CHAPTER II

SOME FUNCTIONAL EQUATIONS OF THE CAUCHY TYPE

f(x oy) = flx) » f(y); £(x o £(y)) = £(x) % £(£(y)).

The materials of this chapter are based on the references {l]

and {5] s and all functions are assumed tomap the reals R, into itself.

Cauchy functional equations are given by

(2.1) f(x + y) = Fx) [+ £)
(2.2) f(x + y) & #Ax) . £(y)
(2.3) f(x « y) =/ thx¥—vt £(¥)
(2.4) f(x . y) 7=/ Blxmiieshy).

Continuous Solutions of Eq (2.1). Suppose £ is a solution of Eq(2.1).

Then putting x = O = y, Eg (2.1) becomes

£(0) £(0) + £(0)

L{}

so that

)
o
.

(2:5) £(0)

Lemma 2.1. f(n) nf(1l) , for all ne Z .

Proof. We prove first when n 3, 0 by induction on n. Since Eq(2.5)
implies that the lemma holds for n = O and the conclusion is clearly
for n = 1, assume the lemma holds for lesser values of n. Then

f(n) f(n=-1+1) = f(n-1) + £(1)

(n « 1) £(1) + £li) = =afll)

by induction hypothesis. Thus the lemma holds for n % O.



If n is a positive integer, then
0 =£(0) = f(n=-mn) = f(n) + £(-n).
Therefore by the first part of the proof,
f(-n) = -f(n) = -nf(1).

Hence the lemma holds for any integer n /

Lemma 2.2. f(r) = rf(l), for any rational number r.

Proof. For g€ 7 ‘5 0),

X 1 b 2
£(1) = f (q~a) = f (a + eee + =)

AR NG -, + £(2)

q q
q times
1
. qf‘(a) ’
so that
(2.6) f(é) . i“” tTeZ 5 0)).

Let r be any positive rational number, r = g for p,(;éll (>0)

and q G ad 0.

f(r)

n

- 1
f(q) = f(p. q)

f('l'+ eeo + })
q q
\-—W

p times

]
pf (a)

¥
= q

i

by Eq (2.6). Hence f(r) = rf(l) for r » €. Since £(0) = 0,
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£f(-r) = «f(r). Thus f{r): = r£@) for any rational number r /
Now we will prove the first main results :

Theorem 2.i3. Ig f :'l——éft is a function satisfying

(2.3 fix+y) .= £(x) + £(y)
and if f is continuous at x = C, then (f is continuous overywhere

and) f(x) = ax for some a in R .

Proof. Suppose f is continuous at x = 0. Given any € » O, there
exists J 7 O such that

{x} ¢ & dimplies tE(x) - £} = ‘f(x)‘( £ .
Then, if for any x and ¥ inR, |x - y\(é then ‘f(x - i<t ,
But f£(x - »] = 1) = £}
hence

‘f(x) - f(y)}( ——

Therefore f is everywhere continuous.

Let x Eﬁ{” Since the rationals are dense inﬁﬁb, we can find
a sequence &rhk'of rationals converges to x. Since f is continuous,

lim f(rn) = f(lim r ) = £lx)
n—@ n-»m =

But by Lemma 2.2,

lim f(rn) = 1lim r £(1) = xf(1).
n-» a0 n— ol -

Therefore,

f(x)

x£(1) (x. € ).
(x efﬂqu Yo

f(x)

&
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for some a = £(1) in W . Moreover, this function satisfies Eq (2.1).

Thus the theorem is proved /

Continuous Solutions of Eq (2.2)s

To solve this equation, we will construct a new function, based
on f, which satisfies Eq (2:1) whose continuous solutions are readily

available.

Theorem 2.4, If f :“24**!‘{,()(D is a continuous function satisfies

B (2.2), then f(x) = A/ /for some )\inR.

Proof. Consider the diagram :

(R, ) e BLBER) | 1, &
h

W) *

where g = hof. Since h and f are continuous, g is also continuous
and

g{x) = 1n (£f(x)).
Then

In (f(x + y)) = 1n (f(x) . £(y))

R
~
b
+
e
N

]

In (f(x)) + 1n (£(y))

g(x) + g(y).
By applying Theorem 2.3,
g{x) = ax (xe®R)

for some a in “2v . Therefore



In (f(x)) = ax.

X
Hence £(x) = &F &« X where A= o in L
Moreover, this function satisfies Eq (2.2). Hence the theorem is now

proved /

Continuous Solutions of Eg (243)s

We will solve Eq (2.3) by the same method as we have used in

solving Eq (2.2).

Theorem 2,5. If f :IR——)TR,(?O) is a continuous function satis-

fies Eq (2,3), then f(x) = %/ tho sone angn W,

Proof. Consider the diagram :

(R, » L LB R, W) 1nx

By Thz

(R, S oht0), ). =

- &N

where g = h2° fo'hl « Since hl' £ and h2 are continuous, g is conti-
nuous and

g(x) = 1n (£(e¥)).
Then

g8(x + y) 1n (£(e®Y)) = 1n (£(e%. &¥))

il

in (£(eX) . £(e7)) = 1n (£(eX)) + 1n (£(e7))

g(x) + g(y).

Therefore, by applying Theorem 2,3, for some a 1nR

g(X) = ax (x & ‘R,). N “5;:? (»1?%””



Thus 1In (£(e™)) = ax .
That is £f(e¥) = &**.
Let x = 1n t. Then
$eAY . et by | e ¥ e
so that
$w) 2w (x eR).

Conversely, this function elearly satisfies Eq (2.3) /

Continuous Solutions of Eg (2.4).

Theorem 2.6. If f : B (/%0) s R is a continuous function satis-

fies Eq (2.4), then f(x) = a 1n x for some a in“lv .

‘Proof. Consider the diagram :

(Rs +) --——-————-——)g (Rq Ly
x h
~m\‘\\\\\\‘~\\* }. £
eX (E((j)O),.)

where g = f o hs Since f and h are continuous, g is continuous and

glx) = £(e5).
Therefore,

glx+y) = £(&7 9

= fle'. &) = £(X) + £(eV)

]

g(x) + gly).
Apply Theorem 2,3, we have for some a in “(

g(x) = ax (x €eR).



x
Thus f(e )

]

ax (xeR)

so that £(t) alnt (t €R).'

Moreover, this function satisfies Eq (2.4).

Hence the theorem is proved /

Functional Equations of Cauchy Type.

In this section, we shall consider some variations of Cauchy's

functional equations :

(2.7) f(x + £(y)) = £(x) + £(£(y))
(2.8) f(x + £(y)) =/ fx) < £(£(y))
(2e9) f(x . £(y)) 3 A(x)VTE(£(y))
(2.10) f(x . £(y)) = £(x) + £(£(y)).

Eq (2.7). Let f be a continuous solution of Eq (2.7): We then

immediately get

I

(2.11) £(x + 2z) APGAN TN ez ¢ £(R)).
If f = c, then

c = ¢+ C

-which implies that c¢ = O so that we get a proposition :

Proposition 2.7- If f is identically constant, then f = O.

Now further assume that f is non-constant and let a = f(xo) £0.
Then
£f(£(y)) = £(0 + £(y)) = £(0) + £(£(y)).

Thus f(0) = 0.



Lemma 2.8. f(na) = nf(a) (n e ).
Proof. We will show that f(na) = nf(a) for all n & Z ( % 0).

The case n = O is true because f(0) = O. TFor n = 1,
£(1.a) = L.8(a)}
Assume the lemma holds for lesser values of n. Then from induction

hypothesis,

f(n . a) = f(na - a + a) = f(na - a) + f(a)

=) f(a) + f(a)

nf(a).

"

Hence by induction, the lemma holds for all non-Begative integers,
If n is a non-negative integer, then
0 = £(0) = f(na = na) = f(na) + f(-na)
by another inductive argument so that
f(ena) = = f(na).

Therefore the lemma holds for all integers n /
Lemma 2;2. f(ra) = rf(a) , for any rational number r,

Proof. Since 0, a € (TR ) and £ is continuous, it follows from
the Intermediate Value Theorem that ?1 € £(R) for all g€ Z (20).

Let r = Ia) where p , q € £ (20).

£2{a) = $HE.8) = LOR ¥ Tes &)
q q A I T |
q times
a
= q-f (a)
by Eq (2.11) so that
(2.12) £(3) = %f(a).

q
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Now f(ra) = f( E‘a) = f(?-. s o e e)
q Qq
p times
1
o R ) ww s sla)
£ q * q

by Eq (2.11) and Eq (2.12){ Hence for any non-negative rational

number r,

f(ra) = rf(a) .

But 0 = £(0) = f(ra = ra) = f(ra) + f(-ra), hence f(-ra) = -f(ral.

Therefore the lemma holds for all rational number /
Now we will prové H

Theorem 2,10, P 5 ot fﬁ%*—éaﬁ{ is a continuous function satisfying

(2.7 flx + £f(y)) = f£(x) + £(£(y)),

then f(x) = kx for some k in “2~ .

Proof. We may assume that f §é O
For any x in “2\, there exists a sequence Ty Togeee of
rational number such that njieia converging to x, where a = f(xo)%-O.

Since f is continucus, -

lim f(rna) = f(lim rna) g fx) .
n- e ' n->g0
But from Lemma 2.9,
lim f£(r_.a) = lim (r_-£(a)) = % . f(a).
n n a
n-3of n—>o0
Hence £f(x) = g f(a)
= kx
where k = £{a) is in TRu. Moreover, this function clearly
a

satisfies Bq (2.7).
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Hence the theorem is completely proved /

Eq (2.38), Suppose that f is a continuous solution of Eq (2.8).
First, suppose that f(f(y)) = O for all y, then f(x + f(y)) = ©
for all x , ¥ in.F{ o If further f 3& 0O, there exists 5 in “{ such

that f(yo) F# 0. Therefore

f(x + f(yo)) f(x) . f(f(yo))

g ()

which contradicts to the assumption that f ¢ O. Hence

Proposition 2.11. If £ (£(y)) = O for all y, then f is identically

O.

Suppose now that there exists y such that f(f(yo)) %= O.
Then from Eq (2.8),
£(£(y ) = £(0 + £y )) = £(0) . £(£(y )).

Therefore f(0) = 1.

Proposition 2.12. If there exists y, such that f(f(yo)) # O. Then

£(0) = 1.
(0) 1 a

Henceforth we shall assume that f(0) = 1, and f(1)5£<3. Note
that f(1) = O implies f(x + 1) = f(x) . f(1) = O for all x which is

impossible.
Lemma 2.13.- For n € Z., flx + n) = £(x) £(1)® so that £(1)%= (£(1) ",

Proof. By induction on n, the lemma is obviously true for n = O.
(Here we need f(1) 3 O). Now Eq (2.8) gives f(x + 1) = £(x+£(0))

= f(x) . £(1) so that the lemma holds for n = 1.



Assume the lemma holds for lesser values of n. Therefore

f(x+n) =f(x+n=-14+1) =f(x+n=-1) . £(1)
= £(x) £V 2(1) = 210 £,
by induetion hypothesis.
Hence the lemma holds for any non—négative integer.
Since f£(0) = 1 and for any positive integer n
£(x) = f(x - n+1n) = f(x -n) £,
$lx) £(1)"" .

f(x - n)
Thus f(x + 2) = f£(x) £(1)® for all n €F..

Take now x = O. Then ¥ 4/2(0) (D= £(1)* (neZ ) /

Lemma 2.14. f(r) = £(1)¥ , for any rational number r.

13

‘Proof. Since 0, 1 € f(R), SO f(R) for all q € Z (> 0) by the

q
Intermediate Value Theorem.

For q € F,(>0), £(1) 2

= q)

£(

1 &
f - ®e e P
(q+ +q)

| S ——
q times

- £ (9
q
. 1
by applying Eq (2.8) repeatedly q times and since : e (R,

then

1 1/q
P
Let r = - where p , q &Z()O),
e s B e CRR L e D
q q :
p times e 1l

. _ s
ol (%)p w Loyt o= e
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by Eq (2.8) and Eq (2,13). But for any positive rational r,
f("r) . f(r)

£r) Ty

1 = f(-r + r)

hence f(-r)

0}

Therefore the lemma holds for all rational numbers /
Now we will prove a main result :

Theorem 2,15, If f : R-——yR is a continuous function satisfying

(2.8) e 5 My wafla) . SEH0RYS

then £f = 0 or f(x) AX  for some non-zero A in .

Proof. Suppose f ¥ O. Then £(0) = 1 by Proposition 2.11 and 2.12.
For any x in R , there exists a sequence Tiy Topeee of rational

numbers converging to x. Since f is continuous

1im f(r ) = £( lim r ) = £(x).
n n
n—>p0 n— o0

But by Lemma 2.1k,

T
Mm  f(r) “BN3dm £(2) D £ (D).
n-»00 n—sod
Hence £(x) = £(1)* = A for some non-zero A inTR.

Moreover, this function satisfies Eq (2.8).

Hence the theorem is proved /

Eq (2.9). Let f be a solution of Eq (2.9).
Note first that if f = c¢, then from Eq (2.9) we have
C = CeC

Therefore ¢ = O or 1.

Proposition 2.16. - If f is a constant function, then f 0 or 1.
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Now assume that £ is non-constante.

Theorem 2.17. If f R (>0)—3M (D0) is a continuocus function

‘ satisfying
(2.9) f(x £(y)) = £(x) £(£(y))e.
" Then f(x) = x° for some ¢ in, JIR.
Proof. Consider the diagram : /
ARy ®) B (R, ) i &
1/ h2 h1 l\
e (R(y0),00 ——— Ry 0,2
where g = hjo £ o h,. Since h;, f and h, are continuous, g is
continuous and
. g(x) = 1n (£(e¥)). :
Then g (x + g(y)) = 1n (£(e¥*20 £(e7) 5,
= 1n (£(*, £(e¥)))
= 1n (£f(e*) , £(£(eN)))
= 1n (£(e¥)) + 1n (£(£(eY)))
- 1n (£0%)) + 1n (£(ei® T(eT)y)
= g(x) + glgly)).
By applying Theorem 2.10,
g(x) = ex (x€R)
for some ¢ in W, . Thus
r 14 D) = ox
£(e®) = X
Therefore f(x) = x (x €R).

00001l
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Moreover, this funcdtion satisfies Eq (2.9).

Hence the fheorem is now eompletely proved /

Eq (2.10). Let £ be a solution of Eq (2.10).
Let x =1 in Eq (2.10). Thén
£f(1 . £(y)) = £(1) + £(£(y))
for any y in w H therefére

£(1) 0

Thus f(x £(1)) f(x) + £(£(1))

f(x) + £(0).

But f(x f(1)) = £(x . 0) = £(0) ; hence
£(0) = f(x) + £(0)
which implies that f(x) = O for all x.

Hence the function which satisfies Eq (2.10) is the zero

-~ Yunction. Then we have proved :

Theorem 2.18. If f Y p— ﬂ2~ is & function which satisfies

Eq (2.10), then f is identically zero.

Jensen's Functional Equationse.

In this section, we shall consider the functional equation

of the form :

¢ (B X _ Ix) + £fl3)
(-—2—-) ———uz-—-—-

which is known as Jensen's equation (see [l] )e This functional
equations can be reduced to the Cauchy's functional equation :

glx +y) = g(x) + g(y);
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The particular functional equation we shall solve is given by :

(2414) £ (’.‘.-i.z.f_(.!l) = E(.’-‘l_.;i.ﬁl’) :

+

To find the continuous solutions of this equation,:we will reduce
it to a semi-multiplicative symmetric equation :

glx + g(y)) = g(x) +‘g($).'
By assuming the validity of Theorem 6.6 in chapter VI, we will find
the continuous solutions of Eq (2.14).

For convenience, let us state that theorem first.

Theoremr-6.6. - If & : (W /AN wied> (R, +) is a continuous function

satisfying
(2+15) glx + g(y)) = gx) + gly)

then g identically O or g(x) = x + ¢ for some ¢ in R.

Lemma 2.19. If f :'ﬁi-——aﬁplsatisfies Eq (2.14), and if there

exists an x_ in TPs with f(xo) = 0, then £(0) = O.

Proof., Set x = f(y) in Eg (2.14). Then

pe(y)) = £ (32 ; gy f(f(y;)+ £(y)
so that -
(2.16) £OEC(y)) & flyk

If f(xo) = 0, then it follows from Eq (2.16) that
£f(£(x )) = f£(0) = flx ) = Os.
o o

Hence the lemma is proved /

Theorem 2+20. The continuous functions f :WFL———%WFL satisfying




(2.14) £ =_=.:__2_£<.zl § A ; £(3)

are either constant or f(x) = x.

Proof. It follows from Eq (2.14) that

£{x) + f(z) 4 f ( % + £(y) ) S
2 e
i ke £(y) f £00) » £(0)
_ flx+ £(y) e £(0) + £(0)
5 _
so that
(Ea17) f(x + £(y) - a8)/ /& (%) + £ly) - a,
where a = £(0). Let
(2.18) glx) = f(x) - a.

Then from Eq (2.17) and (2.18), we get
glx + g(y)) = g(x) + gly).
Now, it follows from the Theorem 6.6 that
g * ©

or g(x) x (x €TR)

and by virtue of Eq (2.18),

£(x) = a
or f(x) = x+a (xe ).,
In the latter case, we have f(-a) = O so that, by Lemma 219,
£(0) =» O = ms Hésce f Wa or Ilx) = x (x eR).

Moreover, these functions satisfy Eq (2.1 .

The theorem is now proved /
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