hence [).A C (A). Therefore (A) =) A. O

Next, we give an explicit form of (A) for all nonempty subsets A of R.

Proposition 1.2.18. Let A be a nonempty subset of a hyperring R. Then
(Ay = [RA] + [AR] + [RAR] + [ZA].

Proof. Note that a € 0+ a for every a € A. Since [RA] + [AR] + [RAR] + [ZA] is
a hyperideal of R, clearly, 0 € [RA] + [AR] + [RAR] + [ZA]. Hence

a € 0+a C ([RA|+[AR] + [RAR) + [ZA)) + [ZA] C [RA]+ [AR] + [RAR] + [ZA].

Therefore A C [RA]+ [AR|+[RAR]+[ZA], so (A) C [RA|+[AR]+[RAR|+[ZA].

Next, since A C (A), we have [RA] C [R(A)] C (A4), [AR] C [(A)R] C (4),
[RAR] C [R(A)R] C (A) and [ZA] C (A). Thus [RA]4+[AR]+[RAR]+[ZA] C (A).
Hence (A) = [RA] + [AR] + [RAR)| + [ZA]. O

Corollary 1.2.19. Let A be a nonempty subset of a hyperring R.
(i) If A C RA, then (A) = [RA] + [RAR].
(ii) If A C AR, then (A) = [AR] + [RAR].
(iii) If A C RAR, then (A) = [RAR).
(iv) If R is commutative, then (A) = [RA] + [ZA].
(v) If R is commutative and A C RA, then (A) = [RA].
Corollary 1.2.20. Let A be a nonempty subset of a hyperring R.

(i) If a € Ra for all a € A, then (A) = [RA] + [RAR].
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(i) If a € aR for all a € A, then (A) = [AR] + [RAR].
(iii) If a € RaR for all a € A, then (A) = [RAR).
(iv) If R is commutative and for every a € R , a € Ra, then (A) = [RA].

Let (R,+,-) be a hyperring and P a hyperideal of R. We can construct a
hyperring by defining the relation p on R by

apb if and only if a+ P =b+ P for all a,b € R.

It is obvious that p is an equivalence relation. We denote the collection of all
equivalence classes by R/P. Note that R/P = {[a], | a € R} where [a], is the

equivalence class containing a.

Lemma 1.2.21. Let p be the equivalence relation defined as above. Then [a], =

a+ P for all a € R. Moreover, R/P ={a+ P |a € R}.

Proof. Fixa € R. Let x € [a],. Thenz € v+ P = a+ P. Next, let x € a4+ P. We
show that v+ P = a+P. Since x € a+ P, we obtain that xt+P C a+P+P C a+P
and there exists p € P such that z € a + p. Hence a € © + (—p) € x + P. Thus
a+P Cx+ P+ P Cx+ P. Therefore z + P = a + P. We can conclude that

x € [al,. O

As a consequence of Lemma 1.2.21, we can conclude that a € b+ P if and only

ifa+P=b+ P forall a,b € R.

Proposition 1.2.22. Let (R, +, ") be a hyperring and P a hyperideal of R. Define
@®:R/Px R/P— p*(R/P) by

(a+P)®(b+P)={zx+P|xe€a+b} forallabeR.
Then (R/P,®) is a canonical hypergroup.

Proof. First, we show that @ is well-defined. Let a; + P =ao, + P and by + P =
by + P where ay,as,b1,by € R. Moreover, let A = {v+ P | v € a; + b} and
B={w+ P | w € ay + by}. To show that A = B, first let v € a; + b;. Then
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v E€a;+b C(ag+ P)+ (by+ P) = (az + by) + P. So there exists w € as + by
such that v € w+ P, i.e., v+ P =w+ P. Hence A C B. The proof of the reverse
inclusion is similar. Consequently, & is well-defined.

Next, we show that (R/P,®) is a hypergroup. Let aj,as,a3 € R. Then

(a1 + P)® (a2 + P)) ® (a3 + P) ={v+ P | v € a1 + az} ® (a3 + P)
= |J w+P)@(as+P)

vEal+az

= U {w+P|wev+as}

vEal+as

={w+ P |w € (a1 + az) + as}
={w+ P |w € a; + (a2 +a3)}

= U {w+P|wea +v}

vEas+as

= U @+P)o@w+P)

vEaz+asz

=(a+P)®{v+PlveEay+as}

= (a1 + P) @ ((a2 + P) ® (a3 + P)).

Thus @ is associative. In order to show that (a3 + P)® (R/P) = R/P, let a € R.
Since R is a hypergroup, R = a;+ R so that there exists b € R such that a € a;+b.
Then a+ P € (a1 +P)® (b+P) C (a1 + P) @ R/P.

Now, we prove that (R/P,@®) is canonical. It is clear that (R/P,®) is com-
mutative because (R, +) is commutative. We see that P is the scalar identity of
(R/P,®). To show that —a + P is an inverse of a + P for each a € R, let a € R.
Then (a + P) @& (—a+ P)={v+P|veEa+ (—a)}. Thus P € (a+P)B(—a+P).
Hence —a + P is an inverse of a + P. For the uniqueness of an inverse of a + P,
we let b € R be such that P € (a + P) @ (b+ P). There exists t € a+ b such that
t+P = P. Thent € Pandb € —a+t,s0b € (—a+t)+0 C (—a+t)+P = —a+P.
Hence b+ P = —a + P.

Finally, assume that a; + P € (a2 + P) @ (a3 + P) where ay, as, a3 € R. There
exists t € as +as such that a; +P =t+ P. Then ¢t € a; +wu for some v € P. Since

t € as + a3, we obtain that a3 € t —as C a3 + u — as = (a3 — az) + u. Then there
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exists s € a; — ao such that as € s +wu so that a3 € s+ P, ie., a3+ P = s+ P.

Hence as + P € (a1 + P) @ (—as + P) = (a1 + P) ® (—(az + P)). O

Proposition 1.2.23. Let (R, +,-) be a hyperring and P a hyperideal of R. Define
o:R/PxR/P— o*(R/P) by

(a+P)o(b+P)={x+P|xecab} forallabeR.
Then (R/P,®,0) is a hyperring. This hyperring is called a quotient hyperring.

Proof. First, we show that o is well-defined. Let a1+P = as+P and b+ P = by+P
where ay, as,b1,by € R. To show that A :={v+ P |veE ab} ={w+P|wEe
asho} := B, let v € ayby. Then v € a1b; C (as + P)(by + P) C (agzby) + P. So
there exists w € agby such that v € w + P, ie., v+ P = w+ P. Hence A C B.
The proof of the reverse inclusion is similar. Consequently, o is well-defined.

The proof of the associativity of o is essentially the same as the proof of the
associativity of @ in Proposition 1.2.22.

Moreover, we see that

(a1 + P)o ((az + P) ® (a3 +P)) = (a; + P)o{v+ P | v € as + a3}

= |J (@+P)o(v+P)

vEaz+asz

= U {w+ P |w € av}

vEas+as

={w+ P |w € aj(as + a3)}
C{w+P|weaas+ aaz}

= U {w+Plwes+1}

s€ayaz, l€aias

= U G+Pel+p

s€aiaz, l€ajas
={s+P|scaa}®{l+P|l€auas}

— (a1 + P) o (as + P)) & ((ay + P) o (a3 + P)).

ie., (a1 +P)o((ax+P)®(as+P)) C ((a1+P)o(az+P)) ® ((a1+ P)o(az+ P)).
Similarly, ((as+P)®(as+P))o(a1+P) C ((az+P)o(a1+P))d((az+P)o(ar+P)).
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Next, we show that (a; + P) o (—(az + P)) = —((a1 + P) o (az + P)) =
(—=(a1 + P)) o (as + P). First,

(a1 4+ P)o (—(az+ P)) = (a1 + P)o(—az+ P) ={v+ P |v € ar(—az)}
={v+ P |vE (—ay)az}
:(—a1+P)o(a2+P)

= (—=(a1 + P)) o (a2 + P),
ie., (a1 + P)o (—(az+ P)) = (—(a1 + P)) o (az + P). Moreover,

(a1 + P)o (—(az + P)) = (a1 + P) o (—aa+ P) = {v+ P | v € as(—a»)}
—{v+P|ve —(ama)}
—{—v+P|veaa)
= —{v+P|v€aa)

= —((a1 + P) o (as + P)).

i.e., (a1 —|—P) e} (—(a2+P)) = —((a1 +P) O (CLQ +P>)
Therefore (R/P, @, o) is a hyperring. O]

1.2.2 Subhypermodules

In this subsection, we give a definition of subhypermodules and some properties

that parallel the properties of hyperideals.

Definition 1.2.24. A nonempty subset N of an R-hypermodule M is called a
subhypermodule of M if N is an R-hypermodule under the same hyperoperations
on M.

By the same ideas as in the section on hyperideals, we obtain the following

propositions. So the proof are omitted.

Proposition 1.2.25. Let N be a nonempty subset of an R-hypermodule M. Then
N is a subhypermodule of M if and only if for everyx,y € N andr € R, x—y € N

and rx C N.
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Corollary 1.2.26. Let N be a canonical subhypergroup of an R-hypermodule M .
Then N is a subhypermodule of M if and only if [RN] C N.

The following are some ways to construct new subhypermodules from given

subhypermodules, hyperideals and elements in hyperrings and hypermodules.

Proposition 1.2.27. Let M be an R-hypermodule, I a hyperideal of R, N and K
subhypermodules of M, a € R and m € M. Then [aN], [Im], [IN], and N + K
are subhypermodules of M .

Proof. The proofs are routine. O]

Next, we introduce the subhypermodule generated by a subset of a hypermod-

ule.

Proposition 1.2.28. Let X be a nonempty subset of a hypermodule M. Then
[RX| + [ZX] is a subhypermodule of M.

Proof. Let b,c € [RX] + [ZX]. Then
b—cCb+(—c)
C [RX] + [2X] + (=[RX]) + (—[2X])
C [RX] + [2X] + [(-R)X] + [(-Z) X]
C [RX] + [ZX] + [RX] + [Z2X]
C [RX] + [ZX].

Hence b — ¢ C [RX| + [ZX]. Let r € R. Then

rb C r([RX] + [ZX]) C (r[RX] + r[ZX])

N

([(rR)X] + [Z(rX)])

N

[RX]
C [RX] + [ZX).

Thus [RX]| 4 [ZX] is a subhypermodule of M. O
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Definition 1.2.29. Let X be a nonempty subset of a hypermodule M. Define
(X) to be the smallest subhypermodule of M containing X. The subhypermodule
(X) is called the subhypermodule generated by X.

Proposition 1.2.30. Let Ny be a subhypermodule of a hypermodule M for all
A€ A Then (Nycp Na is a subhypermodule of M. Moreover, for all nonempty sub-
sets X of M, (X) = (\{N | N is a subhypermodule of M containing X} which
1s a subhypermodule of M.

Proof. We know that 0 € (., Nx. Let a,b € (oo Na and 7 € R. Since N,
is a subhypermodule of M, a — b C Ny and ra C N, for all A € A. Hence
a—b,ra C (yep Irn. Thus (), Ix is a subhypermodule of M.

Let N = {N | N is a subhypermodule of M containing X}. Then (N is a
subhypermodule of M containing X. Thus (X) C (N. Since (X) is a sub-
hypermodule of M containing X, (X) € N. Hence N C (X). Therefore
(X) =NWN. O

Next, we give an explicit form for (X) for all subsets X of M.

Proposition 1.2.31. Let X be a nonempty subset of an R-hypermodule M. Then
(X) =[RX]+ [ZX].

Proof. Note that for every z € X, x € 0+ z. Since [RX] + [ZX] is a subhyper-
module of M, 0 € [RX] + [ZX]. Hence

x € 0+x C ([RX] + [ZX]) + [ZX] C [RX] + [ZX].

Therefore X C [RX] + [ZX], so (X) C [RX] + [ZX]. Next, since X C (X), we
have [RX] C [R(X)] C (X) and [ZX] C (X). Thus [RX] + [ZX] C (X). Hence
(X) = [RX] + [2X]. O

Corollary 1.2.32. Let X be a nonempty subset of an R-hypermodule M such
that X C RX. Then (X) = [RX].

Corollary 1.2.33. Let X be a nonempty subset of an R-hypermodule M such
that x € Rx for all x € M. Then (X) = [RX].
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Proposition 1.2.34. Let N be a subhypermodule of an R-hypermodule M. Then

N =3 cnn.

Proof. The proof is straightforward. m

Similar to the way that we define a quotient hyperring, we can define a quotient
hypermodule. For an R-hypermodule M and a subhypermodule N of M, we can
define M/N = {x+ N |z € M} where z € y+ N if and only if x4+ N = y+ N for
all z,y € M in the same way that R/P is defined where P is a hyperideal of R.

We describe the details about quotient hypermodules in the next proposition.

Proposition 1.2.35. Let (M, +,:) be an R-hypermodule and N a subhypermodule
of M. Define & : M/N x M/N — o*(M/N) and o: R x M/N — o*(M/N) by

(x+N)@(y+N)={t+N|tex+y}

ro(x+N)={t+ N |terz}

for allm € R and x,y € M. Then (M/N,®,0) is an R-hypermodule. This

R-hypermodule s called a quotient hypermodule.

Proof. The proof is similar to the proof of Proposition 1.2.22 and Proposition
1.2.23 combined. O

Proposition 1.2.36. Let M be an R-hypermodule and N a subhypermodule of M.
Then every subhypermodule of M/N is in the form K/N, where K is a subhyper-

module of M containing in N.

Proof. Let W be a subhypermodule of M/N and K ={w e M |w+ N € W}. It
is clear that N C K and W = K/N. We show that K is a subhypermodule of M.
Let ky, ko € K and r € R. To show that ky —ky C K, let & € ky — ko = k1 + (—ka).
Then x + N € (ki + N) @ (ko + N) C W. Hence x € K so k; — ko C K. To
show that rk; C K, let x € rk;. Then x + N € ro (ky + N) C W. Hence z € K
so rky € K. Thus K is a subhypermodule of M. O
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1.2.3 Examples of Hyperrings and Hypermodules

For convenience, we gather our examples of hyperrings and hypermodules together

in this subsection. Before that, we recall the definition of a Krasner hyperring, [9].
Definition 1.2.37. [9] A system (R, ®,0) is called a Krasner hyperring if
(i) (R,®) is a canonical hypergroup,
(ii) (R, o) is a semigroup with zero 0 where 0 is the scalar identity of (R, ®) and
(iii) zo(y®z)=zoydrozand (ydz)ox=yox ®zox for all z,y,z € R.

Example 1.2.38. Let (A, +, ) be a Krasner hyperring and let H be a hyperideal
of A. Defineo: Ax A — p*(A) by aob=ab+ H for all a,b € A. Then (A, +,0)
is a strongly distributive hyperring.

To show that (A, +, o) is a strongly distributive hyperring, first note that since
(A, +,) is a Krasner hyperring, (A, +) is a canonical hypergroup. To show that
(A, +,0) is a hyperring, let a,b,c € A. Then

(aob)oc= U voc= U ve+ H=(ab+ H)c+ H

vEaoh veab+H
= (ab)c+ H
=a(bc) + H
=a(bc+ H)+ H

= U aw+ H

webc+H

=ao(boc).
Thus (aob)oc=ao (boc). Next,

(a+b)oc= U voc= U ve+ H=(a+bc+H

vEa+b vEa+b
= (ac+H) + (bc+H)

=(aoc)+ (boc).

In the same way, ao (b+¢) = (aob) + (aoc). Finally,
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(—a)ob=(—a)b+ H =a(-b)+ H=ao(—=b)=a(-b)+ H=—(ab) + H
—(ab+ H) = —(aob).

Hence (A, +,0) is a strongly distributive hyperring.

Example 1.2.39. Let (G, +) be a canonical hypergroup. Define o : G x G —
©*(G) by aob = (a,b), the subhypergroup of G generated by the set {a,b}, for
all a,b € G. Then (G, +,0) is a hyperring.

To show that (G,+,0) is a hyperring, first note that (X) = [ZX] for all
nonempty subsets X of G. Next, we show that (a,b,c) = U, p (v, c) for all
a,b,c € G. Let a,b,c € G. First, let x € (a,b,c). Then = € nja + nyb + nsc for
some ny,ng,n3 € Z. Then = € y + ngc for some y € nia + nydb C (a,b). Thus
r €y+mnzeC (y,¢) and y € (a,b). Hence z € (.5 (v, 0)-

Let z € U, c(op (v, ). Then z € (v,c) for some v € (a,b). Thus x € n1v + nac
and v € nga + n4b for some ny,n9,n3,n4 € Z. Hence x € njv + noc C ny(nga +
n4b) + nac = (ning)a + (n1ng)b + noc C (a, b, ).

This shows that (a,b,¢) = U,c(up (v: 0)-

Now, we prove that (G, +,0) is a hyperring. Let a,b,c € G. Then

(aob)oc = U voc = U (v,¢) = {(a,b,c) = U (a,w) U aow = ao(boc).

vEaob vE(a,b) we(b,c) weboc

Moreover, (a+b)oc = J,cqrp?°¢ = Upearn(v; €) € (a,c)+(b,c) = (aoc)+(boc).
We also obtain similarly that a o (b4 ¢) = (a0b) + (a o ¢). Finally,

(—a)ob=(—a,b) = (a,b) = (a,—b) = ao (=b) = (a,—b)
= (a,b) = —(a,b) = —(aob).

Hence (G, +,0) is a hyperring.
Example 1.2.40. Let R be a hyperring. Then R is an R-hypermodule.

Example 1.2.41. Let R be a Krasner hyperring, M an R-hypermodule and N
a subhypermodule of M. Define o : R x M — ©*(M) by aox = ax + N for all
a € Rand x € M. Then (M, +,0) is a strongly distributive hypermodule.
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1.3 Differences between Modules and Hypermodules

Besides the diferrence of operations and hyperoperation, there are some proper-
ties in modules over rings that may not hold in hypermodules. In the previous
subsection, we give a basic case study to show the differences between modules
and hypermodules.

First, {0} is always a submodule of any modules but not necessarily a subhy-

permodule of a hypermodule.

Example 1.3.1. Consider the hyperring R in Example 1.2.39 as an R-hypermodule
when R # {0}. We obtain that R is the only subhypermodule of R. Hence {0} is
not a subhypermodule of R.

We give a necessary and sufficient condition for {0} to be a subhypermodule.

Proposition 1.3.2. Let M be an R-hypermodule. Then {0} is a subhypermodule
of M if and only if there exist a hyperideal I of R and a subhypermodule N of M
such that IN = {0}.

Proof. First, assume that {0} is a subhypermodule of M. Choose I = R and
N ={0}. Then IN = {0}.

Conversely, assume that there exist a hyperideal I of R and a subhypermod-
ule N of M such that IN = {0}. It follows that [IN] = {0}. Thus {0} is a
subhypermodule of M since [IN] is a subhypermodule of M. O

Proposition 1.3.3. Let R be a hyperring. Then {0} is a hyperideal of R if and
only if there exist hyperideals I and J such that I.J = {0}.

Proof. This is similar to the proof of the previous proposition. O]
For nonempty subsets X and Y of an R-hypermodule, we define
(X:Y)={reR|rY C X}

As the following example shows, even if N is a subhypermodule of M, the set
(N : M) may be empty. However, if N is a submodule of a module M, then
(N : M) is nonempty.
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Example 1.3.4. Let (R,+) be an abelian group such that |R| > 2. Define
®: Rx R — p"(R) by a®b = {(a,b), the subgroup of R generated by the
set {a,b}, for all a,b € R. Then (R,+,®) is a hyperring. Consider R as an
R-hypermodule via the hypermodule action o : R x R — ©*(R) defined by

reom if m#0,

rom =

{0} if m=0,
for all 7;m € R. Then {0} is a subhypermodule of R and ({0} : R) = @.

The next proposition is about a property of (N : M) when (N : M) is not
empty.

Proposition 1.3.5. Let N be a subhypermodule of an R-hypermodule M. If
(N : M) is nonempty, then (N : M) is a hyperideal of R.

Proof. Let a,b € (N : M) and r € R. Then aM C N and bM C N. Tt follows
that (a —b)M C aM +bM C N+ N C N. Hence a—b € (N : M). Next, we
show that ra,ar € (N : M). Consider

raM =r(aM) CrN C N and arM = a(rM) C aM C N.

Thus ra,ar € (N : M) as desired. Therefore (N : M) is a hyperideal of R. O



CHAPTER I1
PRIME HYPERIDEALS AND
PRIME SUBHYPERMODULES

In this chapter, we introduce prime and weakly prime hyperideals and subhyper-
modules. Many properties are investigated. However, we emphasize ones related

to prime and weakly prime subhypermodules.

2.1 Prime Hyperideals and Prime Subhypermodules

The first section is seperated into two subsections, namely prime hyperideals and

prime subhypermodules.

2.1.1 Prime Hyperideals

In this subsection, we give a definition of prime hyperideals and determine some

characterizations of them.

Definition 2.1.1. Let R be a hyperring. A proper hyperideal P of R is called
prime if for all hyperideals I and J of R,

[[JJCP=I1CPorJCP.

Proposition 2.1.2. Let R be a hyperring and P a proper hyperideal of R. Then
P is a prime hyperideal if and only if IJ C P implies I C Por J C P for all
hyperideals I and J of R.

Proof. Assume that P is a prime hyperideal. Let I and J be hyperideals of R
such that IJ C P. Since P is a hyperideal and [I.J] is the hyperideal generated
by I.J, we see that [IJ] C P. Hence I C P or J C P.

The converse follows from the fact that I.J C [1.J]. O
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Next, we give examples of prime hyperideals.

Example 2.1.3. 1. Every prime ideal of a ring can be considered as a prime
hyperideal of a hyperring.

2. Let R =[0,1]. Then (R, ®max, ) is a Krasner hyperring (see [18]), where
Pmax 18 defined as in Example 1.1.10 and - is the usual multiplication on real
numbers. Furthermore, let K = [0,0.5]. Then K is a hyperideal of R. It follows
from Example 1.2.38 that (R, ®max, ©) is a hyperring. Choose P = [0,1). Thus P
is a prime hyperideal of R.

3. Let R = [1,00) U{0}. Then (R, ®puin, ) is a Krasner hyperring (see [18]),
where @, is defined as in Example 1.1.11 and - is the usual multiplication on
real numbers. Furthermore, let X' = [3,00) U {0}. Then K is a hyperideal
of R. Tt follows from Example 1.2.38 that (R, ®,,n,0) is a hyperring. Choose
P = (1,00) U{0}. Thus P is a prime hyperideal of R.

4. Let R = [—1,1]. Then (R, ®aps, ) is a Krasner hyperring (see [18]), where
Pans 18 defined as in Example 1.1.12 and - is the usual multiplication on real
numbers. Furthermore, let K = [=3,3] U {0}. Then K is a hyperideal of R. It
follows from Example 1.2.38 that (R, ®.ps, ©) is a hyperring. Choose P = (—1,1).
Thus P is a prime hyperideal of R.

Next, we characterize prime hyperideals under the condition that the hyperring

1s commutative.

Proposition 2.1.4. Let R be a commutative hyperring and P a proper hyperideal
of R. Then P 1is a prime hyperideal if and only if ab C P implies a € P or b € P
for all a,b € R,.

Proof. First, assume that P is prime. Let a,b € R be such that ab C P. Choose
I = {(a) and J = (b). Then I and J are hyperideals of R. We show that I.J C P.
Recall from Corollary 1.2.20 that

I = [Ra] + [Za] and J = [Rb] + [Z].

Since ab C P, P is a hyperideal and R is commutative, we have I.J C P. Hence
ICPorJCP. Thusa€ {(a) CPorbe (by CP.
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Conversely, assume that ab C P impliesa € P or b € P for all a,b € R. Let I
and J be hyperideals of R such that I.J C P. Suppose that I ¢ P. There exists
a € I~P. Letbe J. Then ab C IJ C P. By assumption, we have b € P.
Therefore J C P. O

Finally, we characterize prime hyperideals under the condition that a € Ra

foralla € Ror a € aR for all a € R.

Proposition 2.1.5. Let R be a hyperring such that a € Ra for all a € R and P
a proper hyperideal of R. Then P is a prime hyperideal if and only if aRb C P
implies a € Porbe P foralla,b e R.

Proof. First, assume that P is prime. Let a,b € R be such that aRb C P. Then
I = (a) and J = (b) are hyperideals of R. We show that [J C P. Note that by
Corollary 1.2.20

I = [Ra] + [RaR] and J = [Rb] + [RbR).

Since aRb C P and P is a hyperideal, IJ C P. Hence I C P or J C P. Thus
a€{a) CPorbe (b CP.

Conversely, assume that aRb C P implies a € P or b € P for all a,b € R. Let
I and J be hyperideals of R such that I.J C P. Suppose that I ¢ P. There exists
a€l~P. Let be J. Then Rb C .J. Hence aRb C IJ C P. By assumption, we
have b € P. Therefore J C P. O

Proposition 2.1.6. Let R be a hyperring such that a € aR for all a € R and P
a proper hyperideal of R. Then P is a prime hyperideal if and only if aRb C P
implies a € Porbe P fora,be R.

Proof. The proof is similar to that of the previous proposition. O

2.1.2 Prime Subhypermodules

We first give a defintion of prime subhypermodules.
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Definition 2.1.7. Let R be a hyperring and M an R-hypermodule. A proper
subhypermodule N of M is said to be prime if for every hyperideal I of R and
every subhypermodule D of M,

[ID)]CN=1C(N:M)orDCN.

Next, we give some characterizations of prime subhypermodules via three dif-

fernt conditions. Our first characterization resembles Proposition 2.1.2.

Proposition 2.1.8. Let R be a hyperring, M an R-hypermodule and N a proper
subhypermodule of M. Then N is a prime subhypermodule if and only if ID C N
implies I C (N : M) or D C N for all hyperideals I of R and all subhypermod-
ules D of M.

Proof. This proof is similar to the proof of Proposition 2.1.2. n

Example 2.1.9. 1. Every prime submodule of a module can be considered as a
prime subhypermodule of a hypermodule.

2. Every prime hyperideal P of a hyperring R is a subhypermodule of the
R-hypermodule R.

3. Every proper subhypermodules N of M such that (N : M) = R is always
a prime subhypermodule. For example, let R = [0,1) and M = [0,1]. Then
[R, ®max; } and [M, ®pax, O] are Krasner hyperring and hypermodules over Kras-
ner hyperring R, respectively, (see [18]), where @ is defined as in Example
1.1.10 and - is the usual multiplication on real numbers and o : R x M — M
is defined by rom = r-m for all m € M. Let N = [0,1) which is a proper
subhypermodule of M. Then (N : M) ={re€ R|rM C N} = R. Thus N is a
prime subhypermodule of M.

For the second characterization, we consider the condition that the hyperring

1s commutative.

Proposition 2.1.10. Let R be a commutative hyperring, M an R-hypermodule
and N a proper subhypermodule of M. Then N is a prime subhypermodule if and
only if am C N implies a € (N : M) or m € N for alla € R and m € M.
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Proof. Assume first that N is a prime subhypermodule of M. Let a € R and
m € M be such that am C N. Then [ = (a) and D = (m) are a hyperideal of R
and a subhypermodule of M, respectively. We claim that ID C N. As a result

of the commutativity of R,
I = [Ra] + [Za] and D = [Rm] + [Zm)].

Since am C N, N is a subhypermodule and R is commutative, we have ID C N.
Hence I C (N :M)or DCN. Thusa € (a) C (N : M) orme (m) C N.
Conversely, assume that am C N impliesa € (N : M) orm € N foralla € R
and m € M. Let [ and D be a hyperideal of R and a subhypermodule of M,
respectively, such that /D C N. Suppose that D ¢ N. There exists m € D~ N.
Since ID C N, it follows that am C N, so by assumption, a € (N : M) for all
a€l. ThusI C (N :M). O

For the third characterization, we are interested in the condition a € aR for

all a € R.

Proposition 2.1.11. Let M be an R-hypermodule, N a proper subhypermodule
of M and assume that a € aR for everya € R. Then N is a prime subhypermodule
if and only if aRm C N impliesa € (N : M) or m € N for alla € R andm € M.

Proof. Assume that IV is a prime subhypermodule. Let a € R and m € M be such
that aRm C N. Consider the hyperideal I = (a) of R and the subhypermodule
D = (m) of M. We show that ID C P. It follows from Corollary 1.2.20 and
Proposition 1.2.31 that

I = [aR] + [RaR] and D = [Rm] + [Zm)].

Since aRm C N, we have ID C N. Hence I C (N : M) or D C N. Thus
a€{a) C(N:M)orme (m)CN.

Assume for the converse that aRm C N implies a € (N : M) or m € N for all
a € Randm € M. Let I and D be a hyperideal of R and a subhypermodule of M,
respectively, such that 1D C N. Suppose that D Q N. There exists m € D~ N.
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To show that I C (N : M),leta € I. ThenaR C IR C I. ThusaRm C ID C N.
By assumption, a € (N : M). Hence I C (N : M). O

We can also obtain the same characterization under the condition m € Rm

for all m € M.

Proposition 2.1.12. Let M be an R-hypermodule, N a proper subhypermodule
of M and assume that m € Rm for every m € M. Then N is a prime subhyper-
module if and only if aRm C N implies a € (N : M) or m € N for alla € R and
m € M.

Proof. The proof is similar to that of the previous proposition. O
Next, we give some properties of prime subhypermodules.

Proposition 2.1.13. Let N be a subhypermodule of an R-hypermodule M such
that @ # (N : M) # R. If N is a prime subhypermodule of M, then (N : M) is
a prime hyperideal of R.

Proof. Proposition 1.3.5 guarantees that (N : M) is a hyperideal of R. Let [ and
J be hyperideals of R such that I.J C (N : M). Suppose that J & (N : M). Then
JM ¢ N, so that [JM] € N but I[JM] C [I[JM]] = [(IJ)M] C N. Since N
is a prime subhypermodule, I C (N : M). Thus (N : M) is a prime hyperideal
of R. []

Corollary 2.1.14. Let M be an R-hypermodule such that M = RM and N a
subhypermodule of M such that (N : M) # @&. If N is a prime subhypermodule of
M, then (N : M) is a prime hyperideal of R.

Proof. Assume that N is a prime subhypermodule of M. Then N # M. Suppose
that (N : M) = R. Then M = RM C N, a contradiction. Hence (N : M) # R.

The conclusion follows from Proposition 2.1.13. O

Definition 2.1.15. A simple hypermodule is a non-zero hypermodule which has

no subhypermodules besides the zero subhypermodule and itself.
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Lemma 2.1.16. Let N be a mazimal subhypermodule of an R-hypermodule M.
Then the quotient hypermodule M /N is simple.

Proof. The proof is straightforward. m

Example 2.1.17. 1. Consider the hyperring R in Example 1.2.39 as an R-
hypermodule where R # {0}. We obtain that R is the only subhypermodule
of R.

2. From Example 2.1.3, we can see that [0,1), (1,00) U {0} and (—1,1) are
maximal subhypermodules of [0, 1]-hypermodule [0, 1], [1, 00) U {0}]-hypermodule
[1,00)U{0} and [—1, 1]-hypermodule [—1, 1]. Hence [0, 1]/]0, 1), [1, c0)U{0}]/(1, 00)U
{0}] and [—1,1]/(—1,1) are simple by above lemma.

Proposition 2.1.18. Let N be a maximal subhypermodule of an R-hypermodule M .
Then N s a prime subhypermodule of M .

Proof. Let I and D be a hyperideal of R and a subhypermodule of M, respectively,
such that 7D C N. Suppose that D ¢ N. There exists m € D ~ N. Then
m+ N # N and I(m + N) = N. Since N is a maximal subhypermodule, M /N
is simple.

Let m be the element m + N of M/N. Then (m) = M/N (note that (m)
is the subhypermodule of M/N generates by m). We have I(M/N) = I(m) =
I([Rm] + [Zm)) C [IRm] + [[(Zm)] C [Im] + [Z(Im)] € N. This shows that
I(M/N) C {N}. We claim that IM C N. Suppose not. Then there exist a € [
and m € M such that am ¢ N. Thus there exists ¢t € am such that ¢t ¢ N. Hence
t+N # N. Since a € I and m € M, we obtain that a(m+N) C I(M/N) C {N},
ie, {{l+ N |l €am} C{N}, a contradiction. Thus IM C N, ie., I C (N :M).
Therefore N is a prime subhypermodule of M. O

The following property is another characterization of prime subhypermodules.

Proposition 2.1.19. Let N be a proper subhypermodule of an R-hypermodule M.
Then N is a prime subhypermodule if and only if (N : K) = (N : M) for every
subhypermodule K of M such that N C K C M.
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Proof. First, assume that N is prime and let K be a subhypermodule of M such
that N ¢ K C M. It is obvious that (N : M) C (N : K). Let r € (N : K).
Then rK C N. We show that (r)K C N. Note that (r)K = ([Rr] + [rR] +
[RrR] + [Zr])K C [RrK] + [rRK] + [RrRK] + [ZrK] C N. Since N is prime
and N C K, we obtain that (r) C (N : M). Hence r € (N : M). This shows
(N:K)=(N:M).

Conversely, assume that (N : K) = (N : M) for every subhypermodule K
of M such that N € K C M and let I and D be a hyperideal of R and a
subhypermodule of M, respectively, such that /D C N. Suppose D € N. Set
K=D+N. Then NCK C M and IK =I(D+ N)CID+IN C N. Thus
I C (N : K). By assumption, / C (N : M). Hence N is a prime subhypermodule
of M. O

In the rest of this section, we introduce homomorphisms of hypermodules and
give some properties of prime subhypermodules that are related to homomor-

phisms.

Definition 2.1.20. Let M and M’ be R-hypermodules. A function ¢ : M — M’

is called a (hypermodule) homomorphism if

¢z +y) =o(x)+¢(y) and o(rz) = ro(z)

forall r € Rand z,y € M.
We define the kernel and the image of ¢ , denoted by ker(¢) and im(¢), re-
spectively, by

ker(¢) = {m € M | (m) =0} and im(¢) = {é(m) | m € M}.

Proposition 2.1.21. Let M and M’ be R-hypermodules and ¢ : M — M’ a
homomorphism. If ¢(0) = 0, then ¢(—z) = —o(z) and ¢p(nx) = np(x) for all
re€M andn € Z.

Proof. Assume that ¢(0) = 0. Let x € M. Since 0 € = + (—x), it follows that
9(0) € ¢(z + (—z)) = ¢(x) + ¢(—x), so that 0 = ¢(0) € ¢(z) + ¢(—x). Hence
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¢(—z) = —¢(x). Moreover, to show that ¢(nz) = no(x) for all n € Z, let

n € Z. If n =0, then we are done. If n > 0, then ¢(nz) = p(z+ 2+ ---+2) =

n copies

o(z) +o(z) + - - + ¢(x) = ng(x). Assume that n < 0. Then

- i

n copies

b(nz) = ¢((~2) + (—a) + - + (~2)) = d(—a) + (~2) + - + 9(—2)

= (=¢(@) + (=6(2)) + - + (—¢(x)) = ne(x).
Hence ¢(nx) = no(z). -

From above, we see that the condition ¢(0) = 0 gives useful results. Thus

from now on, all homomorphisms satisfy the condition ¢(0) = 0.

Proposition 2.1.22. Let M and M’ be R-hypermodules and ¢ : M — M’ a

homomorphism.

(i) If N is a subhypermodule of M, then ¢(N) is a subhypermodule of M.

(ii) If N is a subhypermodule of M, then ¢='(N') is a subhypermodule of M.
Proof. The proof is easy. n

Lemma 2.1.23. Let M and M' be R-hypermodules and ¢ : M — M’ a homo-
morphism. Let N be a subhypermodule of M such that ker¢p C N. If x € M is
such that ¢(x) € ¢(N), then x € N.

Proof. Assume that « € M is such that ¢(x) € ¢(NN). Then ¢(z) = ¢(n) for some
n € N. Then 0 € ¢(z) — ¢p(n) = ¢(x —n). There exists p € x — n such that
¢(p) =0, ie., p € ker(¢p) C N. Since p € x —n, we have x € p+n C N. O

Proposition 2.1.24. Let M and M’ be R-hypermodules and ¢ : M — M’ a
surjective homomorphism. Let N be a prime subhypermodule of M such that

ker C N. Then ¢(N) is a prime subhypermodule of M'.



34

Proof. First, we show that ¢(IN) # M’. Suppose not. Since N is prime, there
exists m € M ~ N. Since ¢(N) = M’', we have ¢(m) € ¢(N). By the previous
lemma, m € N, a contradiction. Thus ¢(N) # M.

Let I be a hyperideal of R and D" a subhypermodule of M’ such that D’ C
#(N). Proposition 2.1.22 yields that ¢~'(D’) is a subhypermodule of M. We
claim that I¢p~'(D’) C N. Let a € I and z € ¢ *(D’). Then ¢(z) € D', so that
¢(ax) = ap(x) C ¢(N). To show that az C N, let | € ax. Then ¢(I) € ¢(N),
so that [ € N from the previous lemma. Therefore ax C N. This shows that
I¢~Y(D') C N as claimed.

Since I¢p~Y(D’) C N, ¢~Y(D’) is a subhypermodule of M and N is prime,
we can conclude that I C (N : M) or ¢~'(D') € N. Then IM C N or
d(¢p~H(D")) C ¢(N). Since ¢ is surjective, IM' = I¢p(M) = ¢(IM) C ¢(N)
or D' C ¢(¢p~Y(D')) C ¢(N). Hence I C (¢(N): M') or D' C ¢(N). Thus ¢(N)
is a prime subhypermodule of M’. ]

Proposition 2.1.25. Let M and M' be R-hypermodules and ¢ : M — M’ a
homomorphism. Let N’ be a prime subhypermodule of M’ such that ¢~ *(N') # M.
Then ¢~ *(N') is a prime subhypermodule of M.

Proof. Let I be a hyperideal of R and D a subhypermodule of M such that
ID C ¢~ Y(N'). Then I¢(D) = ¢(ID) C N'. By Proposition 2.1.22, ¢(D) is a
subhypermodule of M’. Since N’ is prime, I C (N’ : M’) or ¢(D) C N’. Thus
p(IM) = I(p(M)) C IM' C N' or D C ¢—*(N'). Hence I C (¢~*(N') : M) or
D C ¢~} (N'). Therefore ¢~ (N’) is a prime subhypermodule of M. O

Corollary 2.1.26. Let N and K be subhypermodules of an R-hypermodule M
such that N C K. Then K is a prime subhypermodule of M if and only if K/N

is a prime subhypermodule of M /N.

Proof. The proof follows from Proposition 2.1.24 and Proposition 2.1.25 by using
the canonical projection ¢ : M — M/N. O
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2.2 Weakly Primality

This section is divided into two subsections, discussing weakly prime hyperide-
als and weakly prime subhypermodules, respectively. Weakly prime hyperideals
(subhypermodules) are a generalization of prime hyperideals (subhypermodules).
We are interested in studying some properties regarding weakly prime hyperideals

and weakly prime subhypermodules.

2.2.1 Weakly Prime Hyperideals

The definition of weakly prime hyperideals are extened from prime hyperideals in

the same way as the extension of weakly prime ideals from prime ideals.

Definition 2.2.1. Let R be a hyperring. A proper hyperideal P is called weakly
prime if for all hyperideals I and J,

{0} £[IJ]CP=ICPorJCP.

We know from Chapter I that {0} may not be a hyperideal. If {0} is not a
hyperideal, then, by Proposition 1.3.3, there are no hyperideals I and J such that
IJ = {0}. Thus we obtain the following result.

Proposition 2.2.2. Let R be a hyperring such that {0} is not a hyperideal of R.
Then prime hyperideals and weakly prime hyperideals of R are the same.

In this subsection, it is reasonable for us to consider hyperrings such that {0}
is their hyperideal. For the rest of this subsection, we assume that {0} is always
a hyperideal. We characterize weakly prime hyperideals in the same ways as we

did for prime hyperideals.

Proposition 2.2.3. Let R be a hyperring and P a proper hyperideal of R. Then
P is a weakly prime hyperideal of R if and only if {0} # IJ C P implies
I C Por JCP for all hyperideals I and J of R.

Proof. Assume that P is a weakly prime hyperideal of R. Let I and J be hyper-
ideals of R such that {0} # I.J C P. Then [[J] C P and {0} # IJ C [I.J]. Thus
{0} #1IJC P. Hence [ C Por JC P.



36

Conversely, assume that {0} # [J C P implies I C PorJ C P for all
hyperideals I and J of R. Let I and J be hyperideals of R such that {0} # [[J] C
P. Since [IJ] # {0}, there exist a; € I and b; € J for all ¢ € {1,2,...,n} such
that a1by +agby + - - - +a,b, # {0}. Then a;b; # {0} for some j. Hence I.J # {0},
so that {0} # IJ C P. By assumption, [ C P or J C P. This shows P is weakly

prime. O

If a hyperring is strongly distributive and commutative, we obtain the follow-

ing:

Proposition 2.2.4. Let R be a strongly distributive commutative hyperring and
P a proper hyperideal of R. Then P is a weakly prime hyperideal if and only if
{0} # ab C P implies a € P or b € P for all a,b € R.

Proof. Assume that P is weakly prime. Let a,b € R be such that {0} # ab C P.
Note that R is commutative. Then we consider the following hyperideals I and J
of R:

I = (a) = [Ra] + [Za] and J = (b) = [Rb] + [Zb].

Then a € I and b € J. Thus ab C IJ, so that I.J # {0}. Since R is commutative
and ab C P, we have IJ C P. Thus {0} # IJ C P. Hence I C Por J C P.
Thusa € Porbec P.

Assume for the converse that {0} # ab C P implies a € P or b € P for all
a,b € R. Let I and J be hyperideals of R such that {0} # IJ C P. Suppose that
J & P. There exists z € J~ P. To show that I C P, let a € I. If ax # {0}, then
{0} # ax C P, so by assumption, we have a € P. Now, assume that ax = {0}.
Then there are two cases to be considered
Case 1 aJ # {0}. There exists d € J such that ad # {0}, so that {0} # ad C P.
If d ¢ P, then we are done. Assume that d € P. Since R is strongly distributive,
a(x+d) = ar+ad = ad # {0}. Hence there exists [ € x+d such that {0} # al C P.
We have a € Porl € P. If l € P, then x € [+ (—d) C P sincel € z + d, a
contradiction. Hence a € P.

Case 2 aJ = {0}.
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Case 2.1 [z # {0}. There exists r € I such that rz # {0}. Then {0} #
re C P. We have r € P. Note that (r + a)z = rx + ax = rz # {0}. Then there
exists p € r 4+ a such that {0} # pr C P. We have p € P. Since p € 7 + a,
a€(—r)+pCP.

Case 2.2 [z = {0}. Since IJ # {0}, there exist b € [ and d € J such
that bd # {0}, so that {0} # bd C P. If d ¢ P, then we have b € P. Note
(a+b)d = ad+bd = bd # {0}. Hence there exists p € a+b such that {0} # pd C P.
We have p € P. Sincep€a+b, a € p+ (—b) C P.

Assume that d € P. Then b(x + d) = bx + bd = bd # {0}. Hence there exists
[ € x + d such that {0} # bl C P. We have b € Porl € P. If | € P, then
x €1+ (—d) C P since | € z+ d, a contradiction. Therefore [ ¢ P and b € P.
We have (a + b)l = al + bl = bl # {0}. Then there exists p € a + b such that
{0} #pl C P. Hence p € P. Sincep e a+b,acp+(-b) CP. O

Finally the last two characterizations are considered.

Proposition 2.2.5. Let R be a strongly distributive hyperring such that a € Ra
foralla € R and P a proper hyperideal of R. Then P is a weakly prime hyperideal
if and only if {0} # aRb C P implies a € P or b € P for all a,b € R.

Proof. Assume first that P is a weakly prime hyperideal. Let a,b € R be such
that {0} # aRb C P. Here let

I = {(a) = [Ra] + [RaR)] and J = (b) = [Rb] + [RbR).

Then I and J are hyperideals of R such that a € [ and b € J. Note aRb C IJ,
so that I.J # {0}. Since aRb C P, we have I.J C P. Thus {0} # IJ C P. Then
I C PorJC P because P is weakly prime. Hence a € P or b € P.

Now assume that {0} # aRb C P implies a € Porb € P for all a,b € R.
Let I and J be hyperideals of R such that {0} # I.J C P. Suppose that J & P.
There exists x € J ~ P. We show that I C P. Let ¢« € I. Then aRx C P. If
aRx # {0}, then we are done. Assume further that aRx = {0}. We obtain that

arx = {0} for all » € R. Consider two cases as follow.
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Case 1 aRJ # {0}. There exists d € J such that aRd # {0}, so that {0} #
aRd C P. If d ¢ P, then we are done. Assume that d € P. Since aRd # {0},
there exists r € R such that ard # {0}. Then ar(z+d) = arz+ard = ard # {0}.
There exists | € x + d such that {0} # arl C P. Therefore {0} # aRl C P.
We have a € Porl € P. Ifl € P, then x € [+ (—d) C Psince l € v +d, a
contradiction. Hence a € P.

Case 2 aRJ = {0}.

Case 2.1 Iz # {0}. There exists r € I such that rz # {0}. Then {0} #
rRx C IJ C P. We have r € P. Since rRx # {0}, there exists s € R such that
rsz # {0}. Then (r + a)sz = rsx + asz = rsz # {0}. There exists p € r +a
such that {0} # psz, so that {0} # pRx C P. We have p € P. Since p € 7 + q,
ac(—r)+pCP.

Case 2.2 Iz = {0}. Since I.J # {0}, there exist b € I and d € J such that
bd # {0}, so that {0} # bRd C P. If d ¢ P, then we have b € P. Since bRd # {0},
there exists s € R such that bsd # {0}. Then (a + b)sd = asd + bsd = bsd # {0}.
Hence there exists p € a + b such that psd # {0}, so that {0} # pRd C P. We
have p € P. Since p € a+b, a € p+ (—b) C P.

Assume that d € P. Since bRd # {0}, there exists s € R such that bsd # {0}.
Then bs(z + d) = bsx + bsd = bsd # {0}. Hence there exists [ € x + d such
that bsl # {0}, so that {0} # bRl C P. We have b € Porl € P. Ifl € P,
then © € [ + (—d) C P since | € = + d, a contradiction. Therefore [ ¢ P and
b € P. We have (a + b)sl = asl + bsl = bsl # {0}. Then there exists p € a + b
such that psl # {0}, so that {0} # pRl C P. Hence p € P. Since p € a + b,
ac€p+(—b) CP. O

Proposition 2.2.6. Let R be a hyperring such that a € aR for all a € R and

P a proper hyperideal of R. Then P is a weakly prime hyperideal if and only if
{0} # aRb C P impliesa € P or b € P fora,b€ R.

Proof. The proof is nearly the same as the proof of the previous proposition. [
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2.2.2 Weakly Prime Subhypermodules

This subsection is devoted to studying properties of weakly prime subhypermod-

ules. First, we give a definition of weakly prime subhypermodules.

Definition 2.2.7. Let R be a hyperring and M an R-hypermodule. A proper
subhypermodule N of M is called weakly prime if for all hyperideals I of R and
all subhypermodules D of M,

{0} #£[ID]CN=1C(N:M)orDCN.

Recall from Chapter I that {0} may not be a subhypermodule. By Proposi-
tion 1.3.2, if {0} is not a subhypermodule, then there are no hyperideals I and
subhypermodules N such that /N = {0}. Thus the following result is obtained.

Proposition 2.2.8. Let M be an R-hypermodule such that {0} is not a subhyper-
module of M. Then prime subhypermodules and weakly prime subhypermodules

of M are the same.

In this section, we consider only hypermodules satisfying the property that
{0} is a subhypermodule. First, we characterize weakly prime subhypermodules
in the same ways as prime subhypermodules.

Before starting on these characterizations, we consider a generalization of
weakly prime subhypermodules, called L-prime subhypermodules. L-prime sub-
hypermodules are defined in similar way to weakly prime subhypermodules but

we change the subhypermodule {0} to a subhypermodule L.

Definition 2.2.9. Let R be a hyperring, M an R-hypermodule and L a subhy-
permodule of M. A proper subhypermodule N of M is called L-prime if for all
hyperideals I of R and all subhypermodules D of M,

L#[ID]CN=ITC(N:M)orDCN.

The following proposition gives a relationship between weakly prime subhy-

permodules and L-prime subhypermodules.
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Proposition 2.2.10. Let M be an R-hypermodule and L a subhypermodule of M.
Then a subhypermodule N of M is L-prime if and only if N/(N N L) is a weakly
prime subhypermodule of M/(N N L).

Proof. First, assume that N is L-prime and let I and D/(N N L) be a hyperideal
of R and a subhypermodule of M /(N N L), respectively, such that {N N L} #
[I(D/(NN L)) € N(NNL). Then L # [ID] C N. Since N is L-prime, we
obtain that I C (N : M) or D C N. Hence I C (N/(NNL): M/(NNL))or
D/(NNL)C N/(NNL). Thus N/(NNL)is a weakly prime subhypermodule of
M/(NNL).

Conversely, assume that N/(N N L) is a weakly prime subhypermodule of
M/(N N L), and let I and D be a hyperideal of R and a subhypermodule of M,
respectively, such that L # [ID] € N. Then {N N L} # [[(D/(N N L))] C
N/(NNL),sothat I C(N/(NNL): M/(NNL))or D/(NNL)CN/(NNL).
Hence IM C N or D C N. Thus I € (N : M) or D C N, which shows that N is
L-prime. ]

This relation confirms us that it is sufficient to study only weakly prime sub-
hypermodules. Next we present some characterizations of weakly prime subhy-

permodules. First we characterize under the same conditions as the above.

Proposition 2.2.11. Let M be a hypermodule and N a proper subhypermodule of
M. Then N is a weakly prime subhypermodule if and only if {0} # ID C N im-
plies I C (N : M) or D C N for all hyperideals I of R and all subhypermodules D
of M.

Proof. Similar to the proof of Proposition 2.2.3. m

Proposition 2.2.12. Let R be a commutative hyperring, M a strongly distributive
R-hypermodule and N a proper subhypermodule of M. Then N is a weakly prime
subhypermodule if and only if {0} # am C N implies a € (N : M) or m € N for

alla e R and m € M.

Proof. This proof is much like the proof of Proposition 2.2.4. O
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Proposition 2.2.13. Let M be a a strongly distributive R-hypermodule, N a
proper subhypermodule of M and assume that a € aR for every a € R. Then
N is a weakly prime subhypermodule if and only if {0} # aRm C N implies
a€ (N:M)ormeéeN foralla€ R and m e M.

Proof. This proof is much like the proof of Proposition 2.2.6. O]

Proposition 2.2.14. Let M be a strongly distributive R-hypermodule, N a proper
subhypermodule of M and assume that x € Rx for every x € M. Then N is a
weakly prime subhypermodule if and only if {0} # aRm C N implies a € (N :
M)orm € N for alla € R and m € M.

Proof. This proof is also similar to the proof of Proposition 2.2.5. O

Proposition 2.2.15. Let M be an R-hypermodule and N a proper subhypermod-
ule of M. The following are equivalent.

(i) N is a weakly prime subhypermodule.
(ii) For any subhypermodule D € N, (N : D) = (N : M) U ({0} : D).

(iii) For any subhypermodule D ¢ N, (N : D) = (N : M) or (N : D) = ({0} :
D).

Proof. (i) = (ii) Assume that (i) holds. Let D be a subhypermodule of M such
that D ¢ N. It is obvious that (N : M)U ({0} : D) C (N : D). Let a € (N : D).
Then aD C N. If aD = {0}, then a € ({0} : D). On the other hand, let
aD # {0}. Then {0} # (a)D C N so that (a) C (N : M) or D C N by
Proposition 2.2.11. Consequently, a € (a) C (N : M) since D € N.

(ii) = (iii) It is obtained from Proposition 1.1.16.

(iii) = (i) Assume that (iii) is valid. Let I and D be a hyperideal of R and
a subhypermodule of M, respectively, such that {0} # ID C N. Suppose that
D ¢ N. It follows from (iii) that (N : D) = (N : M) or (N : D) = ({0} : D).
Note that I C (N : D) because ID C N. Thus I C (N : M) or I C ({0}: D). If
I C ({0} : D), then ID C {0} so that /D = {0} leading to a contradiction. Thus
I C(N:M). O
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Corollary 2.2.16. Let M be an R-hypermodule and N a proper subhypermodule
of M. If N is a weakly prime subhypermodule, then (N : (m)) = (N : M)U ({0} :
(m)) for every element m of M with m ¢ N.

Proof. Let m be an element of M with m ¢ N and let D = (m). Then D is a
subhypermodule of M with D ¢ N, so the conclusion follows from Proposition
2.2.15. O

Although the following characterization of weakly prime subhypermodules
are quite similar to those in Propoition 2.2.15, the strongly distributivity of R-

hypermodules is needed.

Corollary 2.2.17. Let M be a strongly distributive R-hypermodule, N a proper
subhypermodule of M and assume that x € Rx for every x € M. The following

are equivalent.
(i) N is a weakly prime subhypermodule.
(ii) For all elements m € M with m ¢ N, (N : Rm) = (N : M) U ({0} : Rm).

(iii) For all elements m € M with m ¢ N, (N : Rm)= (N : M) or (N : Rm) =
({0} : Rm).

Proof. The proofs of (i) = (ii) = (iii) follow from Proposition 2.2.15 and the
facts for m € M~ N that [Rm] is a subhypermodule of M with [Rm] € N,
(N Rm) = (N : [Rm]) and ({0} : Rm) = ({0} : [Rm]).

(iii) = (i) Assume that (iii) holds. Let a € R and m € M be such that
{0} # aRm C N. Suppose that m ¢ N. Note that a € (N : Rm). By (iii),
a € (N :M)orae ({0} : Rm). It is not possible that a € ({0} : Rm) since
aRm # {0}. Hence a € (N : M). Therefore, N is a weakly prime subhypermodule
by Proposition 2.2.14. O

Proposition 2.2.18. Let M be a strongly distributive R-hypermodule and N a
proper subhypermodule of M and assume that a € aR for every a € R. The

following are equivalent.
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(i) N is a weakly prime subhypermodule.
(ii) For all elements m € M withm ¢ N, (N : Rm) = (N : M) U ({0} : Rm).

(iii) For all elements m € M withm & N, (N : Rm)= (N : M) or (N : Rm) =
({0} : Rm).

Proof. (i) = (ii) Assume that N is a weakly prime subhypermodule. Let m €
M~ N. It is obvious that (N : M)U ({0} : Rm) C (N : Rm). Let a € (N : Rm).
Thus aRm C N. If aRm = {0}, then a € ({0} : Rm). If aRm # {0}, then
a € (N : M) by assumption together with Proposition 2.2.13.

(ii) = (iii) This is obvious.

(iii) = (i) This is similar to the proof (iii) = (i) of the above proposition by

applying Proposition 2.2.13 instead. [

This subsection ends with an investigation of some properties of weakly prime

subhypermodules.

Proposition 2.2.19. Let M be an R-hypermodule and N and K subhypermodules
of M with K C N.

(i) If N is a weakly prime subhypermodule of M, then N/K is a weakly prime
subhypermodule of M /K.

(ii) If K and N/K are weakly prime subhypermodules of the appropriate hyper-
modules, then N is a weakly prime subhypermodule of M.

Proof. (i) Assume that N is a weakly prime subhypermodule of M. Let I and
D/K be a hyperideal of R and a subhypermodule of M/K, respectively, such
that {K'} # I(D/K) C N/K. If ID = {0}, then I(D/K) = K, a contradiction.
Thus {0} # ID C N. Since N is weakly prime, I C (N : M) or D C N.
Hence I C (N/K : M/K) or D/K C N/K. Therefore, N/K is a weakly prime
subhypermodule of M/K.

(ii) Assume that K and N/K are weakly prime subhypermodules of the ap-
propriate hypermodules. Let I and D be a hyperideal of R and a subhypermodule
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of M, respectively, such that {0} # ID C N.

Case 1 ID C K. Then {0} # ID C K. Since K is weakly prime, I C (K : M)
or DC K. Thus I C (N : M) or DC N since K C N.

Case 2 ID ¢ K. Then {K} # I(D/K) C N/K. Since N/K is weakly prime,
I C(N/K:M/K)or D/K C N/K. Thus IM C Nor D C N,sol C (N :M)
or D C N. Therefore N is a weakly prime subhypermodule of M. O

By Proposition 2.1.13, we know that if N is a prime subhypermodule, then
(N : M) is a prime hyperideal. But if we change “prime” to “weakly prime”, this
property may not hold. Thus we study conditions that imply this property.

Proposition 2.2.20. Let M be an R-hypermodule such that {0} is a prime sub-
hypermodule and N a subhypermodule of M such that & # (N : M) # R. If N is
a weakly prime subhypermodule of M, then (N : M) is a weakly prime hyperideal.
(This R-hypermodule is also called a prime R-hypermodule.)

Proof. Assaume that N is a weakly prime subhypermodule of M. Let A and B
be hyperideals of R such that {0} # AB C (N : M). Suppose that B ¢ (N : M).
There exist b € B and m € M such that bm ¢ N. Note that

A{bm) C A(Rbm + Zbm) C N.
If A(bm) = {0}, then A C ({0} : M) or (bm) C {0}. Thus A C ({0} : M) C (N :
M). If A(bm) # {0}, then A C (N : M) since N is weakly prime. O
Corollary 2.2.21. Let M be a prime hypermodule such that M = RM and
N a subhypermodule of M such that (N : M) # @. If N is a weakly prime
subhypermodule of M, then (N : M) is a weakly prime hyperideal.

Proof. Assume that N is a weakly prime subhypermodule of M. Then N # M.
Suppose that (N : M) = R. Then M = RM C N, a contradiction. Hence
(N : M) # R. The result now follows from Proposition 2.2.20. O

Finally, we determine the relations between prime and weakly prime subhy-
permodules. It is clear that prime subhypermodules are weakly prime subhyper-
modules. Therefore we give a condition which implies that weakly prime subhy-

permodules are prime subhypermodules.



45

Proposition 2.2.22. Let N be a weakly prime subhypermodule of an R-hypermodule
M. If (N : M)N # {0}, then N is a prime subhypermodule of M.

Proof. Assume that (N : M)N # {0} and let I and D be a hyperideal of R and
a subhypermodule of M, respectively, such that ID C N. If ID # {0}, then we
are done. Assume that ID = {0}.

Case 1 IN # {0}. Then IN C I(D+ N) C ID + IN = {0} + IN = IN.
Therefore {0} # I(D 4+ N) C N. Since N is weakly prime, I C (N : M) or
D+ NCN. Hence [ C(N:M)or DCN.

Case 2 IN = {0}.

Case 2.1 (N : M)D # {0}. Then (N : M)D C (I+ (N : M))D C ID + (N :
M)D = (N : M)D. Hence {0} # (I + (N : M))D C N. Since N is weakly prime,
I+(N:M)C(N:M)or DCN. Thus I C(N:M)or DCN.

Case 2.2 (N : M)D = {0}. Then (N : M)N C (I + (N : M))(D + N) C
ID+IN+(N:M)D+(N:M)N = (N:M)N CN. Hence {0} # (I + (N :
M))(D + N) C N. Since N is weakly prime, I + (N : M) C (N : M) or
D+ N C N. Therefore I C (N : M) or D C N. O

Corollary 2.2.23. Let N be a weakly prime subhypermodule of an R-hypermodule
M which is not prime. If I is a hyperideal of R such that I C (N : M), then
IN = {0}. In particular, (N : M)N = {0}.

Proof. By the previous proposition, we have (N : M)N = {0}. Assume that [ is
a hyperideal of R such that I C (N : M). Then IN C (N : M)N = {0}. Hence
IN = {0}. O



CHAPTER III
PRIME AND WEAKLY PRIME SUBHYPERMODULES
OF MULTIPLICATION HYPERMODULES

In this chapter, we introduce multiplication hypermodules and give some proper-

ties of prime and weakly prime subhypermodules of multiplication hypermodules.

3.1 Multiplication Hypermodules

First, we give a definition of multiplication hypermodules.

Definition 3.1.1. Let M be an R-hypermodule. Then M is called a multipli-
cation R-hypermodule if for every subhypermodule N of M, N = [IM] for some
hyperideal I of R.

Recall that, in general, if /V is a subhypermodule of an R-hypermodule M, then
(N : M) may be empty. We show that if M is a multiplication R-hypermodule,
then (N : M) is always nonempty.

Proposition 3.1.2. Let M be a multiplication R-hypermodule. Then (N : M) is
nonempty for every subhypermodule N of M.

Proof. Let N be a subhypermodule of M. Then there exists a hyperideal I such
that N = [IM]. Hence IM C N,ie., I C (N : M). Since I is nonempty, (N : M)

is nonempty. O

Next, we determine an explicit form for a subhypermodule of a multiplication

hypermodule.

Proposition 3.1.3. Let M be a multiplication R-hypermodule. If N is a subhy-
permodule of M, then N = [(N : M)M].
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Proof. Let N be a subhypermodule of M. Then N = [I M] for some hyperideal I of
R. Thus IM C N,soI C (N : M). Hence N = [IM] C [(N : M)M]. Conversely,
(N : M)M] C N since (N : M)M C N. Therefore N = [(N : M)M]. O

Corollary 3.1.4. Let M be a multiplication R-hypermodule and N a subhyper-
module of M. Then M = [RM]. Moreover, N = M if and only if (N : M) = R.

Proof. By the above proposition, M = [(M : M)M] = [RM]. Assume N = M.
Then (N : M) = (M : M) = R. Conversely, assume that (N : M) = R. Then
N = [(N : M)M] = [RM] = M. O

Recall from Chapter I that N = »_ _.(n) for any subhypermodules N of
an R-hypermodule M. If M is also a multiplication R-hypermodule, then the

following proposition is obtained.

Proposition 3.1.5. Let N be a subhypermodule of a multiplication R-hypermodule
M. Then N =3 _yI,M] = [(ZneN In)M} where for each n € N, I, is any
hyperideal of R such that (n) = I,,M.

Proof. This is straightforward. O]

The following proposition gives a characterization of multiplication hypermod-

ules.

Proposition 3.1.6. An R-hypermodule M is a multiplication R-hypermodule if
and only if for each m € M, there exists an hyperideal I of R such that (m) =
[IM].

Proof. First, assume that M is a multiplication R-hypermodule. Let m € M.
Since (m) is a subhypermodule of M, there exists a hyperideal I of R such that
(m) = [1M].

Conversely, assume that for each m € M, there exists an hyperideal I of R
such that (m) = [IM]. Let N be a subhypermodule of M. Then for each
x € N there exists a hyperideal I, of R such that (x) = [I[,M]. We claim that
N = [(ZmeNIx)M] For each = € N, it follows that z € (z) = [[,M] C
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(Cren )M, 50 N C [(Sen L)M|. Now, let m € [(S,cx L:)M]. Then
m € [(EIE]\, II)M} C > oenlaM] = 3 cn(x). It follows that m € N since
(x) C N for each x € N. O

Corollary 3.1.7. Let M be an R-hypermodule such that x € Rx for all x € M.
Then M is a multiplication R-hypermodule if and only if for each m € M, there
exists an hyperideal I of R such that [Rm| = [IM].

Proof. This follows from Proposition 3.1.6. m

Corollary 3.1.8. Let M be an R-hypermodule such that N = RN for every
subhypermodule N of M. Then M is a multiplication R-hypermodule if and only
if for each m € M, there exists a hyperideal I of R such that [Rm] = [IM].

Proof. This follows from Proposition 3.1.6. m

Next, we study some properties of multiplication hypermodules. First, we give

a lemma which is related to homomorphisms of hypermodules.

Lemma 3.1.9. Let M and M' be R-hypermodules. If f : M — M’ is a homo-
morphism, then f((z)) = (f(z)) for every x € M.

Proof. Assume that f : M — M’ is a homomorphism. By Proposition 2.1.21,
flaz) = af(z) for all a € Z and x € M. Let x € M. First, let t € f((z)). Then
there exists [ € (z) = [Ra]+[Za] such that t = f(I). Thusl € S0, rix+>r_, am

where n,k € N, r; € R and a; € Z for all 7. Hence

n

t=f)ef (me—i—Zaﬂ:) :Zrif(x)—l—Zaif(x)

i=1 =1

C [Rf(2)] + [Zf(2)] = (f(2)).

This shows that f((z)) C (f(z)).

Next, let ¢ € (f(z)). Then t € [Rf(z)] + [Zf(2)], ie., t € 0 rif(x) +
S aif(z) = S flri) + 8, f(aix) where n,k € N, r; € R and a; € Z for
all . Thus
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e (Se) o r (o) o (oS

=1 =1 i=1

C f([R2] + [Za]) = f({x))-
This shows that (f(z)) C f((z)). O

Proposition 3.1.10. Every homomorphic image of a multiplication R-hypermodule

15 a multiplication R-hypermodule.

Proof. Let M and M’ be R-hypermodules, M a multiplication R-hypermodule and
f: M — M’ a surjective homomorphism. Let 2/ € M’. Then there exists x € M
such that f(z) = 2’. Since M is a multiplication R-hypermodule, (x) = [IM] for
some hyperideal I of R. We claim that (z') = [IM']. Note that by Lemma 3.1.9,

we obtain that

[IM'] = [1f(M)] = f([IM])= f((z)) = (f(z)) = ().
Hence M’ is a multiplication hypermodule. n

Corollary 3.1.11. Let M be a multiplication R-hypermodule and N a subhyper-
module of M. Then M/N is a multiplication R-hypermodule.

Proof. Define f: M — M/N by f(m) =m+ N for all m € M. It is clear that
f is surjective and f(0) = 0+ N. It is easy to check that f is a surjective homo-
morphism. It, then, follows from Proposition 3.1.10 that M /N is a multiplication
R-hypermodule. O]

3.2 Prime and Weakly Prime Subhypermodules

The main results of this chapter are given in this section. Our aim is to character-
ize prime and weakly prime subhypermodules of a multiplication hypermodule.
In general, we know that if /V is a prime subhypermodule of an R-hypermodule
M such that (N : M) is not empty, then (N : M) is a prime hyperideal. In the
next proposition, we consider this statement under the assumption that M is a

multiplication R-hypermodule.
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Proposition 3.2.1. Let M be a multiplication R-hypermodule and N a subhyper-
module of M. Then N is a prime subhypermodule of M if and only if (N : M) is
a prime hyperideal of R.

Proof. The necessary part follows from Propositions 2.1.13 and 3.1.2 and Corollary
3.1.4.

Next, assume that (N : M) is a prime hyperideal of R. Then (N : M) # R,
so that N # M by Corollary 3.1.4. Let I and D be a hyperideal of R and a sub-
hypermodule of M, respectively, such that ID C N. Since M is a multiplication
R-hypermodule, D = [JM] for some hyperideal J of R. Thus

(IJ)M = I(JM) C I[JM] = ID C N.

This shows that IJ C (N : M). Since (N : M) is a prime hyperideal of R,
either I € (N : M) or J C (N :M). Then I C (N : M) or JM C N, so that
I C(N:M)or DCN. Hence N is a prime subhypermodule of M. H

Next, we define the product of subhypermodules of a multiplication hyper-

module.

Definition 3.2.2. Let R be a commutative hyperring and M be a multiplication
R-hypermodule. For subhypermodules N and K of M, we define the product of
N and K as follows :

NK = [[IJ]M]

where N = [IM] and K = [JM] for some hyperideals I and J of R.

Note that products of subhypermodules of a multiplication R-hypermodule
require the hyperring R to be commutative. As a result, for the rest of this

chapter, we let R be a commutative hyperring.
Proposition 3.2.3. The product of subhypermodules is well-defined.

Proof. Let N and K be subhypermodules of a multiplication R-hypermodule.
Suppose that N = [[[M] = [[oM] and K = [J;M] = [JoM] for some hyperideals
L, I, Jy and Jy of R. Then [[I.i)M] = [L[JM])] = [L[2M]] = [[L]M] =
(LM = [L[LM]] = [L[I:M]] = [[J21:]M] = [[I2J:]M]. o
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The next proposition gives a characterization of prime subhypermodules which

is analogous to the definition of prime hyperideals.

Proposition 3.2.4. Let M be a multiplication R-hypermodule and N a proper
subhypermodule of M. Then N s prime if and only if PK C N implies P C N
or K C N for all subhypermodules P and K of M.

Proof. First, assume that N is a prime subhypermodule of M. Let P and K be
subhypermodules of M such that PK C N. Suppose P = [[M] and K = [JM] for
some hyperideals I and J of R. Then I[JM] C [(IJ)M] C [[I[J]M] = PK C N.
Since N is prime, [ C (N : M) or [JM] C N. Hence IM C N or K C N. Thus
P=[IM]C Nor KCN.

Conversely, assume that PK C N implies P C N or K C N for all subhyper-
modules P and K of M. Let I and D be a hyperideal of R and a subhypermodule
of M, respectively, such that [ID] C N. Suppose D = [JM] for some hyper-
ideal J of R. Set P = [IM]. Then P and D are subhypermodules of M such
that PD = [[[J]M] = [I[JM]] = [ID] C N. By assumption, P C N or D C N.
Thus IM C [IM]=P C N or D C N. Therefore I C (N : M) or D C N, which
shows that N is prime. O

In fact, we can define the product of two elements of a multiplication hyper-

module.

Definition 3.2.5. Let M be a multiplication R-hypermodule M. For m,m’ € M
and a subhypermodule N of M, we define mm/' = (m)(m’), mN = (m)N and
Nm = N(m).

Lemma 3.2.6. Let M be a multiplication R-hypermodule, N a canonical sub-
hypergroup of (M,+) and P and K subhypermodules of M. Then the following
hold.

(i) PK C N if and only if pK C N for all p € P.

(i) PK C N if and only if Pk C N for all k € K.
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(iii) PK C N if and only if pk C N for allp € P and k € K.

Proof. (i) First, assume that PK C N. Then [[(P : M)(K : M)]M] C N. Let
p € P. Then (p) = [I,M] for some hyperideal I, of R. Note that I,M C P so that
I, C (P : M). Hence pK = (p)K = [[I,(K : M)]M] C [[(P: M)(K : M)|M] C
N.

Conversely, assume that p&K C N for all p € P. Since P = > _5(p), we
obtain that PK = (Zpep(p>> K. Note that for each p € P, (p) = [I,M] for some
hyperideal I, of R. By assumption, [[Ip(K : M)]M} =pK C N for all p € P.
Hence

i~ (inan ) = ([ ) (fos a0

peP peP
=\l w30 - 5[t ana] < .
peP peEP

(ii) The proof is similar to (i).

(iii) First, assume that PK C N. By (i), we have that pK C N for all p € P,
i.e., (p)K C N for all p € P. Thus by (ii) (p)k C N for all p € P and k € K. By
definition, (p)k = (p)(k) = pk, so pk C N for allp € P and k € K.

Conversely, assume that pk C N for all p € P and k € K. Then p(k) C N for
all p e P and k € K, so that P(k) C N for all £ € K by (i). Thus Pk C N for
all k € K. By (ii), PK C N. O

The following result is analogous to Proposition 3.2.4. Its proof makes use of

Lemma 3.2.6.

Proposition 3.2.7. Let N be a proper subhypermodule of a multiplication R-
hypermodule M. Then N is prime if and only if mm’' C N impliesn € N or m’ € N

for allm,m' € M.

Proof. The necessary part is obtained from Proposition 3.2.4 and the definition
of the product mm/’.
Conversely, assume that mm’ C N impliesm € N or m’ € N for allm,m’ € M.

Let P and K be subhypermodules of M such that PK C N and K g N. Then
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there exists k € K ~~ N. To show that P C N, let p € P. Since PK C N, we
have pk C N by Lemma 3.2.6. By assumption, p € N or kK € N. Thus p € N.
This shows P C N. We conclude that N is a prime subhypermodule of M. [

By considering the multiplication of elements in a multiplication hypermodule,

zero divisors can be defined.

Definition 3.2.8. Let M be a multiplication R-hypermodule. An element m €
M {0} is called a zero divisor if there exists m’ € M~ {0} such that mm' = {0}.

The following result gives a characterization of prime subhypermodules in

terms of zero divisors.

Proposition 3.2.9. Let N be a proper subhypermodule of a multiplication R-
hypermodule M. Then N is prime of M if and only if M/N has no zero divisors.

Proof. First, assume that N is a prime subhypermodule of M. Suppose that
there exist m,m € M/N such that mm' = {0}. Let (m) = [I(M/N)] and
(m') = [J(M/N)] for some hyperideals I and J of R. Then [[IJ](M/N)] =
(m)y(m'y = mm' = {0}. Thus I[JM] C [I[JM]] = [[I[J]M] C N. Since N
is prime, I C (N : M) or [JM] € N. Then [IM] C N or [JM] C N. Thus
(m) = {0} or (M') = {0}. Hence m = 0 or m’ = 0.

Conversely, assume that M/N has no zero divisors. Let m,m’ € M be such
that mm’ C N. Then m,m € M/N with mm' = {0}. Therefore, m = 0 or

m’ = 0. Hence m € N or m’ € N. Thus N is prime by Proposition 3.2.7. O

The above proposition gives another characterization of prime subhypermod-
ules. Finally, we characterize weakly prime subhypermodules of multiplication

R-hypermodules.

Lemma 3.2.10. Let P and K be subhypermodules of a multiplication R-hypermodule
M. Then the following hold.

(i) PK = {0} if and only if pK = {0} for all p € P.

(i) PK = {0} if and only if Pk = {0} for allk € K.
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(i) PK = {0} if and only if pk = {0} for allp € P and k € K.
Proof. This is an immediate consequence of Lemma 3.2.6 by using N = {0}. O

We finish with a characterization of weakly prime subhypermodules of a mul-

tiplication R-hypermodule in the following proposition.

Proposition 3.2.11. Let N be a proper subhypermodule of a multiplication R-
hypermodule M. Then N is weakly prime if and only if {0} # PK C N implies
P C Nor K CN for all subhypermodules P and K of M.

Proof. First, assume that N is a weakly prime subhypermodule of M. If N
is prime, then we are done. Suppose that N is not prime. Let P and K be
subhypermodules of M such that {0} # PK C N and assume for a contradiction
that P ¢ N and K ¢ N. We show that PK = {0} by applying Lemma 3.2.10.
We claim that pK = {0} for all p € P~ N. It follows from P = )", _,(l) that
P = [(Zlep ]l)M} where for each | € P, I; is a hyperideal of R such that (I) =
[I,M]. Let p € P~ N and let (p) = [[,M] and K = [IM] for some hyperideals I,
and I of R. Then [[(Zlep ) 1] M] — PK C N. Thus pK = (p)K = [[I,[]M] C
[[(Zlep 1) I]M} C N. Hence I{p) = I{I,M] C [[IL,)M] = [[LIM] C N, ie.,
I C (N : (p)). By Corollary 2.2.16 and Proposition 1.1.16, I C (N : M) or
I C ({0} : (p)). Thus IM C N or I C ({0} : (p)) so that K = [IM] C N or
I C ({0} : (p)). Since K € N, we must have I C ({0} : (p)), i.e., I{p) = {0}.
Therefore pK = (p)K = [[I,I|M] = [[IL,]M] = [I[I,M]] = [I{p)] = {0}.
Similarly, we have Pk = {0} for all £ € K ~ N. It remains to show that
={0}forallpe PNNand ke KNN. Letpe PN N and k € KN N. By
Corollary 2.2.23, pk = (p)(k) C NN = [(N : M)N] = {0}.
Thus PK = {0}, which is a contradiction. Hence P C N or K C N.
Conversely, assume that {0} # PK C N implies P C N or K C N for all
subhypermodules P and K of M. Let I and D be a hyperideal of R and a
subhypermodule of M, respectively, such that {0} # ID C N. Set K = [IM]
so that K is a subhypermodule of M. Then KD = [[](D . M) } [ [
M)M}] = [ID] C N. Thus {0} # KD C N. By assumption, K C N or D C N.
Hence I C (N : M) or D C N. This shows that N is weakly prime. O



CHAPTER IV
FUZZY HYPERIDEALS AND
FUZZY SUBHYPERMODULES

Fuzzy sets is an interesting area for doing research, see [1], [3], [4], [5], [11], [14]
and [19]. In [14], J.N. Mordeson and D.S. Malik gathered together many concepts
related to fuzzy sets, for example, L-subgroup, L-ideals and L-submodules. More-
over, there has been much work done on fuzzy sets of hyperstructures, see [3], [5],
[11] and [19]. In [5], R. Ameri and R. Mahjoob investigated some properties of
fuzzy hyperideals and prime fuzzy hyperideals.

In this chapter, we study fuzzy subsets of hyperrings and hypermodules, in-
spired by [5]. Then we extend these to fuzzy subhypermodules. Basic notations
related to fuzzy subsets follow from [5] and are given below.

A fuzzy subset of a nonempty set X is a function p from X to [0,1]. Denote
by FX the collection of all fuzzy subsets of X. A fuzzy subset u of X is called
non-constant if there exist z,y € X such that u(x) # p(y). For each subset A of
X and a € [0,1], define ay € FX as follows:

a, if x € A,

aa(x) =
0, otherwise,

for all x € X. Moreover, we let a, = ay, for all z € X.

For y € F¥X and a € [0, 1], define p, by

to = { € X | ulx) > a},

then p, is called the a-cut or a-level subset of p.
For p,v € FX, we say that p is contained in v if p(x) < v(z) for all z € X,
and denote this by p C v. For a,b € [0, 1], we define a V b and a A b by

aVb=max{a,b} and aAb=min{a,b}.
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For a nonempty subset A of X and a fuzzy subset p of X, we define \/,_, pu(x)
and A, ., p(x) by

\/ ) = supfu(z) |2 € A} and N\ u(x) = int{u() | 2 € A}.

z€EA z€A

For p,v € FX, we define fuzzy subsets U v and N v of X by

(WU V)(@) = p(2) Vile) and (uOv)(x) = ple) Av()

for all z € X.
Let p1; be a fuzzy subset of X for all i € A and x € X. Then define \/,_, p:(x)

and \;c, pi(x) by

\/u,(a:) = sup{u;(z) | i € A\} and /\,ul(:zc) = inf{p;(z) | i € A\}.

(ISP 1EA

Moreover, we define fuzzy subsets |,y it; and (), pi of X by

(U Mz)(ﬂf) = \/Mz(l') and (ﬂ ﬂz)(x) = /\ﬂz(@

ie e 9 i€
for all x € X.
We seperate this chapter into three parts, namely, fuzzy hyperideals of hyper-

rings, fuzzy subhypermodules of hypermodules and prime fuzzy subhypermodules.

Example Let ;1 be the fuzzy subset of N defined by p(z) = 1. Then the i-level

1
subset of pis 1 = {n € N | u(n) > 3} = {1,2}, V,conu(z) = sup{p(z) | = €
2N} =1 and A, oy p(z) = inf{pu(z) | z € 2N} = 0.

Let v be the fuzzy subset of N defined by v(x) = %H Then v C ppand pU v

and p N v are the fuzzy subsets of N defined by

(,uUV)(x):,u(a:)\/V(x)zi\/x_li_l == and

(uﬂV)(x)Zu(fC)/\V(f)ziAxi1 :x}rl

for all x € N. Hence we see that pUv = p and pNv = v, as we would expect

when v C pu.
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4.1 Fuzzy Hyperideals of Hyperrings

We recall the definition and properties of fuzzy hyperideals from the work of
R. Ameri and R. Mahjoob. They defined and investigated, in [5], fuzzy hyperideals
and prime fuzzy hyperideals. We would like to gather some of their results here

in order to obtain ideas that we can extend to fuzzy subhypermodules.

Definition 4.1.1. [5] A fuzzy subset « of a hyperring R is called a fuzzy hyperideal
of R if for every x,y € R,

(D) Asesty a(z) = a(z) Aay),
(ii) a(—z) > a(x), and
(i) ALepy @(2) = az) V aly).

It is easy to show that if « is a fuzzy hyperideal of a hyperring R, then

a(z) = a(—x) for all x € R.

Example 4.1.2. Let I be a hyperideal of a hyperring R and ¢ € [0,1]. Then ¢;
is a fuzzy hyperideal of R.

We show that, in fact, condition (ii) in the definition of a fuzzy hyperideal of
a hyperring R can be omitted if the hyperring R satisfies a € Ra (or a € aR) for
all a € R.

Proposition 4.1.3. Let R be a hyperring such that a € Ra (or a € aR) for all
a € R and « a fuzzy subset of R. Then « is a fuzzy hyperideal of R if and only if

() Aucary @(2) > alz) Aaly), and
(i) Aserya(z) 2 a(z) Valy),
for all x,y € R.

Proof. Without loss of generality, we assume that R satisfies a € Ra for all a € R.
The proof of the necessary part is clear. Conversely, assume that (i) and (ii) hold.

It suffices to show that a(—z) > a(z) for all x € R. Let x € R. Then —z €
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R(—z), so that there exists r € R such that —x € r(—x) = (—r)z. Moreover,
(=) > N,c(pe(2) = a(=r) Va(z) > a(z). Hence o is a fuzzy hyperideal

The following are interesting results from [5] serving as guidelines for the next

section.

Proposition 4.1.4. [5] Let « be a fuzzy hyperideal of a hyperring R. Then «(0) >
a(z) for all x € R.

Proposition 4.1.5. [5] Let o be a fuzzy subset of a hyperideal R. Then « is
a fuzzy hyperideal of R if and only if every monempty a-level subset of o is a

hyperideal of R.

Let a be a fuzzy subset of a hyperring R. Define «, as follows:
o ={z € R|alz)=a(0)}.

Note that c, is the nonempty «(0)-level subset of a. By Proposition 4.1.5, «, is
a hyperideal of R if « is a fuzzy hyperideal of R.

Definition 4.1.6. [5] Let R be a hyperring and « a fuzzy subset of R. Define
(a) to be the smallest fuzzy hyperideal of R containing c.

Proposition 4.1.7. [5] Let R be a hyperring and o; be a fuzzy hyperideal of R
for all i € X\. Then (e, s is a fuzzy hyperideal of R. Moreover, () = ({« |
« is a fuzzy hyperideal such that 8 C a} for all fuzzy subsets B of R.

Proposition 4.1.8. [5] Let R be a hyperring, A a nonempty subset of R and
a €[0,1]. Then (aa) = aay.

4.2 Fuzzy Subhypermodules of Hypermodules

In this section, fuzzy subsets of hypermodules are investigated. We give a defi-
nition of a fuzzy subhypermodule of a hypermodule. This notion is derived from
fuzzy hyperideals of hyperrings. The idea for constructing this definition arises

from [5] and [14].
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Definition 4.2.1. Let M be an R-hypermodule. A fuzzy subset u of M is called
a fuzzy subhypermodule of M if for all »r € R and x,y € M,

(1) Asepry (2) = pu(x) A ply),
(i) p(—z) > p(z), and
(i) ALe.p 1(2) = pl).

We can see that a fuzzy hyperideal of a hyperring R is a fuzzy subhypermodule
of the R-hypermodule R. Moreover, it is clear that if u is a fuzzy subhypermodule
of an R-hypermodule M, then u(x) = p(—x) for all x € M.

Some properties of fuzzy subhypermodules that parallel those of fuzzy hyper-

ideals can be obtained.

Proposition 4.2.2. Let M be an R-hypermodule such that m € Rm for all
m e M and p a fuzzy subset of M. Then u is a fuzzy subhypermodule of M
if and only iof

(1) Ascayy #(2) = p(x) A p(y), and
(i) Asersu(z) 2 p(x),
for all x,y € M.
Proof. This can be proved similarly to Proposition 4.1.3. [

Proposition 4.2.3. Let p be a fuzzy subhypermodule of an R-hypermodule M.
Then p(0) > p(x) for all x € M.

Proof. For each x € M, it follows that 1(0) > A, () u(z) = p(x) A p(—z) =
w(x), since 0 € x 4 (—x). O

Fuzzy subhypermodules and subhypermodules are related as seen in the fol-

lowing proposition.

Proposition 4.2.4. Let pu be a fuzzy subset of an R-hypermodule M. Then p s
a fuzzy subhypermodule of M if and only if every nonempty a-level subset of 1 is
a subhypermodule of M.
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Proof. First, assume that p is a fuzzy subhypermodule of M. Let pu, be a
nonempty a-level subset of u. Let z,y € u, and r € R. Then p(z) > a and
((y) > a. To show that © —y C pg, let 2 € x —y. Then pu(z) > A, 1(t) >
w(x) A p(—y) = w(x) A p(y) > a. Thus z € p,. Hence v —y C p,. Next, we
show that 7z C p,. Let z € ra. Then pu(z) > Ao, 1(t) > p(x) > a, ie., z € .
Hence rz C p,. Therefore, u, is a subhypermodule of M.

Conversely, assume that every nonempty a-level subset of 1 is a subhypermod-
ule of M. Let r € R and z,y € M. To show that A_.,,, w(z) > p(x) A p(y),
let a = p(x) A p(y). Hence p, is nonempty since x,y € pu,. By assump-
tion, p, is a subhypermodule of M. Then z € p,, ie., pu(z) > a, for all
z€wx+y. Thus A .. u(z) > a = p(x)Aply). To show that p(—x) > u(x)
and A, 1(2) > pu(x), let a = p(x). Then pu, is nonempty since x € p,. By
assumption, u, is a subhypermodule of M. Then —x € pu, and z € p, for all
zerz, ie, p(—z) > a=p(xr) and A ., 1(2) > \,c,, @ = a = p(x). Therefore,

1 is a fuzzy subhypermodule of M. m

Let p be a fuzzy subset of an R-hypermodule M. Similar to the previous

section, we define p, as follows:

po = {z € M| p(z) = p(0)}.

Then p, is the nonempty p(0)-level subset of . Moreover, p, is a subhypermodule
of M if p is a fuzzy subhypermodule of M.

Proposition 4.2.5. Let p be a fuzzy subhypermodule of an R-hypermodule M
and x,y € M. If N\, ., m(z) = p(0), then u(z) = p(y).

Proof. Assume that A, ., . w(z) = p(0). Then p(z) > p(0) for all z € z +y.
Thus p(z) = p(0) for all z € x + y by Proposition 4.2.3. Let z € x + y. Then
x € z+ (—y) and
pe) > N pt) = p(z) Ap(—y) = p(z) Aply) = w0) A ply) = p(y).
tez+(—y)
Hence u(x) > p(y). Since x +y = y + x, we also have z € y + z, and the same

argument shows p(y) > p(z). Therefore, u(x) = p(y). O
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Corollary 4.2.6. Let i be a fuzzy subhypermodule of an R-hypermodule M and
z,y € M. If \epoy 1(2) = p(0), then p(z) = u(y).

The following proposition shows one simple way to construct fuzzy subhyper-

modules.

Proposition 4.2.7. Let N be a subhypermodule of an R-hypermodule M and
c€1[0,1]. Then cy is a fuzzy subhypermodule of M.

Proof. We apply Proposition 4.2.4 to show that cy is a fuzzy subhypermodule
of M. Let a € R. If a =0, then (¢y)s = M. If 0 < a < ¢, then (¢y), = N.
Otherwise, (¢y), = @. This shows that there are only two possibilities for the
nonempty a-level subsets of ¢y, namely, N and M. Thus every nonempty a-level
subset of cy is a subhypermodule of M. Thus cy is a fuzzy subhypermodule

of M. ]

We define the product of fuzzy subsets of a hyperring and the product of a

fuzzy subset of a hyperring and a fuzzy subset of a hypermodule.

Definition 4.2.8. Let M an R-hypermodule, o, fuzzy subsets of R and pu a
fuzzy subset of M. The product of o and 3, denoted by a3, is defined as follows:

for all z € R,

\/ (a(z) A B(y)), if z € R* (where R* := RR),
(aB)(2) = { “¥esy

0, otherwise.

The product of o and p, denoted by au, is defined similarly, as follows: for all
me M,

\/ (a(a) A p(n)), if me RM,

(ap)(m) = *<TEe"

0, otherwise.
Proposition 4.2.9. Let M be an R-hypermodule, A and B nonempty subsets
of R, X a nonempty subset of M and a,b € [0,1]. Then asbg = (a A b)ap and

asbxy = (a A\ b)AX
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Proof. To show that asbp = (a Ab)ap, let r € R. If r ¢ R?, then r ¢ AB so that
(aabg)(r) = 0 = (a Ab)ap(r). Assume that r € R?. If r € AB, then there exist
x € Aand y € B such that r € xy and

(aabp)(r) = \/ (aa(z) ANbp(Y)) = aa(z) Nbe(y) =anb= (aAb)ap(r).

Assume that r ¢ AB, then r1 ¢ A or ro ¢ B for all v,y € R such that r € ryrs.
Then

(aabs)(r) = \/ (aa(x) Abs(y)) =0=(anb)as(r).

z,yeR,
rexry

Hence asbp = (a A b) 4p. Similarly, axbx = (a A b) ax. O

Lemma 4.2.10. Let M be an R-hypermodule A, B nonempty subsets of R, X a
nonempty subset of M and a,b,c € [0,1]. Then (asbp)cx = aa(bpcx). In fact,

arbpcex is well-defined.

Proof. By above proposition, (asbg)cx = (a Ab)apcx = (a Ab A c)apx =

(a A b/\ C)A(BX) = aA(b/\ C)BX = aA(bBcX). Thus (CLAbB)CX = aA(bBcX). Il

Recall that if I is a hyperideal of a hyperring R, then Rl C I and IR C [,
moreover, if N is a subhypermodule of an R-hypermodule M, then RN C N.
Next, we prove some analogous properties of fuzzy hyperideals and fuzzy sub-

hyprmodules.
Proposition 4.2.11. Let M be an R-hypermodule.

(i) If « is a fuzzy hyperideal of R, then aff C a and fa C « for any fuzzy
subsets B of R.

(ii) If p is a fuzzy subhypermodule of M, then ap C u for any fuzzy subsets a
of R.

Proof. (i) Assume that « is a fuzzy hyperideal of R. Let r € R. If r ¢ R? it
follows that

(@B)(r) =0 < afr).
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Assume, now, that r € R%2. We claim that a(r) > «a(z) for all x,y € R such that
r € xy. Let x,y € R be such that r € zy. Since « is a fuzzy hyperideal,
a(r) = N\ a(t) > a(z) v aly) > a(x)
texy
as claimed. Thus
(@B)(r) =\ ((x)ABy) <\ alx) <alr).
z,yER, z,YER,
rexy TeTY
Hence af C «. Similarly, fa C a.
The proof of (ii) parallels the proof of (i). O

Proposition 4.2.12. Let M be an R-hypermodule and p; be a fuzzy subhyper-
module of M for all i € . Then (., jt: is a fuzzy subhypermodule of M.

Proof. Let x,y € M. Since p; is a fuzzy subhypermodule of M for all 7 € A,

N mi(z) = pa(x) A pa(y) = (@) A O\ @) = () @) A () 1) ()

zE€x+y JEA JEA JEA JEA

for all ¢ € A. Hence /\ia(/\zeﬂy 1:(2)) = (Mie 1) (@) A (Myex ) (y). Thus
/\zez+y(/\ie,\/“<z)) = /\ie,\(/\zem+yﬂi(z)) > (ﬂi@ﬂz)(x) A (miexﬂi)(y)7 Le.,
/\ze:c—&-y((mie/\ MZ)(Z)) > (nz‘e/\ ,u,-) (m) N (ﬂie/\ rui) (y)

It can be shown similarly that for all » € R and x € M, (e, pts)(—2) >

(Miex 1) (x) and /\Zem((ﬂi@\ ,ul)(z)) H (ﬂie/\ ui) (#). Therefore, (., pi is a fuzzy
subhypermodule of M. O]

Definition 4.2.13. Let M be an R-hypermodule and p a fuzzy subset of M.
Define (1) to be the smallest fuzzy subhypermodule of M containing p and call
this (u) the fuzzy subhypermodule of M generated by p .

Proposition 4.2.14. Let M be an R-hypermodule and p a fuzzy subset of M.
Then {(u) = (\{v | v is a fuzzy subhypermodule of M such that u C v}.

Proof. This proof is straightforward. O]

Proposition 4.2.15. Let M be an R-hypermodule, A and B nonempty subsets
of R, X a nonempty subset of M and a,b,c € [0,1]. Then
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(i) (aa) = ag) and (ax) = arx),
(ii) (aabp) = (a Ab)apy and (asbx) = (a Ab)iaxy, and

(iii) (aabpex) = (@ AbAC)apx)-

Proof. (i) We obtain that (a4) = a(a by [5]. Next, we show that (ax) = a(x).
Since ax C a(xy and a(x) is a fuzzy subhypermodule of M, (ax) C a(x). Let u
be a fuzzy subhypermodule of M such that ax C u. We show that axy C u. Let
m € M. If m ¢ (X), then a(xy(m) = 0 < p(m). Assume that m € (X). Then
m € (X) = [RX]+]ZX] so that m € my+my for some m; € [RX] and my € [ZX].
Hence pu(m) > p(my) A u(ms). Since my € [RX], my € rixy + roxe + -+ - + rpxy,
where 7; € R and z; € X for alli € {1,2,3,...,n}. Then

p(ma) = p(@e) A plae) A A p(en) 2 ax(@1) A ax (@2) A Aax () = a.

Similarly, p(msg) > a. Hence pu(m) > a = aixy(m). This shows axy C p for
all fuzzy subhypermodules i such that ax C p. Thus axy € (ax). Therefore,
(ax) = axy.

(ii) By (i) and Proposition 4.2.9, we obtain that (aabg) = ((a A b)ap) =
(@ Ab)apy and (aabx) = ((a Ab)ax) = (a A D)ax).

(iii) This proof follows easily from (ii). O

4.3 Prime Fuzzy Subhypermodules

We start off this section by defining (v : i) where p and v are fuzzy subsets of an
R-hypermodule M. This definition is inspired by that of (X :Y') from Chapter I

where X and Y are nonempty subsets of M.
Definition 4.3.1. Let x4 and v be fuzzy subsets of an R-hypermodule M. Define
(v : p) by

(v:p) = HaeF*lapcv}
Proposition 4.3.2. Letc € [0,1] and N a subhypermodule of an R-hypermodule M.
Then

(1]\] Uecep: 1M) = 1(N:M) U cp.
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Proof. First, we show that 1v.x) Ucg C (1N Uecepy : 1M), i.e., we prove that

(1(N:M) U cR)lM ClyUcy. Let z € M. If x ¢ RM, we are done. Assume that

x € RM.

Case 1 z € N. We obtain that (1y Ucps)(z) = 1 and the result follows.

Case 2 z ¢ N. We have (1y Ucy)(x) = ¢. Since x ¢ N, it follows that

x ¢ (N:M)M. Then r ¢ (N : M) for all r € R and n € M with € rn. Thus
(Iwan Uer)lu@) = \/  ((Lvan Uer)(r) Alu(n))

reRneM,
xern

= \/ c=c=0yUcu)(2)

reRneM,
xeE™

We conclude that 1(y.a Ucg C (lN Uepr: 1M).

Next, we show that o € 1(n.ar) U cg for all fuzzy subsets a of R such that
aly € 1y Ucy. Let a be a fuzzy subset of R such that aly, € 15 Uy and
a € R.

Case 1 a € (N : M). We obtain that (1. Ucgr)(a) = 1 and thus a(a) <
(Lvaan) U cr)(@).
Case 2 a ¢ (N : M). There exists m € M such that am ¢ N. Thus there

exists t € am such that t ¢ N. Since aly C 1y U ¢y, it follows that (aly)(t) <

(In Uep)(t) = ¢. Then a(a) Aly(m) < e. Hence a(a) = afa) A 1y (m) < ¢
(L(n:ay U cg)(a).

This shows that o C 1(y.a) U cg for all a such that aly € 1y Ucy. Hence
((1N Uen) : 1M) C 1(n:m) U cg. Therefore, ((1N Uen) : 1M) =1y Ucgr. O

Our aim for this section is to study prime fuzzy subhypermodules. Prime fuzzy
subhypermodules are defined using an idea similar to the one used to define prime
subhypermodules of a hypermodule. In fact, prime fuzzy subhypermodules are an
extension of prime fuzzy hyperideals.

We recall the definition of prime fuzzy hyperideals from [5].

Definition 4.3.3. [5] A fuzzy hyperideal p of a hyperring R is called a prime fuzzy
hyperideal if p is non-constant and for all fuzzy hyperideals «, 8 of R if a8 C p,

then a C p or B C p.
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In [5], the authors gave a characterization of prime fuzzy hyperideals of hy-

perrings.

Theorem 4.3.4. [5] Let p be a fuzzy hyperideal. Then p is a prime fuzzy hyperideal
of R if and only if p(0) = 1, p, is a prime hyperideal of R and p = 1, Ucg for

some ¢ € [0,1).

Now, we define a fuzzy subhypermodule of a hypermodule. The idea for this
definition comes from the book [14] and the paper [4].

Definition 4.3.5. A non-constant fuzzy subhypermodule i of an R-hypermodule M
is said to be prime if for all fuzzy hyperideals a of R and fuzzy subhypermodules
vof M, if av C p, then o C (pu: 1y) or v C p.

We determine some properties related to prime fuzzy subhypermodules.

Proposition 4.3.6. Let M be an R-hypermodule. If i1 is a prime fuzzy subhyper-
module of M, then . is a prime subhypermodule of M.

Proof. Assume that p is a prime fuzzy subhypermodule. Recall that p, is a
subhypermodule of M. Since p is prime, p is non-constant. Thus p, # M. Let I
and D be a hyperideal of R and a subhypermodule of M, respectively, such that
ID C p,. Let « =17 and v = 1p. Then av = 1;1p = 1;p € 1,, € p. Since p
is prime, a C (p: 1p) or v C p,ie, 1 C (p:1p) or 1p Cp. I 17 € (s 1),
then 175 = 1;1p € g Thus IM C p, or D C p,. Therefore I C (pu, : M) or
D C pis. L

The following results give a characterization of prime fuzzy subhypermodules.
This result is similar to Theoerm 4.3.4. However, the conditions M = RM and
(s : M) # @ are required.

Theorem 4.3.7. Let p be a fuzzy subhypermodule of an R-hypermodule M such
that M = RM and (. : M) # @. If p is a prime fuzzy subhypermodule of M,
then i, is a prime subhypermodule of M, 1(0) =1 and p = 1,, U cy for some
ce[0,1).
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Proof. Assume that p is a prime fuzzy subhypermodule of M. By Proposition
4.3.6, pu, is a prime subhypermodule of M. Let us show that ©(0) = 1. Since
i is non-constant, there exists x € M such that u(z) < p(0). Define a fuzzy
subset a of R by o = 1(,,.a) and a fuzzy subset v of M by v = ;(0)p. Then
a is a fuzzy hyperideal of R and v is a fuzzy subhypermodule of M such that
o = 1 (0)ar = 1(0)(uoanynr € 12(0),, € p. Since p is prime and v € p, we
have av € (p : 1p7), ie., Luoanylar € p. Since (py 0 M) # @, let y € (i : M)M.
Then y € ., ie., p(y) = 1(0), and 1¢,, .anlp(y) = 1. Thus 1 = 1, . lun(y) <
1(y) = 1(0). Hence pu(0) = 1.

Next, we show that @ =1, U cy for some ¢ € [0,1). Note that it is sufficient
to show there exists ¢ € [0,1) such that pu(z) = ¢ for all x ¢ p,. Since p(0) =1
and p is non-constant, there exists ¢ € [0,1) and x ¢ p, such that p(x) =c < 1.
To show that u(y) = p(x) for all y & p., let y € p.. Then ¢, C p. By Proposition
4.2.15, czy = (cz) € p. We have cglizy = gz C ¢y C p. Since p is prime and
Ly € py cr (v 1ar), which implies cgly C p. Since M = RM, it follows that
ev = cpyr = cply C© po Thus p(e) = ¢ = en(y) < p(y). Similarly, p(y) < p(z).
Therefore p(z) = pu(y). We conclude that g =1, Ucpy. O

Theorem 4.3.8. Let i be a fuzzy subhypermodule of an R-hypermodule M. If p.
is a prime subhypermodule of M, u(0) =1 and p=1,, Ucy for some c € [0,1),
then p is a prime fuzzy subhypermodule of M.

Proof. Suppose that j, is a prime subhypermodule, 1(0) =1 and g =1, Ucy
for some ¢ € [0,1). Since p, # M and p = 1, U cy, we obtain that p is non-
constant. Let o and v be a fuzzy hyperideal of R and a fuzzy subhypermodule
of M, respectively, such that av C pu. Suppose that o € (p : 1p) and v € p.
Since v € p, there exists @ € M such that v(z) > p(x). Then u(x) # 1, ie.,
z ¢ p. Thus (x) € p, and v(z) > p(x) = c. Since a € (u: 1), ie., aly € p,
there exists ¢t € M such that aly(t) > u(t). There exist r € R and y € M such
that ¢t € ry and a(r) = a(r) A 1y (y) > p(t). Hence p(t) # 1, ie., t ¢ u, and
a(r) > p(t) =c. Since t € ry CrM and t ¢ p,, rM € p.. Hence r ¢ (u. : M).
Thus (r) € (p. : M).
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Now, we have (z) & i, (r) € (u« : M), v(z) > ¢ and a(r) > c. Since p, is
prime, (r) € (p : M) and (x) € ., we conclude that (r)(z) € p.. Then there
exists [ € (r)(z) such that [ ¢ u.. Note that

[ € (r)(z) = ([RT] + [rR] + [RrR] + [Zr]) ([Rm] + [Zx])
= [RrRx] + [Rrz| + [rRz| + [Zrx].

Then [ € l;+1s+13+14 for some l; € [RrRz|, Iy € [Rra], I3 € [rRxz] and Iy € [Zrz].
Since | ¢ pu., there exists i € {1,2, 3,4} such that I; ¢ p..

Assume that [; ¢ p.. Since Iy € [RrRz|, there exist n € N and s;,t; € R
for all i € {1,2,...,n} such that l; € syrt;x + sertox + ... + s,rtyxz. Then
li € liy+log+- - -+, where l;; € s;rt;x. Since Iy ¢ i, there exists ;; ¢ 1. for some
j€{1,2,3,...,n}. Then u(l;;) = c. Since l;; € s;rt;z, it follows that [;; € s,z
for some z € rt;z. Then ¢ = pu(l;;) > p(2). Since z € rt;z, we obtain that z € 72
for some z; € t;x. Thus ¢ = p(l;) > p(z) > (av)(z) > a(r) Av(z) > a(r) Av(z).
That is ¢ > «a(r) A v(z). Therefore, a(r) < ¢ or v(z) < ¢, a contradiction.

Similarly, we obtain a contradiction if I; ¢ u, for i = 2,3 or 4. Therefore, we

conclude that p is a prime fuzzy subhypermodule of M. m
This is the immediate consequences of Theorem 4.3.7 and Theorem 4.3.8.

Corollary 4.3.9. Let p be a fuzzy subhypermodule of an R-hypermodule M such
that M = RM and (p, : M) # @. Then p is a prime fuzzy subhypermodule of M
if and only if p. is a prime subhypermodule of M, 1(0) =1 and p=1,, Ucy for

some ¢ € [0, 1).

The previous results give one way to construct examples of prime fuzzy sub-

hypermodules which we make use of in the following example.

Example 4.3.10. Let R = [0,1]. Then (R, EBmax,-) is a Krasner hyperring,
see [18], where @payx : R X R — p*(R) is a multi-valued function defined by

{max{z,y}} if © # vy,

[0, z] if v =y,

T DPmax Yy =
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and - is the usual multiplication on real numbers. Let K = [0,0.5]. Then K is a
hyperideal of R. Tt follows from Example 1.2.38 that (R, @4z, 0) is a hyperring,
where o is defined as in that example, with H = K. Then R is an R-hypermodule.
Choose L = [0,1). It is easy to check that L is a maximal subhypermodule of
R, and thus is prime by Proposition 2.1.18. We have 1, U cg is a prime fuzzy
subhypermodule of R for all ¢ € [0,1) by Theorem 4.3.7.

In Chapter II, we characterized prime subhypermodules under three different
conditions: R is commutative, a € aR for all @ € R and m € Rm for all m € M,
where M is an R-hypermodule. The rest of this chapter is devoted to providing
some characterizations of prime fuzzy subhypermodules undr these three condi-
tions in the context of fuzzy subsets. First, we consider the condition that the

hyperring is commutative.

Theorem 4.3.11. Let R be a commutative hyperring and i a fuzzy subhypermod-
ule of an R-hypermodule M. Then p is a prime fuzzy subhypermodule of M if and

only if
(i) s s a prime subhypermodule of M, and

(ii) for all r € R, x € M and a,b € [0,1], if a,by C pu, then by C p or
ar € (p:1y).

Proof. First, assume that p is a prime fuzzy subhypermodule of M. By Propo-
sition 4.3.6, it remains only to prove (ii). Let r € R, x € M and a,b € [0, 1].
Assume that a,b, C p. By Proposition 4.2.15 (iii), it follows that (a A b)) =
(arby) € p. We claim that apybiy C (@ Ab)ygy. Let m € M. If m ¢ (r)(x),
then aybiy(m) = 0 < (a A b)ygy(m). Assume that m € (r)(z). Since R is

commutative,
m € (r){x) = ([Rr] + [Zr]) ([R:r;] + [Zx]) C [Rrz] + [Zrx] = (rx).

Thus m € (rz) and apybizy(m) = a Ab = (a A b)yg(m). Hence apybizy C (a A
b)ray = (ayby) C p. Since p is prime, apy C (@ 1y) or by € p. Thus

a, C (p:1p) or b, C p.
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Conversely, assume that (i) and (ii) hold. Since p, is a prime subhypermodule
of M, . # M. There exists m’ € M such that m’ ¢ p,. Then u(m’) < w(0).
Thus p is non-constant. Let o and v be a fuzzy hyperideal of R and a fuzzy
subhypermodule of M, respectively, such that av C p. Assume that v € p. There
exists m € M such that v(m) > p(m). To show that @ C (p : 1p7). Let r € R.
Since «a(r), C a and v(m),, C v, it follows that a(r),v(m),, C av C u. By (ii),
a(r), € (u:1py) or v(m)y, C p. Thus a(r), C (u: 1), e, a(r) < (u: 1y)(r).
This shows that a(r) < (u: 1p)(r) for all r € R, i.e., & C (p: 1p). We conclude

that p is a prime fuzzy subhypermodule of M. O]

For the second characterization, we are interested in the condition a € aR for

all @ € R.

Theorem 4.3.12. Let R be a hyperring such that a € aR for all a € R and
1 oa fuzzy subhypermodule of an R-hypermodule M. Then p is a prime fuzzy
subhypermodule of M if and only if

(i) s s a prime subhypermodule of M, and

(ii) for allm € R, x € M and a,b € [0,1], if a,1gb, C p, then b, C u or
ar C (p:1p).
Proof. First, assume that p is a prime fuzzy subhypermodule of M. Again, it
remains only to prove (ii). Let r € R, € M and a,b € [0,1]. Assume that
ar1gby C p. By Proposition 4.2.15 (iv), (@ A b) gy = (ar1rby) C p. We claim
that apr)ba) C (aAD)(rrey. Let m € M. If m ¢ (rR)(x), then aypyby(m) =0 <
(@ Ab) Ry (m). Assume that m € (rR)(z). Since a € aR for all a € R,

m € (rR)(z) = ([rR] + [RrR]) ([Rz] + [Zz]) C [RrRz] + [ZrRz] = (rRz).

Thus m € (rRx) and appbey(m) = a Ab = (a A b)yryy(m). Hence agprybizy C
(@ A b)rrey = (ar1pby) C p. Since p is prime, agry € (2 1ar) or by € p. Thus
a, C (p:1y) or b, C p.

Conversely, assume that (i) and (ii) hold. Since p, is a prime subhypermodule
of M, there exists m’ € M such that m’ ¢ p,. Then p(m') < p(0) and p is non-

constant. Let a and v be a fuzzy hyperideal of R and a fuzzy subhypermodule
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of M, respectively, such that av C p. Assume that v ¢ pu. There exists m €
M such that v(m) > u(m). To show that « C (u : 1p), let 7 € R. Since
a(r),1g C alg € a and v(m),, C v, we obtain that a(r).1gr(m),, C av C pu.
Then a(r), C (u : 1p) or v(m),, C p by (ii). Thus a(r), C (¢ : 1y), ie.,
a(r) < (p : 1p)(r). This shows that a(r) < (u : 1p)(r) for all r € R. Thus

a C (p: 1), We conclude that p is a prime fuzzy subhypermodule of M. O

For the last characterization, we obtain the same characterization as above

under the condition m € Rm for all m € M.

Theorem 4.3.13. Let M be an R-hypermodule such that m € Rm for allm € M
and | a fuzzy subhypermodule of M. Then p is a prime fuzzy subhypermodule
of M if and only if

(i) s s a prime subhypermodule of M, and

(ii) for allm € R, x € M and a,b € [0,1], if a,1gb, C p, then b, C u or

apr g (,u : 1M)
Proof. This proof is similar to the proof of Theorem 4.3.12. O

By comparing the characterizations of prime subhypermodules and prime fuzzy
subhypermodules under the same conditions, we observe that the results are sim-

ilar, by replacing r, m, R and M by a,, b,,, 1r and 1), respectively.
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