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ABSTRACT

This paper presented three common types of learning and development curves.
The mathematical models of these learning curves were also presented. Next, the issue of
measuring gain along the learning curves was discussed. In the past, a Relative Gain
Score (RGS)—defined as “(Y, - Y)/(F - Y1) x 100" where Y, is post-evaluation score, Y;
is pre-evaluation score, and F is full score of the evaluation, was formulated to compensate
for difficult gain near the end of the learning curves. It was shown in this paper that RGS
equalizes the gains at equal time intervals of the first common type of learning and
development curves only. The present research paper presented an approach— the
Cumulative Relative Gain Score (CRGS)— that equalizes the gains at equal time intervals
for all three common types of learning and development curves. The mathematical
development of the Cumulative Relative Gain Score (CRGS) was described in this paper.
The RGS and CRGS were compared and contrasted. Finally, the application of the two

indexes to empirical data collected from two past research studies was presented.
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Introduction

Human learning or development as a function of time is not linear (see Figure 1).
Instead, it is curvilinear. The curve could be in the form of decrease in acceleration as
shown in Figure 2, or first increase in acceleration and then decrease in acceleration
(S-shape) as shown in Figures 3 and 4. Note that in Figure 3, the lower portion of the
S-shape is smaller than the upper portion while in Figure 4, the two portions are quite

symmetrical.
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Figure 1 Is learning a linear function of time?
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Figure 2 Learning curves modeled by Y=1-e“* . In the upper curve
a = 0.1 and in the lower curve @ = 0.07.

1.2

- 08

0.6

« Deg2Fast

04 m Deg2Slow
0.2
0 .
0 5 10 15 20 25 30

Figure 3 Leamning curves modeled by Y = 1-e @

a = 0.1 and in the lower curve a = 0.07.
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Figure 4 Learning curves modeled by Y = > o In the upper curve
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a = 1.25 and b = 6. In the lower curve @ = 1.25 and b = 8.

Examples of curves like Figure 2 appear in Brown and Saks (1985, p. 124), in
Hulse, Deese and Egeth (1975, pp. 24-26), in Haber and Fried (1975, pp. 172 & 185),
and in LeFrancois (1995, p. 39). Examples of curves like Figure 3 appear in Restle and
Greeno (1970, p. 22), and in Zajonc and Markus (1975, p. 77). Examples of curves like
Figure 4 appear in Brown and Saks (1985, p. 121), and in Hilgard and Bower (1966,

p. 153). Mayer (1999, p. 42) also shows a multi-stage S-shape learning curve.
Curves like Figure 2 could be modeled by a first-degree sigmoid equation:

Y=1-* M
where Y is a measure of leamning or development
X is a measure of time

a indicates the speed the curve approaches maximum
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Curves like Figure 3 could be modeled by a second-degree sigmoid equation:
Y=1-¢ @ (2)

where Y is a measure of learning or development
X is a measure of time

a indicates the speed the curve approaches maximum

According to Zajonc and Markus (1975), Equation 2 could be used to model intellectual
development. For spatial intellectual development, the value of coefficient a = 0.1

whereas for verbal intellectual development, a = 0.07 which indicates a slower development.

Curves like Figure 4 could be represented by IRT models that provide an
S-shaped ogive (see Embretson & Reise, 2000, p. 298). One such model is a logistic

function shown in Equation 3:

1

e ©
where Y is a measure of learning or development
X is a measure of time

indicates the speed of the curve as it rises

Q

b indicates the position of the S-shape along the X axis

The many implications of these three typebs of curves on the study of learning and
development were thoroughly discussed in Archwamety, Tangdhanakanond, and Pitiyanuwat
(2005). The most important of these implications is probably the implication on measuring
learning and development gains at various intervals in time. This is discussed in the

following section.

Learning Curves and Measuring Gains
If learning or development Y were a linear function of time X, the use of Y,-Y,

(the traditional gain score) as the indicator of gain at every time interval would have been
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all right. However, leaming or development Y is NOT a linear function of time X. The
function is curvilinear (most likely S—shaped) as shown in the introduction of this paper.
If we take gain Y,-Y, at every equal interval from the beginning to the end of the curve,
we will notice that the gain becomes smaller and smaller towards the end of the curve.
This means an accomplished learner will have difficulty making gain! Bereiter (1963) [as
cited in Embretson & Reise, 2000] emphasized this point as one of the many problems of
the traditional gain score Y,-Y,. Should we not then give higher and higher weights to
gains made towards the end of the learning curve? In many Olympic competitions a

higher level of difficulty receives more weight in scoring.

Improving the Traditional Gain Score

Problems of traditional gain score (Y,-Y,) were noted in many studies (see, e.g.,
Bereiter, 1963; Cronbach and Furby, 1970; Embretson & Riese, 2000; Rogosa, Brandt, &
Zimowski, 1982). Several improvements (for example, residual change measures) have
been suggested but remained unsatisfactory (see Embretson & Riese, 2000, p. 296; Rogosa,
Brandt, & Zimowski, 1982). A more promising recent attempt to weight a traditional gain
score throughout the range of the learning curve was proposed by Kanjanawasee (1989)
[see also Ruengtrakul, 2002]. The weighted gain score is known as the “Relative Gain
Score (RGS)” which is defined as:

Y,-Y
Relative Gain Score = 2_1x100 (4)
vl
where Y, = Score of post-evaluation
Y, = Score of pre-evaluation
F = full score of the evaluation

Note that F-Y, becomes smaller and smaller as the gain score is taken towards
the end of the learning curve —thus giving more and more weight to Y,-Y,;. This is an
improvement over the traditional gain score considering the nature of the learning curve.

Relative Gain Score is applicable to either a single learner (corresponding to only one
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learning curve shown in Figure 2, 3 or 4), or a group of learners (corresponding to both
learning curves shown in Figure 2, 3 or 4 as well as other curves imagined between the
two curves). In the case of a group of leamers, we refer to gain score as “M,-M,”
(Mean2 - Mean1, or “group gain score”) rather than Y,-Y;,. A “group learning curve”
would be one imagined to be somewhere between the. two curves shown in Figure 2, 3,
or 4.

Kanjanawasee’s Relative Gain Score (RGS) equalizes the gain throughout the
learning/developmental curve represented by Equation (1) [Y =1 - e ™. See the proof
of this in Appendix A. However, RGS does not equalize the gain throughout the
learning/developmental curves represented by Equations (2) and (3). The present paper
presents an approach that will equalize gain throughout the learning/developmental curves

represented by all three equations. The resulting weighted gain score from this new

approach will be called the “Cumulative Relative Gain Score (CRGS).”

A New Approach in Equalizing Traditional Gain Scores

Let x be a point on the x-axis in Figure 2 and Ax be a very small interval to the
right of it. Then at x there corresponds a Ay = y, — y, or a very small gain score (in the
traditional sense). Note that with fixed Ax throughout the x-axis, Ay is not fixed but
varies according to the function Y = 1 -& . Now, at any point x on the x-axis, dividing
the corresponding Ay (or y,-y,) by dy/dx the derivative of y with respect to x, gives the
constant Ax = Ay/(dy/dx). This process equalizes the originally unequal infinitesimal

gain score y,-y,.

The derivative of Y at any x = d(1 - e‘aX)/dx

f

ae

a(1-Y) (5)
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Thus, dividing each of the original unequal infinitesimal gain scores y,-y,
by a(1-y,) would equalize the gain score y,—y, throughout the x~-axis. Since ais constant
for a particular learning curve 1-e %, dividing y,-y, by 1-y, instead of a(1 - y,) would
also equalize the gain score y,-y, throughout the x-axis. It is most interesting to also
note here that “dividing y,~y, by 1-y,” in this infinitesimal situation is precisely
Kanjanawasee’s Relative Gain Score (RGS) when the maximum raw score is unitized

(maximum raw score rescaled to 1).

For the learning curve represented by “Y =1- e (Figure 3),” the derivative

of Y is not “a(1 - y,),” but is:

d(1-e " Ydx =2 a2 Xe™ @

I

2a°X(1-Y)  since e@®'=1-Y

PRl b S AOPRIR
a

by expressing X in terms of Y

=2a+-In(1-Y).(1-Y) (¢)

Thus, in the case of learning curve represented by " ¥ =1- e (Figure 3),

dividing each of the original unéqual infinitesimal gain scores y,-y, by

2a \-In(1-y,). (1 -y1),not a(l -y1), would equalize the gain score y,-y, throughout
the x-axis. Since 2a is a constant for a particular learning curve Y = l—e_(“x’z,' dividing

Y2=¥: by o/=In(l = »,).(1 - y,) would also equalize the gain score y,-y, throughout the

x-axis. It is clear that in this case the Relative Gain Score (y,-y;)/(1 - y,) does not

equalize the traditional gain score but “(y,-y,)/ (‘/_]n(l_yl) (1 - y1))” does. Note
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the negative natural log. Since the full score of y is one, “1 - y,” is less than one and its
natural log is negative. The negative of this natural log is therefore positive—making the

eventual square root possible.

For the learning curve represented by “ Y = I (Figure 4),” the derivative

—aX +b
e

of Yis:

—aX+b
d 1~aX b)/dx= ae—aX+h 2
l+e™" (1+e™™)

e—-aX+b 1
a. )
(1 +e—aX+b) (1 +e—aX+h)

=a(1-Y).Y
=aY (1-7) (7)
Thus, in the case of learning curve represented by Y — (Figure 4),
14+ e

dividing each of the original unequal infinitesimal gain scores y,-y, by “a.y,.(1 - y1)”
would equalize the gain score y,—y, throughout the x-axis. As in the previous cases, the

constant “a” is not needed for equalization. It is interesting to note that the derivative of
1

- at “a = 1”7 is the same as “the product of the vertical line above (1 - y,) and
-aX+

I+e
the vertical line below (y,) the point on the learning curve corresponding to the point x,

where the derivative is taken.”

To summarize, when attempting to equalize infinitesimal gain score y,~y,, divide

it by “1 - y,” if the learning curve is modeled by “Y = 1-¢™% (Figure 2),” divide by
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2
“,/—-ln(l— »).(1 - y,)” if the learning curve is modeled by “Y = 1-¢ X" (Figure 3),”

and divide by “y,.(1 - y,)” if the learning curve is modeled by “ Y = 1
1+e—aX+b

(Figure 4).”

Larger Than Infinitesimal Gain. The above discussion applies to infinitesimal
gain score “y,-y,.” To equalize gain score “Y,-Y,” larger than infinitesimal, taking the

definite integral of the infinitesimal “Ay = y,-y,” is needed.

For the case of learning curve modeled by “Y = 1 e (Figure 2),” the equalized

“Yy-Y,” is:
]
Ay (-yD) + 7/ (1-9) . kaynl(Loya) = [ ——d¥
=-In(1-7) |’
=In(1-Y,)-In(1-Y,) (8)

where n goes from 1 to infinity, a is the beginning of Y and b the end of Y. The
expression in Equation (8) is the first of three forms of “Cumulative Relative Gain Score
(CRGS).” 1t is, in this case, a series of infinitesimal RGSs strung together. Compared

with a RGS - Yo =¥o _ ayi/(l-y) +ay/(1-y) + ... +8y4/(1-y1)” whereay, isat ¥,
1-7,

and Ay, is at Y, (note the constant y, in the denominator), it is clear that a CRGS =
“AY/(1-y1) +Ay2/(1-y2) + ... +Ayy/(1-ys) =In(1-Y,) — In(1-¥,)” will have a larger value
since the y in the denominator keeps increasing. Thus, Kanjanawasee’s formula RGS =

Zb__—_za_ applied to a gain that is larger than infinitesimal will tend to underestimate the

1-Y,

real relative gain.

10
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For the case of learning curve modeled by “Y = 1-¢ @xy

“Y,-Yis:
Ayt [-In(1=y).(1- y)] +ay2/ [{-In(@ = y,).(A- 3,) ] +...
+Ay,,/[,/—ln(l—y,,)-(l‘yn)]

(Figure 3),” the equalized

_J-o 1 1
“y-In(-1)1-Y

2T-1) ||

~2,-In(1-Y,) +2,/-In(1- ¥,) (9)

Equation (9) is the second of three forms of “Cumulative Relative Gain Score (CRGS).”

1

For the case of learning curve modeled by “ Y =
1+

(Figure 4),” the

equalized “ Y,-Y, ” is:

AyVIy(L-y )] +ayly(L-yl + .. +8y/ly(Lywl = [ 1

Y(1-7)
4,,(121}
Y /],

In -1, ~In -7 (10)
Y, Y, k

Equation (10) is the last of three forms of “Cumulative Relative Gain Score (CRGS).”

Summarizing the New Approach in Equalizing Traditional Gain Scores. The
new approach in equalizing the traditional gain score is summarized as shown below:

Step 1. Differentiate the learning/development curve equation with respect to X.

11
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Step 2. Convert Variable X in the expression obtained from Step 1 into Variable
Y using the learning/development curve equation.

Step 3. Divide the infinitesimal gain dY by the expression in Y obtained from
Step 2 and take a definite integral from Y = a (first evaluation score) to Y = b (second

evaluation score).

The definite integral taken in Step 3 is the main reason behind naming the resulting

index the “Cumulative” Relative Gain Score.

The Roles of the Constants “a” and “2 a” in Equations (5), (6), and (7)

Although, as mentioned previously, the constants “a” and “2 a” in Equations (5),
(6), and (7) are not needed in equalizing gain scores within the same learning curve, each
is needed in comparing gain scores across different learning curves of the same type.
Take the two learning curves in Figure 2 as an example. An infinitesimal equalized gain
score at any point “(y,-y,)/(1 - y,)” without considering the constant “a” would be the
same for both curves. However, if the constant “a” is considered, an infinitesimal
equalized gain score “(y,-y,)/[a.(1 - y,)]” for the lower curve (a = 0.07) will be larger
than the upper curve (a = 0.1). Thus, in the present system, slow growing learning curves

receive more weight that faster ones—as they should.

Another point is worth noting. Since the parameter “a” is in general less than 1.0,
an equalized relative gain score is generally larger when its value is known and used than
when its value is unknown or not used, or assumed equal to 1.0. This indicates that when
the parameter “a” is not considered, the equalized gain computed will tend to be on the

conservative side.

Application of the Relative Gain Scores (RGS) and Cumulative Relative
Gain Scores (CRGS) in Curriculum-Based Measurement (CBM) Data

Does an equalized relative gain score as outlined above have any practical application

in existing research data? Curriculum-based measurement for writing (W-CBM) data

12
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from Malecki and Jewell (2003) provide an application example. The researchers collected
six types of W-CBM scores from first graders to eighth graders in the Fall semester as
well as Spring semester providing 16 data points for each W~CBM measure. Two of
these six measures—Percentage of Words Spelled Correctly (%WSC) and Percentage of
Correct Writing Sequences (%CWS), are directly applicable to the present paper since the
maximum score is 100% or a full 1.0. The graph of development for each of them is
displayed in Figure 5 and Figure 6, respectively. The fit between the graph and the
learning curve modeled by “Y = 1-e%X (Figure 2),” is also shown. The coefficient a =
0.65 was used for the curve fitting in Figure 5, and a = 0.37 was used for the curve fitting

in Figure 6 —reflecting faster growth in %WSC.
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Figure 5 Learning curve (LCURVE) is modeled by Y=1-e* with
a = 0.65. N%WSC is %WSC rescaled to minimum

maximum = 1 (normalized to unity).

0 and

13
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Figure 6 Learning curve (LCURVE) is modeled by Y=1-¢ ** with

a = 0.37. N%CWS is %CWS rescaled to minimum = 0 and

maximum =1 (normalized to unity).

The first three columns of Table 1 presents the numerical data used in constructing
the graph shown in Figure 5. Note that both the actual data points (for the non-smooth
curve) and the idealized data points (for the smooth curve) are shown. Kanjanawasee’s
Relative Gain Scores (RGS) and the present paper’s Cumulative Relative Gain Scores
(CRGS) are also given for adjacent data points at various steps for the smooth curve.

Note the equalized gain computed for adjacent data points at various levels or steps.

14
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Table 1
First through Eighth Grade Growth in Percentage of Words Spelled Correctly (%WSC)

from the Malecki and Jewell (2003) study, Learning Curve(LCurve) Modeled by

Y = 1-e % with a = 0.65 and Y Rescaled to a Maximum of 100, Relative Gain

Scores (RGS) and Cumulative Relative Gain Scores (CRGS) Computed at 1, 2 and 4

Steps Apart
RGS(LCurve) CRGS(LCurve)

Grade xWSC LCurve

1-step 2-step 4-step 1-step 2-step 4-step
1.0 52.9 47.8
1.5 70.9 62.3 27.7 32.5
2.0 80.9 72.7 27.7 47.8 32,5 65
2.5 86.9 80.3 27.7 32.5
3.0 89.0 85.8 27.7 47.8 727 32.5 65 130
3.5 90.9 89.7 27.7 32.5
4.0 93.6 92.6 27.7 47.8 32.5 65
4.5 94.2 94.6 27.7 32.5
5.0 94.1 96.1 27.7 47.8 727 32.5 65 130
5.5 96.8 97.2 27.7 32.5
6.0 94.2 98.0 27.7 47.8 32.5 65
6.5 95.9 98.5 27.7 32.5
7.0 96.1 98.9 27.7 47.8 727 32.5 65 130
7.5 95.9 99.2 27.7 32.5
8.0 95.7 99.4 27.7 47.8 32.5 65
8.5 98.0 99.6 27.7 32.5

Note. The RGS gain of 27.7 or CRGS gain of 32.5 is for half a grade gain. The RGS gain of 47.8 or
CRGS gain of 65 is for one grade to the next grade gain. The RGS gain of 72.7 or 130 is for
gain two grades apart.

15
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Application of the Relative Gain Scores (RGS) and Cumulative Relative
Gain Scores (CRGS) in Student Learning and Developmental Data at
Darunsikkhalai School

Tangdhanakanond, Pitiyanuwat, and Archwamety (2005, 20064, 2006b) reported
research studies conducted at an experimental school in Bangkok--Darunsikkhalai School,
in which students were taught under a full-scale constructionist approach. The students
were evaluated three times over a nine-week learning period on academic outcomes
(mathematics and the Thai language) and on personal desirable characteristics outcomes
(five disciplines and four quotients). To compare the application of RGS and CRGS to
these outcome data, it was assumed that all of the learning/development curves are of the
first type [see Equation (1) and Figure 2]. Gain scores of each student from Time 1
evaluation to Time 2 evaluation as well as gain scores from Time 2 to Time 3 were
obtained. These traditional gain scores were then converted into Relative Gain Scores
(RGS) and Cumulative Relative Gain Scores (CRGS) for comparison. The RGS and
CRGS averages were as shown in Table 2. Note that the CRGS is consistently larger than
its RGS counterpart.

16
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Table 2
Time 1-2 and Time 2-3 Means of Relative Gain Scores (RGS) and Cumulative Relative

Gain Scores (CRGS) -of Students’ Learning Evaluated at Three Points in Time (N = 12)

Time 1-2 Time 2-3
Students’ learning
RGS (CRGS) RGS (CRGS)
1. Academic achievements

1.1 Mathematics

1.1.1 calculating and problem 35.39  (47.78) 36.57 (54.41)
solving skill (CAL)
1.1.2 data presentation and 27.05  (35.55) 39.46 (59.82)
analytical skill (DAT)

1.2 Thai
1.2.1 listening skill (LIS) 18.88  (23.77) 63.04 (167.07)
1.2.2 speaking skill (SPE) 13.47  (16.11) 54.13 (95.97)
1.2.3 reading skill (REA) 22.45  (27.63) 21.83 (29.80)
1.2.4 writing skill (WRI) 29.00  (39.60) 37.07 (64.41)

2. Desirable characteristics

2.1 Five disciplines
2.1.1 personal mastery (PM) 7.15  (10.81) 48.60  (101.76)
2.1.2 mental model (MM) 1573 (21.53) 24.00  (40.72)
2.1.3 shared vision (SV) 19.46  (23.54) 24.69 (31.49)
2.1.4 team learning (TL) 13.75  (24.02) 36.20 (65.61)
2.1.5 systems thinking (ST) 23.73  (29.51) 27.53 (39.62)

2.2 Four quotients
2.2.1 emotional quotient(EQ) 7.10  (11.87) 24.83  (32.79)
2.2.2 adversity quotient(AQ) 17.98  {20.64) 19.42 (26.70)
2.2.3 technology quotient(TQ) 10.98  (14.01) 52.42  (109.36)
2.2.4 moral quotient(MQ) 12.75  (17.91) 41.75 (74.38)

17
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Relative Gain Scores vs. Cumulative Relative Gain Scores

As shown earlier, Kanjanawasee’s Relative Gain Score (RGS) equalizes the gain

"aX]-—so does the

throughout the learning curve represented by Equation (1) [Y = 1-¢
present paper’s Cumulative Relative Gain Score (CRGS). What, then, is the difference

between the two indexes?

There are two basic differences between the GRS and the CRGS when applied to
a learning curve represented by Equation (1) [Y = 1—e‘ax]. First, the RGS is not
“additive” but the CRGS is. RGS over an interval plus RGS over an adjacent interval of
equal size does NOT equal the RGS taken over both intervals at once. Note in Table 1
that the RGS for Grade 1 to Grade 1.5 is 27.7 and the RGS for Grade 1.5 to Grade 2 is
also 27.7. However, the RGS for Grade 1 to Grade 2 is 47.8 rather than “27.7 + 27.7 =
55.4.” The CRGS, on the other hand, is “additive.” Note in Table 1 that the CRGS for
Grade 1 to Grade 1.5 is 32.5 and the CRGS for Grade 1.5 to Grade 2 is also 32.5.
Moreover, the CRGS for Grade 1 to Grade 2, unlike the RGS counterpart, is 32.5 + 32.5
= 65. The CRGS is additive while the RGS is not. The additivity property of a measurement
scale was discussed in Coombs, Dawes, and Tversky (1970, p. 9). The second difference

between CRGS and RGS is that CRGS is consistently larger (see Table 1).

In the case of learning curves represented by Equation (2) [Y = 1—e‘(ax)‘] or

1
Equation (3) [Y = ""';:,'X';',;], the CRGS equalizes the gain throughout the learning curve

1+
while the RGS does not. Therefore, in such a case, if equalization of gain is needed, the

CRGS should probably be used instead of RGS.

Discussion

One of the drawbacks of the traditional gain score approach is the overlooking of
the ceiling effect. In other words, for equal intervals toward the end of a learning curve,
the gain becomes smaller and smaller. This means the accomplished learner will have

difficulty making gain. The Relative Gain Score approach by Kanjanawasee (1989) has

18
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overcome this drawback. However the RGS equalizes the gain throughout the learning
curve for only one of the three common types of learning/development curves. The
present paper has taken a further step to equalize the gain throughout the learning curve
for all three common types of learning/development curves through the use of the

Cumulative Relative Gain Score (CRGS).

For the first type of learning curves [see Equation (1) and Figure 2], both the
RGS and CRGS seem legitimate in equalizing gain. The application of both indexes to
actual data from Malecki and Jewell (2003) was tried and shown in Table 1. The
application of both indexes was also tried with actual data from Tangdhanakanond et al.
(2005, 2006a, 2006b) and was as shown in Table 2. Further research should be conducted

to evaluate how these indexes compare in determining statistical significant gains.

For the second or third type of learning curves [see Equations (2) and Figure 3 as
well as Equation (3) and Figure 4], only CRGS seems legitimate in equalizing gain.
Future research should be conducted on actual learning/development data to determine
how sensitive CRGS is in detecting statistical significant gains compared with the traditional

gain scores.

Another interesting point to consider is that although the theoretical learning/
development curves assume continuous gain (see Figures 2, 3, and 4), actual data often
show loss at certain intervals among many learners. Would the sensitivity of detecting
statistical significant gain of either RGS or SRGS be affected if many learners show

losses rather than gains over a learning interval?

The basic theoretical concept of CRGS has been formulated in the présent paper.
Only further research will be able to tell how well CRGS functions in the real world of
data compared with traditional gain score. Only further research will be able to tell how
well CRGS functions in the real world of data compared with RGS. It is hoped that a

future paper would be able to provide some answers to those two questions.

19
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