* ANGENTANTIES ANGERT OF THE PROPERTY OF THE P

INTRODUCTION

Let S be a semigroup. An element a of S is called an <u>idem-</u> potent of S if $a^2 = a$. For a semigroup S, let E(S) denote the set of all idempotents of S, that is,

$$E(S) = \{a \in S \mid a^2 = a\}.$$

An element z of a semigroup S is called a zero of S if xz = zx = z for all $x \in S$. An element e of a semigroup S is called an <u>identity</u> of S if ex = xe = x for all $x \in S$. A zero and an identity of a semigroup are unique if exist and they are denoted by 0 and 1, respectively.

A nonempty subset G of a semigroup S is a <u>subgroup</u> of S if it is a group under the same operation of S.

Let S be a semigroup with identity 1. An element a of S is called a <u>unit</u> of S if there exists $a' \in S$ such that aa' = a'a = 1. Let G be the set of all units of S, that is,

 $G = \{a \in S \mid aa' = a'a = 1 \text{ for some } a' \in S\}.$

Then G is the greatest subgroup of S which has 1 as its identity, and it is called the group of units of S or the unit group of the semigroup S.

An element a of a semigroup S is regular if a = axa for some $x \in S$. A semigroup S is regular if every element of S is regular.

Let a be an element of a semigroup S. An element x of S is

an <u>inverse</u> of a if a = axa and x = xax. A semigroup S is an <u>inverse</u> semigroup if every element of S has a unique inverse, and the unique inverse of the element a in S is denoted by a^{-1} . A semigroup S is an inverse semigroup if and only if S is regular and any two idempotents of S commute [2, Theorem 1.17]. Then a regular subsemigroup of an inverse semigroup is an inverse semigroup. For any elements a, b of an inverse semigroup S and $e \in E(S)$, the following hold:

$$e^{-1} = e$$
, $(a^{-1})^{-1} = a$ and $(ab)^{-1} = b^{-1}a^{-1}$

[2, Lemma 1.18].

Every group is an inverse semigroup and the identity of a group is its only idempotent.

Let S be a semigroup and 1 be a symbol not representing any element of S. Let S \cup 1 be the semigroup obtaining by extending the operation of S to 1 by a.1 = 1.a = a for all a \in S and 1.1 = 1. Then S \cup 1 is a semigroup having 1 as its identity. Let S¹ denote the following semigroup:

$$S^{1} = \begin{cases} S & \text{if S has an identity,} \\ S \cup 1 & \text{if S has no identity.} \end{cases}$$

Then for $a \in S$, $S^1 a = Sa \cup \{a\}$, $aS^1 = aS \cup \{a\}$.

Let S be a semigroup. Define the relations \mathcal{I} , \mathcal{R} and \mathcal{R} on S as follow:

$$a \times b \iff s^1 a = s^1 b.$$
 $a \times b \iff a s^1 = b s^1.$
 $\mathcal{X} = \mathcal{X} \cap \mathcal{R}.$

The relations \mathcal{L} , \mathcal{R} and \mathcal{H} are called <u>Green's relations</u> on S and they are clearly equivalence relations on S.

Let S be a semigroup. If a \in S is a regular element of S, then $S^1a = Sa$. Hence if the semigroup S is regular, then the following hold: For a, b \in S,

all $b \iff a = xb$ and b = ya for some $x, y \in S$, and $aRb \iff a = bx$ and b = ay for some $x, y \in S$.

In a semigroup S, an \mathcal{X} -class of S containing an idempotent e of S is a subgroup of S [2, Theorem 2.16], and it is the greatest subgroup of S having e as its identity. Hence, every subgroup of a semigroup S is contained in H_e for some idempotent e of S where for a \in S, H_a denotes the \mathcal{X} -class of S containing a. If a semigroup S has an identity 1, then H_1 is the group of units of S.

Let X be a set. A partial transformation of X is a map which its domain and its range are subsets of X. If α is a partial transformation of X, let $\Delta\alpha$ and $\nabla\alpha$ denote the domain and the range of α , respectively. The empty transformation of X is referred as a map with empty domain, and it is denoted by 0. Let T_X denote the set of all partial transformations of X including the empty transformation 0. For α , $\beta \in T_X$, define the product $\alpha\beta$ as follows: If $\nabla\alpha \cap \Delta\beta = \phi$, let $\alpha\beta = 0$. If $\nabla\alpha \cap \Delta\beta \neq \phi$, let $\alpha\beta$: $(\nabla\alpha \cap \Delta\beta)\alpha^{-1} \rightarrow (\nabla\alpha \cap \Delta\beta)\beta$ be the composition map. Then $\nabla\alpha\beta = (\nabla\alpha \cap \Delta\beta)\beta$. Thus T_X is a semigroup and it is called the partial transformation semigroup on the set X. The empty transformation of X, 0, is the zero of T_X . The identity map

on X which is denoted by 1 is the identity of the semigroup T_X . For any set X, the semigroup T_X is a regular semigroup. For $\alpha \in T_X$, α is an idempotent of T_X if and only if $\nabla \alpha \subseteq \Delta \alpha$ and $x\alpha = x$ for all $x \in \nabla \alpha$. Hence

 $E(T_X) = \{\alpha \in T_X \mid \nabla \alpha \subseteq \Delta \alpha \text{ and } x\alpha = x \text{ for all } x \in \nabla \alpha\}.$

An element $\alpha \in T_X$ is called a <u>1-1 partial transformation</u> of X if α is a one-to-one map. Let I_X denote the set of all 1-1 partial transformations of X, that is,

$$I_{X} = \{\alpha \in T_{X} \mid \alpha \text{ is one-to-one}\}.$$

Then under the composition of maps, I_X is an inverse subsemigroup of T_X with identity 1 and zero 0, and it is called the <u>symmetric inverse</u> semigroup on the set X and for $\alpha \in I_X$, the inverse map α^{-1} , is the inverse of α in I_X , so $\Delta \alpha^{-1} = \nabla \alpha$, $\nabla \alpha^{-1} = \Delta \alpha$. For $\alpha \in I_X$, α is an idempotent of I_X if α is the identity map on $\Delta \alpha$. Then

 $E(I_X) = \{\alpha \in I_X \mid \alpha \text{ is the identity map on } \Delta\alpha\}.$

An element $\alpha \in T_X$ is called a <u>full transformation</u> of X if $\Delta \alpha = X$. Let \mathfrak{I}_X denote the set of all full transformations of X, that is,

$$\mathcal{I}_{X} = \{\alpha \in T_{X} \mid \Delta \alpha = X\}.$$

Then under the composition of maps, \int_X is a regular subsemigroup of T_X with identity 1 and it is called the <u>full transformation semigroup</u> on the set X. Therefore

$$E(\mathcal{I}_{X}) = \{\alpha \in \mathcal{I}_{X} \mid \alpha \text{ is the identity map on } \nabla \alpha \}.$$

For any set X, let $G_{\overline{X}}$ denote the permutation group on X, that is,

 $\mathbf{G}_{\mathbf{X}} \ = \ \{\alpha : \mathbf{X} \to \mathbf{X} \ | \ \alpha \text{ is one-to-one and onto} \}.$ Then $\mathbf{G}_{\mathbf{X}}$ is the group of units of $\mathbf{T}_{\mathbf{X}}$, also of $\mathbf{I}_{\mathbf{X}}$ and of $\mathbf{I}_{\mathbf{X}}$.

For any set A, let A denote the cardinality of A.

A semigroup S is said to be <u>factorizable</u> if there exist a subgroup G of S and a set E of idempotents of S such that S = GE (= $\{ge \mid g \in G, e \in E\}$). Observe that if a semigroup S is factorizable as S = GE, then S = GE(S). Every factorizable semigroup is regular [4, Proposition 2.2]. If a semigroup S has an identity and S is factorizable as GE, then G is the group of units of S [4, Theorem 2.4].

A semigroup S is called a <u>weakly factorizable semigroup</u> if there exist a subsemigroup T of S which T is a union of groups and a set E of idempotents of S such that S = TE. Then factorizable semigroups are weakly factorizable semigroups. But the converse is not true.

A transformation semigroup on a set X is a semigroup of maps from subsets of X onto subsets of X and the operation is the composition of maps. Let S be a transformation semigroup and let $\theta \in S$. The semigroup S under the operation * defined by $\alpha*\beta = \alpha\theta\beta$ for all α , $\beta \in S$ is called a generalized transformation semigroup on the set X, and it is denoted by (S, θ) . Note that for any set X and for $\theta \in T_X$, the generalized transformation semigroup (T_X, θ) is referred as a generalized partial transformation semigroup on X. A generalized full transformation semigroup on a set and a generalized 1-1 partial

transformation semigroup on a set are referred similarly. Observe that for any set X, if θ is the identity map on X, then the generalized transformation semigroups (T_X, θ) , (\int_X, θ) and (I_X, θ) are the partial transformation semigroup, the full transformation semigroup and the 1-1 partial transformation semigroup (the symmetric inverse semigroup) on the set X, respectively.

Let X be a set. A partial transformation α on X is said to be <u>almost identical</u> if there exists at most a finite number of elements x in the domain of α such that $x\alpha \neq x$. Therefore, a partial transformation α on X is almost identical if and only if the set $\{x \in \Delta\alpha \mid x\alpha \neq x\}$ is finite.

Let X be a set, $U_X = \{\alpha \in T_X \mid \alpha \text{ is almost identical}\}$, $V_X = \{\alpha \in \int_X \mid \alpha \text{ is almost identical}\}$ and $W_X = \{\alpha \in I_X \mid \alpha \text{ is almost identical}\}$. It is shown in the first chapter that under the composition of maps U_X , V_X and W_X are regular semigroups which are called the semigroup of almost identical partial transformations on X, the semigroup of almost identical full transformations on X and the semigroup of almost identical 1-1 partial transformations on X, respectively. We prove in Chapter I that for any set X, the transformation semigroups U_X , V_X and W_X are factorizable.

Generalized partial transformation semigroups, generalized full transformation semigroups and generalized 1-1 partial transformation semigroups are studied in the second chapter. The following are shown. Let X be a set and S be T_X , \mathcal{I}_X or I_X . If $\theta \in S$, then the

generalized transformation semigroup (S, θ) is regular if and only if θ is a permutation on X. The main result of this chapter is to show that the semigroup (S, θ) is factorizable if and only if θ is a permutation on X and X is a finite set. Moreover, it is shown that for any set X, if S is U_X , V_X or W_X and θ \in S, then the semigroup (S, θ) is factorizable if and only if θ is a permutation on X.

In the last chapter, weakly factorizable transformation semigroups are studied. We show that the partial transformation semigroup on a set X is weakly factorizable if and only if X is finite, and it is also showed that the full transformation semigroup on a set X is weakly factorizable if and only if X is finite.