CHAPTER IV

A FIXED POINT THEOREM FOR MAPPINGS

WITH A NONEXPANSIVE ITERATE

In this chapter, we obtain conditions sufficient to guarantee
existence of fixed points for mapping T such that TN is nonexpansive,

for some integer N N 1,

We first give the following definitions:

4,1 Definition, A normed vector space X is said to be uniformly convex

if, to each g >0, corresponds 8(5) > 0 such that

hx=-yll < &
whenever |Ix|l = 1, llyll = 1 and H2Gety)ll's 1- &(E).

This definition is a geometric property of the unit sphere of the
space: if the midpoint of a line segment with end points on the surface
of the sphere approaches the surface, then the end points must come closer

/

together,

Cbviously, every uniformly convex is also convex, but the converse

is not true,
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For examples in RY the Figure I is a uniformly x; but the

Figure 1T is not a uniformly convex, although it is a convex set,

4,2 Definition, For S¢C X, we denote the diameter of 3 by diam,(S).

A point x & S is a diametral point of S provided

sup {l’x-yl{ t ¥ g8 } = Aiam.(8).

BEvery boundary point of a closed ball, or cach of the four vertices
sl
of a rectangular inR~, is the simple example of diametral point of the

closed ball or the rectangular, respectively,

4,3 Definition, A convex subset K¢ X is said to have normal structure

if, for each bounded convex subset H of K which contains more than one point,

there is some point x € H which is not a diametral point of H, i.e., there
exists x € H such that

sup{ﬂx-—yﬁ s yE H } <& diam,(H),

It follows from Theorem 4,1 of [ 1] that, every uniformly convex

Banach space has normal structure,

4,4  Definition, A self-mapping T of a metric space (X,d) is said to be

quasi-nonexpansive provided T has at least one fixed point in X, and if

p &€X is any fixed point of T, then
d(T(x), p) £ d(x,p)

holds for all x¢g X,

From this definition, it is clear that, a nonexpansive mapping
T ¢+ X —=X which has at least one fixed point in X is a quasi=-nonexpansive

mapping, since if p is a fixed point of T, then
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d(T(x),p) = d(T(x),T(p)) € d(x,p)

holds for all x € X,

4,5 Deofinition. A point x is called an interior point of a set X if

x has a neighborhood 0(x) ¢ X,

4,6 Definition, Let I be either real or complex vector space. By (x,y)

we mean the real open interval tx + (1-t)y §+ 0 £t £1, 3Suppose that M

is a subset of E, A point z of M is/called an extreme (oxtremal) point of

M, if it belongs to no open interval (x,y) in M,

For example, in threc dimensional Euclidean space, overy point on
the surface of a solid sphere is an extremal point, and the eight vertices

of a solid cube are extremal points of the cube,

4,7 Definition, A normed space X is said to be strictly convex if,

every boundary point of the closed unit ball X is an extremal point, or

equivalently, if |x}t= §yH =1 and x #y, then N i(ety)ll 2 1,

4,8 Remark, Every uniformly convex normed vector space is strictly

convex, Every finite-dimensional strictly convex space is uniformly convex,
For the proof of this remark scec e.g. [2 _}on page 23.

4,9 Notations, Let F denote a nonempty, bounded,closcd and convex subsct

of the Banach space X, Let

rK(F) sup {ﬁx-y“ ryeF }
r(F) = :’Lnf{rx(F) : xeF}

{ng t e (F) = r(F)} .

U}

FC
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For examples in ‘R? let E and F denote the closed disc and rectangular,

respectively,

From the Figure, x, is the center of E and Yo is the intersection

point of the two diagonals of F, Then we have

PXO(E) = sup{’xo-xf : er} = d4
and,
b
rx(E) RoAS
for all x& B, Then
r(E) = 3nf {T(E) + xgE} = 4 ,
Hence,
E, = {xo} ;
And also,
b o2 &= - - =5
yo(F) sup{lyoy’ : yC_r} d,
and,
X
ry(F) 2 d2
for all y g F. Then
r(F) = 1nf{ry(F):y(:._jF} = d, .

Hence,
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Our principal results are thé following thedrems:
4,10 Theorem, Let K be a nonempty, closed, convex subset of a Banach
'space X, and suppose T 3 K—>K has the property that, for some integer
Na i, TN is the identity mapping on K. Suppose further that there is a
constant k satisfying |
N2 [(r1) (ne2)i 2(8-1)kc] £ 1 SHRY
such that H Tj(x)-Tj(y)Hé xH x-yH for all x, vyek, 143 £ N-1, Then

the mapping T has a fixed point in K.

The next theorem, we obtain conditions sufficient to guarantee
existence of fixed points for mapping T such that TN is nonexpansive for

some integer NA 1,

4.11 Theorem, Let X be a reflexive Banach space which has strictly
convex norm and suppose K is a nonempty, bounded, closed and convex subset
of X which possesses normal structure, Suppose the mapping T : K ——>K
has the property that for some integer N\ 1, TNis nonexpansive, and
suppose further that there is a constant k satisfying the condition (i)

of Theorem 4,10, such that }TI(x)-Tdy)H £ kllxyll for all x, ye X,

1€ 5% N-1, Then T has a fixed point in K.

Before proving the above two theorems, we establish the following

theorem and lemmas:

4,12 Theorem, (gmlian Theorem) A Banach space X is reflexive if and
only if every bounded descending sequence (transfinite) of nonempty closed

convex subsets of X have a nonempty intersection,
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For the proof of this theorem see e.g. [1. 3 ].

4.13 Lemma, If X is a reflexive Banach space and F is a nonempty bounded,

closed and convex subset of X, then F, is nonempty, closed and convex.

Proof, For eachn=1, 2, ,,,, let
R

F(xyn) - = {ye‘F v ey i £ r(F) + 1/n}, and let
C, =.QFF("'“)'

We first show thét F(x,n) is a convex set, Select any x4 & F(x,n)
and X, & F(x,n). Then _
bex L £ x® 4 ana fxxy, € 2 + U,

With t such that 0 £ t £ 1, we have

(g + (1-t)x) - x | ox, + %, - tx, - x|

fltx, - tx + tx + %, - tx - xj|

e(x, - x) + (1-)(x - x) |

i~

t Hxl- x{f + (1-t) ﬂxz‘ x i

It~

B [r(F) + 1/11] + (1-t) Vr(F) + 1/n]
= r(F) + 1/n, |

This proves the convexity of F(x,n)., Moreover, F(x,n) is closed,
By using the fact that the intersection of closed convex sets is closed

and convex, we have that Cm is closed and convex,
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We next show that C, is nonempty., Since r(F) + 1/n a r(F) for all

n and since r(F) = inf{rx(l?) it X€E F} » there exists x g F such that

r, F) £ r(F)+ i/n,

*n

Then for any xg& F, we have

i E ) € r(F) + 1/n,
implies that x & F(x,n) for all x& F, i.e., X € C,-
Moreover, if n; N\ n» then r(F) + 1/m1 Z r(F) + 1/nz. that is
F(x,ny) € F(x,n,)

for all xg F. Then for any ye€ C. we have y & F(x,ni) for all x¢ F,

v
Hence,
ye Flx,n,)
for all xg Fy i.e4y Y€ Cn .
2
Hence { Cn} is a decreasing sequence of nonempty closed and convex
sets,
o0

We claim that o ™ Qicn' In fact, for every ych we have

L}

supi hy-x H : XEF}

= r(F).

ry(F)

It follows that for any xg F,
By=x§f & r@) +1l/n

for all n, or equivalently,
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y € F(x,n)

for all n and for all xg P, i.,0.,

Yy € MFx,n) = Cn

o0 xeF

A
Cﬁ-

for all n, Hence yg& ol

Finally, by theorem 4,12 we have that Fc is nonempty closed and

convex, This proves the lemma,

4,14 Lemma, Let F be a closed convex subset of X which contains more

than one point, If F has normal structure, then

diam.(Fc) /. diam,(F),

where diam.(A) denotes the diameter of a set A,

Proof, By the definition of normal structure, F contains at least

one nondiametral point x, Then

sup{”x-y“ ryer } £ diam,(F),
and hence,

rx(F) Z_ diam.(F). ¢+ s (i)

If z and w are any two points of Fc’ then

et & swp{ljzylf: yeF} = r(®) = x(®). ... (1)
Hence, by (i) and (ii) we get
diam,(F) = sup{flz-wif z.wch}
L @)
Fs

r(F) £ diam,(F),

Then the lemma is proved completely.,
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4,15 Lemma, Let K be a nonempty, bounded, closed and comvex subset
of a reflexive Banach space X, and suppose that K has normal structure.

If T is a nonexpansive self-mapping of K, then T has a fixed point,

Proof, Let ¥ denote the collection of all nonempty closed and

convex subsets of K, each of which is mapped into itselg—;bx..\l‘\. We have

v/' o e

¥ is nonempty, since K& :f # 4/ o
U 780 )4

: Yo 4,:“}\ FHE 71,0 /
Apply Smulian Theorem (Theorom 4,12), for e{rety\ﬁf}ﬂimmm .

\'5;;“2:‘“.','5»,1'//

partially ordered sets in F has a nonempty intersection;—Then by Zorn's

lomma ¥F has a minimal element which denote by F,.

We complete the proof by showing that F consists of a single point ,

Let xe Fc' Then
Hre)-rll € Hlxylt £ v (F) = =(F)

for all yg F. Eence
{15 02 o) RN {we X fre)wll £ r(F)}

We claim that T(F A U) € (F NU), In fact, lot z be any element
of T(F N U), then there exists X, € F MU such that T(xo) = z, and since

T(F)C U and (F)C F, T(x,) € U and Nx, )€ Fy 104,
s (FTI0).

By the minimelity of F implies that FMN U = F, that is F ¢ U,

Hence T(x)e& Fc’ since
Trex)(F) = sup{ﬂT(X)-yﬂ lyEF}-



then by the definition of U and FCU we get
r F‘ _.L r F i
T(x)( ) ( ) e o 0 0 ( )

and clearly,

r(F) £ %uf”' . » o u 41)

The inequalities (i) and (ii) implies that

I‘(F) ¥ ) ,

_ rT(x)
ie., T(x) & Fc,

Then F, is mapped into itself by T, By Lemma 4,13, F, is nonempty

closed and convex subset of K, i,e., Fc c ¥,

Suppose that diam,(F) N O, Then by Lemma 4,14, Fc is properly
contained in F, Since this contradicts the minimality of F, diam.(F) = 0

and then F consists of a single point, this proves the lemma,

L,16 I_igm__m_g.. Let K be a convex subset of a Banach space and suppose
T + K—> K has the property that, for some integer N \ 2, TNis the
identity mapping on K., Suppose further that there is a constant k with
k £ (N=1)/(W-2) such that uTj(x)-Tj(y) | kHx~y§ for all x,y e K,
1 £ j£N-1, If the mapping G : K—>K is defined by

6x) = Nlx+1x) + ...+ T %)), xek,

then the mappings T and G have the same fixed points.,

"

Proof. Clearly, T(x) x implies G{x) = x, since

-1
N (Nx) = x.

G(x)
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Suppose conversely that G(x) = x, From the definition of G we
obtain
-] =1
X = N (X+T(X)+ sue F T (X))
wl -l T
x = NxE = N (T(x) # T2(x) + ove + T2 (x)).
.Then
xEh = W am) + 1300 + .+ 1)
-l i
x = (N-1) (T(x) + TZ(X) F ok AN 1(X)).

This, with the Lipschitz condition on T:.L yields, for 1 L4 L N-1,

hx - TGO I = 4 ()20 4 1200 + ves + T () - T |

il

-1 \ 2 K
= ) TG + e+ TN x) - (81T ) |

™~

(1) [ﬂT(x)-Ti(x) 1400 B2 ) -1 Golle
e o1t e vow + i7" ) rb ) il ]
o ) [nux).T(Ti‘%x))N SRR | S S ST

i+l

10 [ e D Sl O PR Ty s VP N}

I~

k(N-i)"lﬂix-Ti"%x) 4 oen + Hx=m() 1+
L P P SO ]
il 4 woen™ [ux.ﬂx) [ P Y [ PR ey NN

”X"Ti.*%x)n‘* ven # Hx-TN-(x) H],



Since “ x-Ti(x) “ does not appear in the last summand,
N-1 ;
%;"x—Ti(x)“ £ (n-1) EN-z) fx-T(x) | + (8-2) |]x-T2<x)u+ cee *
(N-Z‘)Hx-TN-%x) I ] a
k(§-1)" (3-2) 32 perts
= % N-2 Bx-T .
el .52_;.;8* () |

Since k £ (N-1)(N-2)",

N-1 N-1

i o, &
’%:r"‘ W)l £ (e1)(-2) 1) (h-2) 2; Hx-1*(x)
= i=
N-l i ‘
= iZ;, x-1"(x) I,

which. implies that,
TAX) PoL

Hence the lemma is proved,

4,17 Lemma. Let E be a strictly convex normed space, and if

“X +yll = I} + |7} andy # 0, then x = ky for some nonnegative k.
Proof, Suppose that f{x + y || = Hx§ + Hy" for x,yg E, and if
y#2lIx} and x, y # O, then we let
' X . d .= __3_’_.
o . T Uyh
Then on." = ” yoH = 1, and
. s iallE .z
[| #xg 3 ) || z' 5 i “
3 1‘;’.‘. 2 -.Z-l“
ED"X“-' Bl W= Hyl
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!
Wi

} lixll + iyl _ 1 _1__]
flxll it (nxn - nyn)

it
ol

EHM-M’H]: i

izl W

Then by definition of strictly convex we have that X, = Y, s i.e.,

i
Hxh

-—
=

fiyn *

X
Thus x = ky where k = H Hence the lemma is proved completely,

4,18 Lemma, If C is a closed convex subset of a strictly convex normed
vector space, and T ¢+ C—>C is quasi-nonexpansive, then
F(2) = {pipeCand(p) =p}

is a nonempty closed and convex set on which T is continuous.

Proof. It follows immediately from the definition of quasi-
nonexpansiveness that F(T) # ¢, and that T is continuous at each
p EF(T), since for any given & N\ 0, choose &= £, whenever {|x-p A 8
implies that I|T(x) - T(p)ll = Jlx - pi} LE.

Suppose F(T) is not closed., Then there exists a limit point x of
F(T) such that x ¢ F(T),

Since C is closed and F(T){Z C, FT(-;)Q C, implies that x g C,

Since x¢ F(T), T(x) # x. Let

ro= (&) ITx) - x}] N o,
Since x is a limit point of F(T), there exists ¥y ¢ F(T) such that
Hx =yl £ r.
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Since T is quasi=-nonexpansive mapping,
HTx) -y £ Hx -yl £ =
Hence, we get
br = HT(x) =xll £ NT(x) -yl+Hy - x| £ 2r.

This is a contradiction, and thus F(T) is closed.

Next, to prove that F(T) is convex. Suppose a, b & F(T), a # b and

04t 41, Since C is convex, ¢ = (I-t)a + th €& C. R, R

Since T is quasi-nonexpansive,

fiT(c) = alt € fle =2l and HT(c) - bH £ Jc - bl .v.a(2)

From (1), we get

c - a t(b - a) , and

i-t)(a - b). ssesskd)

c-Db
It follows from (2) and (3) that,
b =af £ fib-T(c)l + {IT(c) - all

I~

fle=b i+ He-ay

tho-al + (A-t)lla - b {l

“b -afls

Hence,

Ho = T(c)ll + HT(c) ~all

il

Hb = all
H(o=T(c)) + (T(c) - a) e eessellt)

If ( b - T(e)) = 0, then by (2), (3) and (4) we have that

HT(c) -alf = Nb-all £ Hec-an = tlp-al

Hence 1 £ t which is not true, Sinilarly (T(c) -~ a) # 0,
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Since the space is strictly convex, by lemma 4.17— end the equation (&)

there exists kA 0 such that T(c)-a = k(b - T(c)). Then
T(c) ~a = kb - kT(c)
T(c)(14k) = @ ¥ kb,
Then
T(e) = (1+k )a+(m)b

= (1-s)a + (sb)

where s = X < 0, Thus

14k
) £/ali=  s{b= a).
It follows from (2) and (3) that,
sfib=aff = fiT(c) ~a)) £ je-aff = tlhb~alf

which gives, s £ t.

Similarlys T(e) = b = (l-s)a+ sb-Db
= (1-8)a - (1-s)b
= (1-s)(a=b) , and so
(1-s)Ha =bll = HT(c) - Dbl |
L e - bl
= (1-t) fta-bli

which gives, (1-s) £ (1-t), implies that s > ¢,

Thus s = t, and so

T(c) = (@-t)at+th = e,
Hence c & F(T), i.eey ( 1=t)a+ tbecF(T) s 04 t 21,

The lemma is proved,



Proof, (of Theorem 4,10) Define the mapping G + K—> K by

———ate

G(x) = N'l(x + T(X) + .00 + TN'i(x)) i xe K.
Far 3 ® 0,8, 25 ssie DIt
Sj = sup {” GJ(X)"‘TiGj(X) “ H i= 1| 2. seny N-i}.

Then
36 || = | edx)-atedx) |

Hc;j(x)-m"1 ':G'j(x)+TGj(x)+ +TN-1Gj(x)] “

I ! [NGj(x)_l N\ N [Gj(x)+TG'j(x)+...+TN-1Gj(x)]“

N

PE T T —=
vt :,; 2 y-r 63 |l

-1
(N-I)N Sj. * e e (1)
Next we compare &, with & . For j=1, 2, v.. , and 1 £ 3 £ N-1,

led1'ed |l = lloed orried |l

]

& gt “lGj-l(x)-TiGj(x) |+ 767 (x)-rted(x) I+
N-1 j-1 o
o H||T & (x)-TlGJ(X){{]'
ie.,
.8 door R -1 N=1 : e
l| 67 ¢x)-red(x) | ¢ = le”TpG‘J—l(x)-TlGJ(x)“ e 4 o s {8
p:

-1 i 3 ) ’ K
¥ [“GJ(X)-TGJ(X)H+“GJ(x)-T2GJ(x)“+ +|lGJ(x)-TN—1Gj(x)lH

| v [‘ 3 et (s +TN'1Gj‘1<x)] -1630) |
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There are (N-l1) terms in the last summand of the term

| P63t (x)-red(x) ||

with p # i. For fixed p, we have

p .-1 j.. " .-1 .
| %67 el || £ ke -l L. L. 3
for an appropriate integer s, 1 £ s £ §-1, ( Note that if p AN i, then

s = p-i while if p « i, then s = N4p-i ), Since

iy 3 - o
il °6” (x)-GJ(X) I uTSG‘] 1(X)--G(G'J’l(X)) “

s j-1 Net j1 -1
“ TG (x)=¥ [G‘] (x)+TGJ (X)+ oas +

il

TN—lGj..l(x):' ”.

i.ec'

i~

1 M=t ; .
N 12“TSGJ-]'(x)-TpGJ-l(X)“: e 0. oW

Il 1563 )63y ||

and since

e P o | £ . S5.1-

I~

( In fact “Tst-l(x)-TpGj-l(x) “ k. ” TiGj-l(x)-Gj_l(x) “, where

1£431£N-1, and if s \ p, then i = s-p, and if s £ p, then i = N+s~p,)
From (4), we get

%63 a3y | = w7 [”Tscj'lcx)-ej‘l(x)ll +[17%9™ Goy-16 9™ () ||

+oaee ”TSGj-l(x)—Ts-lGj_l(x) It

Hre?™ (o) -r™ 63 ey Hl+ Hr%69 () -2 %63 |
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* i “Tsej'l(x)~TN'1Gj’1(x) I

for 1 £ s A N-1, Then

I~

”TSGj-l(x)-Gj(x) I

-1 '
N [5;_1 + (W-2)k. 8:,-1]

\'1, 1 —1
I\t . 83-1 + (1\-2)N k. 83_1 e 0 e (5)

.4,

for 1 &£ s &N-1,

Combining (5) with (1), (2) and (3) yields
ledo-riaden | £ wtoe1) i [“TpG‘j-l(x)-'I‘iGj(x) ||]+
i "

N"ln TiGj'l(x)—TiGj(x) ”

L (N_ﬁ}.)k .él;zm_y 7697 (x)=6(x) If +
1 lle? 0670 |l
L Qi1 [(l%-rz)k.%_l +%,3;_1] +1 k(blz?)'é;‘l
Therefore
Sj = sup DlGj(x)-TiGj(x)“; oS Br e did ]

£ N-ZEN-l)(N-Z)k2+ 2(N-1)k ].83_1 .

Let ¢ = I\T“2 6N—1)(N-2)k2+ Z(N-l)k]. Then ¢ 4 1, by the hypothesis,

Hence Sj Z (%_1 for =1, 2, 3y ¢e¢s » and so

I~

| e3exy-cT () ) (-1)8 " 8,

IN

(W=1 )N-lc &
J-1

(¢}

L Ce j"'l L Cz.gj_z L .,.LCJ_S H
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5.6, “ Gj(x)-Gj+1(x) ” ik cj.A:) for J=1, 2, sees

Then the sequence {Gn(x)} is a Cauchy sequence, " In fact, for any

P 2 0, we have

602 | ¢ Hlane-aioll +lle™ - 2ell+ ... +
I|Gn+p'1(x)-en+p(x)l1

oL cn.é; & cn’fié‘o TERR Ay cn"'pflé‘o

mHp=~1

)

n+l
30( i

2+ ves + cp_l)

Scn(1+c+c
(o]

£ Scn( . % 8
it l-c

But the expression on the right can be made arbitrarily small for

sufficiently large n, since ¢ £ 1,

Since K is complete ( because K is a closed subset of a Banach space),

there exists z & X such that

lin G(x) = gz,
N—> 00
and then

-1
lin 6(G" (x)) = z.
n—s oo

We next show that G is continuous on K,

Let x & K, Given £ > 0 and choose 8 = 5;\7-1 . Then whenever
» 1+Nk~k

n X=X || Z S we have

: “ Ti(xo)-Ti(x) H £kl X=X ” £ kS:, for 1 £ i £ N-1,



Hence

N'i[ﬁxo~xll+llT(xo)-T(x)ll+ coe H T ()T ()| ]

& [8 + (§-1)k 3] ,

implies that

-1 - Ne '." ..

N “(xo+‘l‘(xo)+ +T1\ 1(xo)) - (xHT(x)+ o4e +T 1(x)) HL N 1[&+ (N-1)k'8],

and hence ' ‘
“G(xo)-G(x) H L N-lté\+ (I\'E-l)kg]

S (14Wk-k)
e

= & .,

Then G is continuous at Xq and then on X. Thus

lin (6™ =) G Lin aid T R

n-» 08 n-> 0

Hence G(z) = 2z, i.e., the limit z of Gn(x) is fixed under G.

If N 2, then k £ (N-1) , since if k = (ii-1) , then
EN-zg (T=2)

N"Z[(N-1)(1,\1-2)k2+ 2(N-1)k] > N -(N-l)(l‘I-z)(_l}T_:_l.)2+2(1\1-1)(_1}1__-—_1_)
3 (N=2)? (§=2)
= N r(23;_-‘1)3+ 2(5;_;)2]
[(N=2) (N=2)

= N TN-1)2(1J+1)]

1+ 8% 11+ 1
N2 (N-2)

—

i

.3 1,

which contradicts the hypothesis,
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Then by Lemma 4,16 we have that z is also a fixed point of T,

For N = 2, Then
G(x) = 2-1(x + T(x)).
Suppose z is any fixed point of G, Then

z = G(z) 2’1(?, + T(z)),

implies that
T(Z) - Z,

Hence the theorem is proved completely,

Proof, (of Theorem 4,11) Since TNis a nonexpansive mapping,
by Lemma 4,15 we have that TN has a nonempty fixed point set C in K,
N
Then T' is also a quasi-nonexpansive mapping, By Lemma 4,18 we get

C is a closed and convex set,

1 N+1
Let x& C., Then Tr(x) = x,and 8o T (x) = T(x),
N
ieqy T (T(x)) = T(x). Hence T(x)E C, that is T is a self-mapping

of C, 4,8, T + C —>C, and T is the identity mapping on C.

Thus the assumptions for Theorem 4,10 are satisfied for T on C

yielding a fixed point for T in C,

Hence the theorem is proved completely,
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