

FACTORIZABLE GENERALIZED TRANSFORMATION SEMIGROUPS

CHAPTER II

The main purpose of this chapter is to characterize factorizable generalized partial transformation semigroups, factorizable generalized full transformation semigroups and factorizable generalized 1-1 partial transformation semigroups. Moreover, characterizations of the semigroup of almost identical partial transformations, the semigroup of almost identical full transformations and the semigroup of almost identical full transformations on a set which are factorizable are also studied.

Throughout this chapter, if S is a transformation semigroup on a set and $\theta \in S$, the operation on the generalized transformation semigroup (S, θ) will be denoted by *.

The following proposition shows that for any set X, if S is T_X , \mathcal{I}_X or I_X and θ \in S, then the generalized transformation semigroup (S, θ) is regular if and only if θ is a permutation on X.

2.1 <u>Proposition</u>. Let X be any set and S be T_X , J_X or I_X . If $\theta \in S$, then the generalized transformation semigroup (S, θ) is regular if and only if θ is a permutation on X.

<u>Proof</u>: Let $\theta \in S$. Assume that θ is a permutation on X, that is $\theta \in G_X$. To show (S, θ) is regular, let $\alpha \in S$. Because under

000417

the composition of maps, S is a regular semigroup [Introduction, page 4], then there exists $\beta \in S$ such that $\alpha = \alpha \beta \alpha$. Thus $\alpha = \alpha \beta \alpha = \alpha \theta \theta^{-1} \beta \theta^{-1} \theta \alpha = \alpha \star \theta^{-1} \beta \theta^{-1} \star \alpha$. Since $\theta^{-1} \in G_X \subseteq S$ and $\beta \in S$, we have that $\theta^{-1} \beta \theta^{-1} \in S$, so α is regular.

Conversely, assume that the semigroup (S, θ) is regular. Let $\alpha \in G_X$. Then $\alpha \in S$. Since (S, θ) is regular, there exists $\beta \in S$ such that $\alpha = \alpha * \beta * \alpha = \alpha \theta \beta \theta \alpha$. Then $\alpha^{-1} = \theta \beta \theta$, so $X = \Delta \alpha^{-1} = \Delta \theta \beta \theta = \Delta \theta (\beta \theta) \subseteq \Delta \theta$ and $X = \nabla \alpha^{-1} = \nabla \theta \beta \theta = \nabla (\theta \beta) \theta \subseteq \nabla \theta$. Thus $\Delta \theta = \nabla \theta = X$. Suppose θ is not one-to-one. Then there exist a, b $\in \Delta \theta = X$ such that a \neq b and a $\theta = b\theta$. Therefore $a\alpha^{-1} = a\theta \beta \theta = (a\theta)\beta \theta = (b\theta)\beta \theta = b\theta \beta \theta = b\alpha^{-1}$ which is a contradiction since α^{-1} is one-to-one. Hence θ is one-to-one. Thus θ is a permutation on X. #

Let X be a set and S be T_X , \int_X or I_X . Let θ be a permutation on X. For $\alpha \in S$, $\alpha * \theta^{-1} = \alpha \theta \theta^{-1} = \alpha$ and $\theta^{-1} * \alpha = \theta^{-1} \theta \alpha = \alpha$. Then θ^{-1} is the identity of the semigroup (S, θ) . Claim that G_X is the group of units of the semigroup (S, θ) . Let $\alpha \in G_X$. Then $\theta \alpha \theta \in G_X$, so $(\theta \alpha \theta)^{-1} \in G_X$. Since $G_X \subseteq S$, $(\theta \alpha \theta)^{-1} \in S$. Because $\alpha * (\theta \alpha \theta)^{-1} = \alpha \theta \theta^{-1} \alpha^{-1} \theta^{-1} = \theta^{-1}$ and $(\theta \alpha \theta)^{-1} * \alpha = (\theta \alpha \theta)^{-1} \theta \alpha = \theta^{-1} \alpha^{-1} \theta^{-1} \theta \alpha = \theta^{-1}$, it follows that α belongs to the group of units of (S, θ) . Thus G_X is a subset of the group of units of (S, θ) .

Conversely, let α be a unit in (S, θ) . Then there exists $\alpha' \in S$ such that $\alpha*\alpha' = \alpha'*\alpha = \theta^{-1}$. Thus $\alpha\theta\alpha' = \alpha'\theta\alpha = \theta^{-1}$ which implies $\alpha(\theta\alpha'\theta) = (\theta\alpha'\theta)\alpha = 1$. Since G_X is the group of units of T_X , f_X and f_X under the composition of maps. Then $\alpha \in G_X$. This proves

that the group of units of (S, θ) is a subset of G_{X} .

Therefore G_X is the group of units of the semigroup (S, θ).

Let X be a set. If $\theta \in \mathcal{I}_X$, then $E((\mathcal{I}_X, \theta)) = E((T_X, \theta)) \cap \mathcal{I}_X$ since (\mathcal{I}_X, θ) is a subsemigroup of (T_X, θ) . If $\theta \in I_X$, then $E((I_X, \theta)) = E((T_X, \theta)) \cap I_X$ because (I_X, θ) is a subsemigroup of (T_X, θ) .

Let X be a set. The next proposition gives the set of all idempotents of the generalized transformation semigroup (T_X, θ) where $\theta \in G_X$.

2.2 <u>Proposition</u>. Let X be a set and θ be a permutation on X. Then $E((T_X, \theta)) = \{\alpha \in T_X \mid \nabla \alpha \subseteq \Delta \theta \alpha \text{ and } x \theta \alpha = x \text{ for all } x \in \nabla \alpha\}.$

 $\underline{\operatorname{Proof}}: \text{ Let } \beta \in \operatorname{E}((\operatorname{T}_X, \ \theta)). \text{ Then } \beta \ast \beta = \beta, \text{ so } \beta \theta \beta = \beta. \text{ To}$ show $\nabla \beta \subseteq \Delta \theta \beta$, let $\mathbf{x} \in \nabla \beta$. Then there exists $\mathbf{y} \in \Delta \beta$ such that $\mathbf{x} = \mathbf{y} \beta$. Because $\beta \theta \beta = \beta$ and $\mathbf{x} = \mathbf{y} \beta$, we have that $\mathbf{x} = \mathbf{y} \beta = \mathbf{y} \beta \theta \beta = \mathbf{x} \theta \beta$. This shows that $\nabla \beta \subseteq \Delta \theta \beta$ and $\mathbf{x} \theta \beta = \mathbf{x}$ for all $\mathbf{x} \in \nabla \beta$. Therefore $\operatorname{E}((\mathbf{T}_{\mathbf{x}}, \ \theta)) \subseteq \{\alpha \in \mathbf{T}_{\mathbf{x}} \mid \nabla \alpha \subseteq \Delta \theta \alpha \text{ and } \mathbf{x} \theta \alpha = \mathbf{x} \text{ for all } \mathbf{x} \in \nabla \alpha\}.$

Let $\alpha \in T_X$ be such that $\nabla \alpha \subseteq \Delta \theta \alpha$ and $x \theta \alpha = x$ for all $x \in \nabla \alpha$. Because $\nabla \alpha \subseteq \Delta \theta \alpha$, $\Delta \alpha * \alpha = \Delta \alpha \theta \alpha = (\nabla \alpha \cap \Delta \theta \alpha) \alpha^{-1} = (\nabla \alpha) \alpha^{-1} = \Delta \alpha$. Let $x \in \Delta \alpha$. Then $x \alpha \in \nabla \alpha$, so $(x \alpha) \theta \alpha = x \alpha$. Hence $x (\alpha * \alpha) = x \alpha \theta \alpha = (x \alpha) \theta \alpha = x \alpha$. Thus $\alpha * \alpha = \alpha$. Therefore $\alpha \in E((T_X, \theta))$. This proves that $\{\alpha \in T_X \mid \nabla \alpha \subseteq \Delta \theta \alpha \text{ and } x \theta \alpha = x \text{ for all } x \in \nabla \alpha\} \subseteq E((T_X, \theta))$.

Hence, $E((T_X, \theta)) = \{\alpha \in T_X \mid \nabla \alpha \subseteq \Delta \theta \alpha \text{ and } x \theta \alpha = x \}$

for all $x \in \nabla \alpha$ }. #

Let X be a set. If $\alpha \in I_X$, then $\alpha \alpha^{-1}$ and $\alpha^{-1} \alpha$ are identity maps on $\Delta \alpha$ and $\nabla \alpha$, respectively, that is, $\Delta \alpha \alpha^{-1} = \Delta \alpha$, $\Delta \alpha^{-1} \alpha = \nabla \alpha$, $\alpha \alpha^{-1} = \alpha$ and $\alpha \alpha^{-1} = \alpha$ for all $\alpha \in \alpha$.

From Proposition 2.2, we have the following corollary.

2.3 <u>Corollary</u>. For any set X and θ is a permutation on X, $E((\int_X^1, \theta)) = \{\alpha \in \int_X^1 \mid x\theta\alpha = x \text{ for all } x \in \nabla\alpha\}$ and $E((I_X, \theta)) = \{\theta^{-1} \mid_A \mid A \subseteq X\}$ where for a map f from X and for $A \subseteq X$, $f \mid_A$ denotes the restriction of f to the set A.

<u>Proof</u>: Let X be a set and θ be a permutation on X. It is obvious from Proposition 2.2 that $E((\mathcal{I}_X, \theta)) = \{\alpha \in \mathcal{I}_X \mid x\theta\alpha = x \}$ for all $x \in \nabla\alpha$ since $\mathcal{I}_X \subseteq T_X$ and for all $\alpha \in \mathcal{I}_X$, $\Delta\alpha = X$.

Let $\alpha \in E((I_X, \theta))$. Then $\alpha \in E((T_X, \theta))$, so $\forall \alpha \subseteq \Delta \theta \alpha$ and $x\theta\alpha = x$ for all $x \in \forall \alpha$. Since $\alpha^{-1}\alpha$ is the identity map on $\forall \alpha$, $(x\theta)\alpha = x = (x\alpha^{-1})\alpha$ for all $x \in \forall \alpha$. Because α is one-to-one, $x\theta = x\alpha^{-1}$ for all $x \in \forall \alpha$. Hence $\alpha^{-1} = \theta\big|_{\forall \alpha}$, so $\alpha = (\theta\big|_{\forall \alpha})^{-1} = \theta^{-1}\big|_{(\forall \alpha)\theta}$. Thus $E((I_X, \theta)) \subseteq \{\theta^{-1}\big|_A \mid A \subseteq X\}$. Let $\beta = \theta^{-1}\big|_A$ for some $A \subseteq X$. Then $\Delta \beta = A$ and $x\beta = x\theta^{-1}$ for all $x \in A$. Thus $\Delta \beta = A\theta^{-1}$ which implies $(\Delta \beta)\theta^{-1} = (\Delta \beta)\beta = \forall \beta$. Because $\Delta \theta\beta = (\forall \theta \cap \Delta \beta)\theta^{-1} = (\Delta \beta)\theta^{-1} = \forall \beta$, $\Delta \beta * \beta = \Delta \beta \theta \beta = (\forall \beta \cap \Delta \theta \beta)\beta^{-1} = (\forall \beta \cap \nabla \beta)\beta^{-1} = (\nabla \beta)\beta^{-1} = \Delta \beta$. Let $x \in \Delta \beta$. Then $x\beta = x\theta^{-1}$ which implies $x(\beta * \beta) = x\beta \theta \beta = (x\beta)\theta \beta = x\theta^{-1}\theta \beta = x\beta$. Thus $\beta * \beta = \beta$, so $\beta \in E((I_X, \theta))$. Therefore $\{\theta^{-1}\big|_A \mid A \subseteq X\} \subseteq E((I_X, \theta))$. Hence $E((I_X, \theta)) = \{\theta^{-1}\big|_A \mid A \subseteq X\}$. #

It has been showed in [4] that for any set X, the partial transformation semigroup on X, T_X , is factorizable if and only if X is finite. Using this fact, the following theorem is obtained.

2.4 <u>Theorem</u>. For any set X and $\theta \in T_X$, the generalized partial transformation semigroup on X is factorizable if and only if θ is a permutation on X and X is a finite set.

Proof: Let X be a set and $\theta \in T_X$. Assume the generalized partial transformation semigroup (T_X, θ) is factorizable. Then (T_X, θ) is regular since every factorizable semigroup is regular [4, Proposition 2.2]. By Proposition 2.1, θ is a permutation on X. To show X is a finite set, suppose not. Let $a \in X$. Then $|X \setminus \{a\}| = |X|$, so there exists a one-to-one and onto map $\alpha : X \setminus \{a\} \to X$. Thus $\alpha \in T_X$ with $\Delta \alpha = X \setminus \{a\}$ and $\nabla \alpha = X$. Since (T_X, θ) is factorizable, $T_X = G_X \times E((T_X, \theta))$. Then there exist $\beta \in G_X$, $\gamma \in E((T_X, \theta))$ such that $\alpha = \beta \times \gamma$. It then follows that $\alpha = \beta \otimes \gamma$ which implies $\nabla \alpha = \nabla(\beta \theta) \gamma \subseteq \nabla \gamma$. But $\nabla \alpha = X$, then $\nabla \gamma = X$. Since $\gamma \in E((T_X, \theta))$, $\nabla \gamma \subseteq \Delta \otimes \gamma$ and $x \otimes \gamma = x$ for all $x \in \nabla \gamma$. Then $\Delta \otimes \gamma = X$ which implies $X = (\nabla \theta \cap \Delta \gamma) \theta^{-1} = (\Delta \gamma) \theta^{-1}$. Hence $\Delta \gamma = X \otimes X$. Since $\Delta \beta = \Delta \theta = \Delta \gamma = X$, $\Delta \alpha = \Delta \beta \otimes \gamma = X$ which is a contradiction. Therefore X is a finite set.

Conversely, assume that θ is a permutation on X and X is a finite set. Then $T_X = G_X E(T_X)$ [4, Theorem 3.1]. Let $\alpha \in T_X$. Since $T_X = G_X E(T_X)$, there exist $\beta \in G_X$ and $\gamma \in E(T_X)$ such that

 $\alpha = \beta \gamma$. It then follows that $\alpha = \beta \gamma = \beta \theta \theta^{-1} \gamma = \beta * (\theta^{-1} \gamma)$. Claim that $\theta^{-1} \gamma \in E((T_X, \theta))$. Since $\gamma \in E(T_X)$, $\nabla \gamma \subseteq \Delta \gamma$ and $x \gamma = x$ for all $x \in \nabla \gamma$. Then $(\nabla \gamma)\theta \subseteq (\Delta \gamma)\theta$. Because $\nabla \theta^{-1} \gamma = (\nabla \theta^{-1} \cap \Delta \gamma)\gamma = (\Delta \gamma)\gamma = \nabla \gamma \subseteq \Delta \gamma$ and $\Delta \theta (\theta^{-1} \gamma) = \Delta \gamma$, it follows that $\nabla \theta^{-1} \gamma \subseteq \Delta \theta (\theta^{-1} \gamma)$. Let $x \in \nabla \theta^{-1} \gamma = \nabla \gamma$. Then $x \gamma = x$. Thus $x \theta (\theta^{-1} \gamma) = x \gamma = x$. Therefore $\theta^{-1} \gamma \in E((T_X, \theta))$ by Proposition 2.2. This proves that the semigroup (T_X, θ) is factorizable. #

2.5 <u>Theorem</u>. For any set X and $\theta \in \mathcal{I}_X$, the generalized full transformation semigroup on X is factorizable if and only if θ is a permutation on X and X is a finite set.

Proof: Let X be a set and $\theta \in \mathcal{I}_X$. Assume the generalized full transformation semigroup (\mathcal{I}_X , θ) is factorizable. Then (\mathcal{I}_X , θ) is regular since every factorizable semigroup is regular [4, Proposition 2.2]. By Proposition 2.1, θ is a permutation on X. To show X is a finite set, suppose not. Let $a \in X$. Then $|X| = |X \setminus \{a\}|$, so there exists a one-to-one map α with $\Delta \alpha = X$ and $\nabla \alpha = X \setminus \{a\}$. Thus $\alpha \in \mathcal{I}_X$. Since (\mathcal{I}_X , θ) is factorizable, $\mathcal{I}_X = G_X \times \mathbb{E}((\mathcal{I}_X, \theta))$. Then there exist $\beta \in G_X$, $\gamma \in \mathbb{E}((\mathcal{I}_X, \theta))$ such that $\alpha = \beta \times \gamma = \beta \theta \gamma$. Thus $\gamma = (\beta \theta)^{-1} \alpha$, so $\nabla \gamma = \nabla (\beta \theta)^{-1} \alpha = (\nabla (\beta \theta)^{-1} \cap \Delta \alpha) \alpha = (\Delta \alpha) \alpha = \nabla \alpha = X \setminus \{a\}$. Claim that $x\gamma = x\theta^{-1}$ for all $x \in X$. Let $x \in X$. Then there exist b, $c \in X$ such that $b\beta \theta = x$ (since $\nabla \beta \theta = X$) and $c\beta = x\gamma$ (since $\nabla \beta = X$). Therefore $b\alpha = b\beta \theta \gamma = x\gamma = x(\gamma \times \gamma) = x\gamma \theta \gamma = c\beta \theta \gamma = c\alpha$. Since α is one-to-one, b = c. Then $b\beta = c\beta = x\gamma$. Because $b\beta \theta = x$, $b\beta = x\theta^{-1}$. Then $x\theta^{-1} = b\beta = x\gamma$. This proves that $x\gamma = x\theta^{-1}$ for all

 $x \in X$. Thus $X\gamma = X\theta^{-1} = X$, it is a contradiction because $X\gamma = \nabla \gamma = X \setminus \{a\}$.

Conversely, assume θ is a permutation on X and X is a finite set. By Theorem 2.4, (T_X, θ) is factorizable. To show the semigroup (\int_X, θ) is factorizable, let $\alpha \in \int_X$. Then $\alpha \in T_X$, so there exist $\beta \in G_X$, $\gamma \in E((T_X, \theta))$ such that $\alpha = \beta * \gamma = \beta \theta \gamma$. Then $\gamma = (\beta \theta)^{-1} \alpha$. Since $\Delta \alpha = \Delta(\beta \theta)^{-1} = X$, $\Delta \gamma = X$. Then $\gamma \in \int_X \cap E((T_X, \theta)) = E((\int_X, \theta))$. Therefore, the semigroup (\int_X, θ) is factorizable. # 2.6 Theorem. For any set X and $\theta \in I_X$, the generalized 1-1 partial transformation semigroup on X is factorizable if and only if θ is a permutation on X and X is a finite set.

Proof: Let X be a set and $\theta \in I_X$. Assume the generalized 1-1 partial transformation semigroup (I_X, θ) is factorizable. Then (I_X, θ) is regular by Proposition 2.2 [4]. By Proposition 2.1, θ is a permutation on X. To show X is a finite set, suppose not. Let $a \in X$. Then $|X \setminus \{a\}| = |X|$, so there exists a one-to-one map α with $\Delta \alpha = X \setminus \{a\}$ and $\nabla \alpha = X$. Thus $\alpha \in I_X$ but $\alpha \notin G_X$. Since (I_X, θ) is factorizable, $I_X = G_X * E((I_X, \theta))$. Then there exist $\beta \in G_X$, $\gamma \in E((I_X, \theta))$ such that $\alpha = \beta * \gamma$. Thus $\alpha = \beta \theta \gamma$ which implies $\nabla \alpha = \nabla (\beta \theta) \gamma \subseteq \nabla \gamma$. But $\nabla \alpha = X$, then $\nabla \gamma = X$. Because $\gamma \in E((I_X, \theta))$, $\gamma = \theta^{-1}|_{\Delta \gamma}$. Then $X = \nabla \gamma = \nabla \theta^{-1}|_{\Delta \gamma} = (\Delta \gamma)\theta^{-1}$ which implies $X\theta = \Delta \gamma$. But $X\theta = X$, so $\Delta \gamma = X$. Therefore $\gamma = \theta^{-1}|_X = \theta^{-1}$. Since $\alpha = \beta \theta \gamma$, $\alpha = \beta \theta \theta^{-1} = \beta \in G_X$ which is a contradiction. Then X is a finite set.

Conversely, assume θ is a permutation on X and X is a finite set. By Theorem 2.4, (T_X, θ) is factorizable. To show the semigroup (I_X, θ) is factorizable, let $\alpha \in I_X$. Then $\alpha \in T_X$, so $\alpha = \beta * \gamma = \beta \theta \gamma$ for some $\beta \in G_X$ and $\gamma \in E((T_X, \theta))$. It then follows that $\gamma = (\beta \theta)^{-1}\alpha$. Since $(\beta \theta)^{-1}$ and α are one-to-one, we have that γ is one-to-one. Hence $\gamma \in E((T_X, \theta)) \cap I_X = E((I_X, \theta))$. This shows that the semigroup (I_X, θ) is factorizable, as required. #

The following corollary follows directly from Theorem 2.4, Theorem 2.5 and Theorem 2.6.

2.7 Corollary. For any set X and θ is a permutation on X, the following are equivalent:

- (i) X is a finite set.
- (ii) (T_X, θ) is factorizable.
- (iii) (\int_X, θ) is factorizable.
- (iv) (I_{χ}, θ) is factorizable.

Let X be a set, and let $\mathbf{U}_{\mathbf{X}}$, $\mathbf{V}_{\mathbf{X}}$ and $\mathbf{W}_{\mathbf{X}}$ be defined as in Chapter I, that is,

$$\begin{array}{rcl} \mathbf{U}_{\mathbf{X}} &=& \{\alpha \in \mathbf{T}_{\mathbf{X}} \mid \big| \mathbf{S}(\alpha) \big| < \infty \}, \\ \\ \mathbf{V}_{\mathbf{X}} &=& \{\alpha \in \mathbf{J}_{\mathbf{X}} \mid \big| \mathbf{S}(\alpha) \big| < \infty \} = \mathbf{U}_{\mathbf{X}} \cap \mathbf{J}_{\mathbf{X}} \\ \\ \mathbf{W}_{\mathbf{X}} &=& \{\alpha \in \mathbf{I}_{\mathbf{X}} \mid \big| \mathbf{S}(\alpha) \big| < \infty \} = \mathbf{U}_{\mathbf{X}} \cap \mathbf{I}_{\mathbf{X}}. \end{array}$$

Recall that U_X , V_X and W_X are regular semigroups under the composition of maps, and $G_X \cap U_X = G_X \cap V_X = G_X \cap W_X$ is the group of units of U_X , V_X and W_X .

Let S be U_X , V_X or W_X and $\theta \in S$.

Assume that $\theta \in G_X$. Then $S(\theta) = S(\theta^{-1})$. Thus $\theta^{-1} \in S$. Let $\alpha \in S$. Then $\alpha = \alpha \beta \alpha$ for some $\beta \in S$, so $\alpha = \alpha * (\theta^{-1} \beta \theta^{-1}) * \alpha$. Since θ^{-1} and $\beta \in S$, $\theta^{-1} \beta \theta^{-1} \in S$. This shows that if $\theta \in G_X$, then the transformation semigroup (S, θ) is regular.

Suppose that the semigroup (S, θ) is regular. Let $\alpha \in G_X \cap S$. Then $\alpha \in S$, so $\alpha = \alpha * \beta * \alpha = \alpha (\theta \beta \theta) \alpha$ for some $\beta \in S$. Thus $\alpha^{-1} = \theta \beta \theta$. Hence $X = \Delta \alpha^{-1} = \Delta \theta \beta \theta \subseteq \Delta \theta$ and $X = \nabla \alpha^{-1} = \nabla \theta \beta \theta \subseteq \nabla \theta$, so $\Delta \theta = \nabla \theta = X$. Since $\Delta \alpha^{-1} = X$ and α^{-1} is one-to-one, θ is one-to-one. Therefore $\theta \in G_X$.

Hence, we have

2.8 <u>Proposition</u>. For any set X, if S is U_X , V_X or W_X and $\theta \in S$, then (S, θ) is regular if and only if θ is a permutation on X.

Let X be a set, S be U_X , V_X or W_X , and $\theta \in S$. Assume that $\theta \in G_X$. Then $S(\theta^{-1}) = S(\theta)$, so $\theta^{-1} \in G_X \cap S$. Clearly, θ^{-1} is the identity of the semigroup (S, θ) . Let $\alpha \in G_X \cap U_X = G_X \cap S$. Then $\alpha^{-1} \in G_X \cap S$. Thus $\theta^{-1}\alpha^{-1}\theta^{-1} \in S$ and $\alpha*(\theta^{-1}\alpha^{-1}\theta^{-1}) = \theta^{-1} = (\theta^{-1}\alpha^{-1}\theta^{-1})*\alpha$. Suppose that $\beta \in S$ such that $\beta*\gamma = \theta^{-1} = \gamma*\beta$ for some $\gamma \in S$. Then $\beta \theta \gamma = \theta^{-1} = \gamma \theta \beta$, so $\beta(\theta \gamma \theta) = 1 = (\theta \gamma \theta)\beta$. Thus $\beta \in G_X$ since G_X is the unit group of T_X , \int_X and T_X under the composition of maps. Hence $\beta \in G_X \cap S = G_X \cap U_X$. Therefore, we have that $G_X \cap U_X = G_X \cap V_X = G_X \cap W_X = G_X \cap S$ is the unit group of the semigroup (S, θ) . Because (U_X, θ) is a subsemigroup of (T_X, θ) , it

immediate from Proposition 2.2 that

$$E((U_X, \theta)) = \{\alpha \in U_X \mid \nabla \alpha \subseteq \Delta \theta \alpha \text{ and } x \theta \alpha = x \text{ for all } x \in \nabla \alpha\}$$
$$= E((T_X, \theta)) \cap U_X.$$

Hence,

2.9 Theorem. Let X be a set and S be U_X , V_X or W_X . Assume $\theta \in S$. Then the generalized transformation semigroup (S, θ) is factorizable if and only if θ is a permutation on X.

Proof: Assume that the semigroup (S, θ) is factorizable. By Proposition 2.2 [4], the semigroup (S, θ) is regular. Hence, by Proposition 2.8, θ is a permutation on X.

Conversely, assume $\theta \in G_X$. Then $\theta \in G_X \cap S$, so $\theta^{-1} \in G_X \cap S$. Case $S = U_X$. To show the semigroup (U_X, θ) is factorizable, let $\alpha \in U_X$. Since $U_X = (G_X \cap U_X)E(U_X)$, $\alpha = \beta \gamma$ for some $\beta \in G_X \cap U_X$ and $\gamma \in E(U_X)$. Then $\alpha = \beta * (\theta^{-1} \gamma)$ and $\gamma \in E(T_X)$. As the proof in Theorem 2.4, we have that $\theta^{-1} \gamma \in E((T_X, \theta))$. Since $\theta^{-1} \gamma \in U_X$, $\theta^{-1} \gamma \in E((T_X, \theta)) \cap U_X = E((U_X, \theta))$. Hence $U_X = (G_X \cap U_X) * E((U_X, \theta))$. Case $S = V_X$. Let $\alpha \in V_X$. Then $\alpha \in U_X$. From the first case, $\alpha = \beta * \gamma = \beta \theta \gamma$ for some $\beta \in G_X \cap U_X$ and $\gamma \in E((U_X, \theta))$. Thus $\gamma = (\beta \theta)^{-1} \alpha$. Since $\beta \theta \in G_X \cap U_X = G_X \cap V_X$, $(\beta \theta)^{-1} \in G_X \cap V_X \subseteq V_X$. Then $(\beta \theta)^{-1} \alpha \in V_X$, so $\gamma \in V_X$. Thus $\gamma \in E((U_X, \theta)) \cap V_X = E((V_X, \theta))$. This shows that $V_X = (G_X \cap U_X) * E((V_X, \theta))$.

Case $S = W_X$. Let $\alpha \in W_X$. Then $\alpha \in U_X$. From the first case, $\alpha = \beta * \gamma = \beta \theta \gamma$ for some $\beta \in G_X \cap U_X$ and $\gamma \in E((U_X, \theta))$. Thus $\gamma = (\beta \theta)^{-1} \alpha \in W_X$ because $(\beta \theta)^{-1} \in G_X \cap W_X \subseteq W_X$ and $\alpha \in W_X$. Hence $\gamma \in E((U_X, \theta)) \cap W_X = E((W_X, \theta))$. This proves that $W_X = (G_X \cap U_X) * E((W_X, \theta))$.

Hence, the theorem is completely proved. #