CHAPTER III
FUNCTIONAL EQUATIONS AND BINARY OPERATIONS

The materials of this chapter are drawn from reference [3].

In this chapter, we want to study the relations between some
functional equations to some properties of the binary operations of
the domain and range spacese We begin these discussion by reviewing

the following definitions 3

Definition 3.1. A semi-group is a pair (G,* ) where G is a set and

"x" is a binary operation on G such that the associative law holds

x #(y %2) = (x % ¥) %2z

Definition 3.2. A monoid (Gy %) is a semi-group with an identity

elementa

Definition 3.3. A left cancellative semi-group (G, %) is a semi-group

such that the left cancellation law holds j;i.e, for any x, z, z', if
X% 2 = X %32'

then 2 = z's

Definition 3.4. A zero element of a semi-group (G, %) is an element

O such that O * x = x% 0 =0 for all x in G.

Definition 3.5. Let f be a function defined over (G, ). The right

translation of f by a , fa’ is defined by

fa(x) = f(x *a)e
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Convention. Throughout this chapter (Gyx ) is a semiegroupe

Tunctional Equations Related to Some Properties of Binary Operations.

Let £t (Gy % ) (Gy* Do

We now define a new binary operation on G, depending on f, by

(3¢1) xay = flxx£(y)).

Lemma 2.6. If@ and x are commutative binary operations, then (G,0)

is a semi-groupe.

Proof, Sincer is commutative, x = y = y =3 x. Thus by Eq(3.1),

f(x » £(y)) fly *£f(x))

FOF(x) * y) ( * is commutative).

(3.2)

Then (x@ y)ouz fxey y *£(z))

= £(£(x *£(y))* £(2))

= 2(xx2(y)) % £20))  (Bq(3.2)ana £302)=£(£(2)))

(22

= flx* £ “(z)% £(y)) (#is associative and commutative)

@lLYxy) (Eq (3.2))

= f(f(xxf
= f(£(f(x) * £(z))*y) (Eq (3.2))
= £f(f(x) x£(2) * £(y)) (BEq (3.2))

= £(f(x) % £(y) » £(2)) (%is commutative).

@
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Similary, x 0 (y  z) f(x xf(y @ z))
= f(x *£(£(y »£(2))))
= F(£(x) *£(y » £(2)))
= £(£(y »£(2)) % £(x))
= £(£(y) »£(z) % £(x))
= £(£(x) *£(y) *£(z))
= (x T y)dz.
Hence (G, (¥ ) is a semi=-group/
Lemma 3s7. If (G,(3 ) is a monoid and e is an identity for a

commutative (G, % ) which is also an idempotent for {31, then [ is

commutative,

Proofe Since I is associativey, (xm y)@z = xQ(¥ O z). Therefore

f(xx f(y))az x D f(y % £(z))

F(f(xx £(y £(z)) flxxf(£(y % £(z))))

(343) £x %23 (3% £(2)))e

Suppose e is an identity for (G, *),i.e, x*e = ex x = x for all
x € Ge Suppose also that e is an idempotent for [, ieey, el e = ec.

Then by Eq(3.1),

flex f£(e)) = f(a)(e) = Qe

Teke x = e in Eq(3.3) we get

£(£lex £(y)) % £(2)) = £le %22 (yx £(2)))
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so that

(3 .14)- (@ (yy %2y = £33y x£(2))s

Let y = e in Eq(3.4) ; we have

(£ () x £(2)) = £ (a).
But f(Z)(e) = e 3 hence
(3.5) £(2) () « .

Now applying f to each member of Eq(3.4),

£ gy, 212)) = £y L2

f(Z)(y x£(z))

follows from Eq (3.5)s Now from the last equation, replacing f(z)
by f(Z)(z), we get
£$2) (£(2) (g o 22X DGR (4 2(D (1)),

By interchanging y and z, we have

o 258002} S WPRIHHNTIER] 2.9(2) (o0
Since * is commutative, the last two equations give
(36) £ @ ()% @ (2)) = £ (322D (2)) = £ (24 £ ().
Replacing #(z) by £'27(s) 4n By (3:3)  we have

p(e(x % 23 * £22(2)) = 2x 22D (32 £ ()
and for z = e, we obtain

2(e(x % 2(y)) % £20(e)) = 2(x x£{D (32 2D (e))).

But f(a)(e) = e 3 hence



23

(3.7) £(2) (5 w£(3)) fxx £$2) (3))

which gives with y = e,

£(2) (2 £(e)) fxx £ (e)).

Thus

(3.8) £2) (x x£(e))

By applying f(2) to Eq (3.8) we have

f(X)o

1t}

e (e £0)) = £

and then from Eq (3.5), f(z)(x xf(e)) = f(3)(x).

Therefore, from the last equation and Eq (3.8), we get
(349) £33 (x) /2w,
Now applying f to Eq (3.7)

£ (e 83 = 2P %6 ()

which gives, by Eq (3.9), f(x x£(y)) = f(Z)(x*f(a)(y))-

Therefore by Eq (3.1),
xmy = £ @ £y,

Finally, by interchanging x and y and then from Eq (3.6) we get the

conclusion of the lemma, i.e,
yax = £ @) 2 1D wf @) - xmy .

Hence 3 is commutative/

Definition 3,8, A function f : (Gy% ) —> (G, *) for which [ is

commutative is called a multiplicative symmetric (MS) function.
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In other word, f is multiplicative symmetric function if f satisfies

flxx £f(y)) = f(y *x£f(x)).

Theorem 3.,9. Let (G, % ) be a commutative monoid and a function

f: (Gy x) —>» (G, %) such that f(e) = e where e is the identity of

(Gy *)e Then (G, @3 ) is a semi~group if and only if f is a multipli-

cative symmetric function, /.;9‘\"‘""\
(78N \a
Proof., Assume that f is MSe. Then by Lemma 3.6, (G, Dl,)‘}q(\}ﬁ a ‘_
NN
(7

semi-group. \\fymw

Conversely, the hypothesis el x = xT e implies
flex £(x)) ) = f(x »f(e))

by virtue of Eq (3.1). Since f(e) = e, it follows that f(Z)(x) = f(x).

Therefore

£29053 L s,
Thus e is an idempotent for 8O0 . By Lemma 3.7, [J is commutative.
Hence f is a MS function/

Let us now define :

(3410) x Ay = xxf(y).

Definition 3.10. A function f : (Gy% )= (G, *) is called a

semi-multiplicative symmetric (SMS) function if f(x *f(y)) = f(x)* f(y).

Theorem 3+11. Let (G, % )_ be a left cancellative semi=-group, and a
function f : (G, #) ——>(Gy % )e Then (G, &) is a semi-group if and

only if f is a semi-multiplicative syrﬁmetric function.
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Proof. Assume (G, ) is a semi=groups Then by Eq (3410)

(x Ay)D z = (xx£(y)) »£(z) = x * (£(y) »£(2))

xQ (yA z) =x % fly» £(2))e"
Since (G, % ) is a left caﬁéellative scmi-group,

flyx £(z)) = f£(y) x£(2).
Hence f is SMS.

Jonversely assdime that £ is SMS, Then

fly* £(2)) = £(y) %x£(z)
so that, xx f(yx £(2)) =ex x(£(y) x£(2)) = (xx* £(y)) =x£(z),
Hence x &y A z) #Z&/NygIAz.

Now the proposition is completely proved/

Let us define now :

(3e11) x 1y fly % X)e

Definition 3.12. A function £ : (G, %)—> (Gyx ) is called an

interpolating (I) function if f(x xf(y)) = flxxy),

o 1
Theorem 3,13. Let (G,* ) be a commutative monolid and ¢ the identity
element of (G,% ) which is an idempotent for | . A necessary and
sufficient condition for (G, 1) to be a commutative semi-group is

that f is an interpolating function,

Proof. Suppose first that (G,J..) is a commutative semi-groupe. Then
by Eq (3.11),

(x Lyls

: x 1y | 2)

f((y L 2) *x) = £(f(z*y) % x).

fl

i) L w0 xtye 93
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Therefore, f(zx f(yx x)) = f(f(zxy) *x)e

Take x = e in the last equation; we get

(3.12)  £(zx £(y)) = 2(£(z xy)) = £2)(zx3).

Put y = e in Eq (3.12) to obtain

£(zx £(e)) = £2)(5),
But from the hypothesis, e L e = e and hence f(ex e) = f(e) = e ;
so that

flzxe) = £(z) = £y,
Thus Eq (3.12) becomes

“flzx £f(y)) = flzx y)
and f is an interpolating function,

On the other hand, assume f is an interpolating function,i.e,

flxx£(y)) = £(x *y).

Then (xly)lz flzx £f(yx x))

f(z x(y ¥x))

f(x xf(z *xy))

flxx (z%y))
f(flzxy)xx) = xl(y Laz),

Since x is commutative, x Ll y = f(yx x) = f(x *xy) =y L x.

Thus (G, 1) is a commutative semi-group/

Some Classes of Functional Equationse.

From the first section, we have seen some classes of functions,
namely, the multiplicative symmetric, the semi-multiplicative
symmetric and the interpolating functions. In this section, we will

define a new class of functions

the demi-multiplicative symmetric

function, and then we shall consider some elementary properties of all
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these functions.

Definition 3.1%. A function f : (G, *) —> (G, *) is called a

demi=-multiplicative symmetric (DMS) function if f(xx £(y))

= £(£(x) »£(y)).

Lemma 3¢15. Let (G, » ) be a commutative semi-group and f : G —% G
be a function of the MS or SMS type. Then for any a € G, fa is of

the same type.

Proofe Suppose f is a MS function. We prove that fa: X X% a

is also a MS functione

L]

£o(x xf (y)) = £(xxf () *xa) = £((x »£(y xa)) *a)
= f((x %xa) » f(y*a))

= f((y %a) % f(xxa)) (f is MS)

= £((y xa) *£_(x)

= £ (y %2, ()

Therefore fa is MS.
Similarly, if f is SMS we can show that fa is of the same type.

Hence the lemma is proved/

This lemma will be useful to change " scales " on (G, *).
We shall say that a semi-group (Go, %) is a group with zero if

(G = Go\‘{é}’*') is a group and O is the zero element of Go‘

Lomma 3¢16. Let (G y% ) be a group with a zero and f be a MS function

on (Gyy #)e Then £(0)'=0 or f is constant on G, e
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Proof. Since f is MS on (Go,*-), if (x *£(y)) = £(y #£(x) ).
Take x = O, then

£(0 x£(y)) = £(0) = £(y *£(0))e
If f£(0) # 0, then for any % in Go\{o} = G,

x=xxe = xx(£(0)) 1% £0)
so that we can.write X as ‘

x = y *£(0) where y = xx (ecoN=",
Thus

f(x)

£y % £(0))

£(0x £(y))

by the MS-property of f. Therefore

f(x) = £(0) (x € G)o
That is f is constant on Go'

Hence the lemma is proved/

Remarke. This lemma can be used for semi-multiplicative symmetric
function or interpolating function without commutativity assumptione.
The proof of this remark is similar to that of Lemma 3.16.
Lemma 3,17. Let (G, *) be a semi-group. Let Go = G k){o}- and
define O xx = x %0 = 0O Let f : G—3G. We can extend f to
Yoy ! Gq > G,

by defining f(o)(o) = 0, If f is MS, SMS, DMS or I on (G!*'),fko)

is of thec same type on (GO,* e
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Proofe Assume f is MS on (G, % )e Then froy is MS on (G4 % )e

To show that f is MS on (Gog‘*), it suffices to show that

(0)

Suppose X 03 then

Mot gt & gyt

o

by definitions. Now consider

£00y(T *£(0)(0)) = £y (¥ #0) = £4y(0) = 0.
Therefore f(o)(0a+f(o)(y)) = f(o)(y *f(o)(O)),and £ o) is MS
on (Gyy *)e

Similarly, if f is SMS, DMS or I on (G, x ), we can show that
5

0) is of the same type on (Gq'* Y/
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