SOLUTION OF THE FUNCTIONAL EQUATION (1-f(x)f(y))f(xy) = f(x)+f(y)

6.1 Introduction

The purpose of this chapter is to determine all the Bolutions of the functional equation

(T)
$$(1 - f(x)f(y))_{f(xy)} = f(x) + f(y)$$
,

where f is a function on a group G into $\mathbb R$, the set of real numbers.

6.2 Solution of
$$(1 - f(x)f(y))f(xy) = f(x)+f(y)$$
 on a Group.

6.2.1 Theorem Let G be a group. Then $f: G \longrightarrow \mathbb{R}$ satisfies

(T)
$$(1 - f(x)f(y)) f(xy) = f(x) + f(y)$$

if and only if there exists a homomorphism $h: G \longrightarrow \Delta$ such that

$$f(x) = \frac{h(x) - 1}{i(h(x) + 1)},$$

where $i^2 = -1$.

Proof Assume that $f : G \longrightarrow \mathbb{R}$ satisfies (T).

Let $h : G \longrightarrow \triangle$ be defined by

(6.2.1.1)
$$h(x) = \frac{1 + i f(x)}{1 - i f(x)}.$$

Hence h(x) (1 - i f(x)) = 1 + i f(x).

Thus h(x) - i h(x)f(x) = 1 + i f(x), h(x) - 1 = i f(x) (1 + h(x)).

Therefore
$$f(x) = \frac{h(x) - 1}{i(1 + h(x))}$$

It remains only to be proved that h defined by (6.2.1.1) is a homomorphism.

By (6.2.1.1), we have

$$h(xy) = \frac{1 + i f(xy)}{1 - i f(xy)},$$

$$1 + i \left(\frac{f(x) + f(y)}{1 - f(x)f(y)}\right)$$

$$= \frac{1 - i \left(\frac{f(x) + f(y)}{1 - f(x)f(y)}\right)}{1 - f(x)f(y) + i(f(x) + f(y))},$$

$$= \frac{1 - f(x)f(y) - i(f(x) + f(y))}{1 - i f(x)},$$

$$= \frac{1 + i f(x)}{1 - i f(x)}, \frac{1 + i f(y)}{1 - i f(y)},$$

$$= h(x)h(y).$$

Then h is a homomorphism.

Conversely, we assume that

$$f(x) = \frac{h(x) - 1}{i(h(x) + 1)}$$

where h is a homomorphism from G into \triangle . Thus we have,

$$\begin{bmatrix} 1 - f(x)f(y) \end{bmatrix} f(xy) = \begin{bmatrix} 1 - \left\{ \frac{h(x)-1}{i(h(x)+1)} \right\} \left\{ \frac{h(y)-1}{i(h(y)+1)} \right\} \left[\frac{h(xy)-1}{i(h(xy)+1)} \right],$$

$$= \begin{bmatrix} 1 + \frac{(h(x)-1)(h(y)-1)}{(h(x)+1)(h(y)+1)} \right] \left[\frac{h(x)h(y)-1}{i(h(x)h(y)+1)} \right],$$

$$= \frac{2(h(x)h(y) + 1)}{(h(x) + 1)(h(y) + 1)} \cdot \frac{h(x)h(y) - 1}{i(h(x)h(y) + 1)},$$

$$= \frac{2(h(x)h(y) - 1)}{i(h(x) + 1)(h(y) + 1)},$$

and.

$$f(x) + f(y) = \frac{h(x) - 1}{i(h(x) + 1)} + \frac{h(y) - 1}{i(h(y) + 1)},$$

$$= \frac{2(h(x)h(y) - 1)}{i(h(x) + 1)(h(y) + 1)}.$$

Therefore, $f(x) + f(y) = \left[1 - f(x)f(y)\right] f(xy)$.

6.3 Continuous Solutions of [1 - f(x)f(y)] f(xy) = f(x)+f(y) on a Topological Group.

6.3.1 Theorem Let G be a topological group. Then $f: G \longrightarrow \mathbb{R}$ is continuous and satisfies

(T)
$$(1 - f(x)f(y)) f(xy) = f(x) + f(y),$$

if and only if there exists a continuous homomorphism h from G into \triangle such that

(6.3.1.1)
$$f(x) = \frac{h(x) - 1}{i(h(x) + 1)}.$$

Proof By theorem 6.2.1, f satisfies (T) if and only if

$$f(x) = \frac{h(x) - 1}{i(h(x) + 1)}$$

where h is a homomorphism from G into \triangle .

It remains only to be proved that f is continuous if and only if

h is continuous.

From (6.3.1.1), we see that if h is continuous, so is f. Again, from (6.3.1.1), we get

$$h(x) = \frac{1 + i f(x)}{1 - i f(x)}$$

Hence, if f is continuous, so is h.

6.4 Continuous Solutions of (1 - f(x)f(y)) f(x+y)=f(x)+f(y) on \mathbb{R}^n .

6.4.1 Theorem Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be continuous. Then f satisfies $(T_1) \qquad (1 - f(x)f(y)) f(x+y) = f(x) + f(y)$

if and only if there exist $k_1, \ldots, k_n \in \mathbb{R}$ such that

(6.4.1.1)
$$f(x) = \frac{e^{i(k_1x_1+\cdots+k_nx_n)}}{e^{i(k_1x_1+\cdots+k_nx_n)}}.$$

Proof By theorem 6.3.1, any continuous function f satisfies (T_1) if and only if f is of the form

$$f(x) = \frac{h(x) - 1}{i(h(x) + 1)},$$

where h is a continuous homomorphism from \mathbb{R}^n to Δ . By theorem 3.2.6, we know that there exist homomorphisms $h_j:\mathbb{R}\longrightarrow\Delta$ such that

$$h(x) = \prod_{j=1}^{n} (h_{j} \circ p_{j})(x) ,$$

where p_j 's are given by $p_j(x_1, \dots, x_n) = x_j$, $j = 1, \dots, n$. Such an h_j is given by

where T_j is defined as in the proof of theorem 3.2.6. Since h and T_j are continuous, then so is h_j.

By theorem 3.3.3, $h_j(x_j) = e^{ik_j x_j}$, where $k_j \in \mathbb{R}$, $j = 1, \dots, n$. Thus every continuous solution of (T_1) on \mathbb{R}^n must be of the form

$$f(x) = \frac{i(k_1x_1 + \dots + k_nx_n)}{e^{i(k_1x_1 + \dots + k_nx_n)} - 1}.$$

APPENDIX

In this appendix, we will show the existence of a Hamel basis by means of the following:

Lemma (Zorn's lemma)

A partially ordered system has a maximal element if every totally ordered subsystem has an upper bound.

For proof of this lemma we refer to [4] .

Let E be the family of all subsets of $\mathbb R$ which are linearly independent over $\mathbb Q$. We partial order E by inclusion.

Let F be any totally ordered subset of E. Put A' = UF. We claim that A' is an upper bound of F. It is clear from the definition of A' that

(1) for every A ∈ F, then A ⊆ A'.

It remains to be shown that

(2) A' E E.

Let X be any finite subset of A'. Since X is finite, we may assume $X = \{x_1, \dots, x_n\}$. Since $x_i \in X \subseteq A' = UF$, hence there exists $A_i \in F$ such that $x_i \in A_i$. Without loss of generality, we assume $A_1 \subseteq A_2 \subseteq \dots \subseteq A_n$. Hence $x_i \in A_n$ for every i. i.e. $X \subseteq A_n$, which is a linearly independent set. Thus X is independent. So $A' \in E$. By Zorn's lemma, E has a maximal element, say H.

We claim that H is a Hamel basis. To see that every $x \in \mathbb{R}$ can be written as a linear combination of elements in H, we suppose

the contrary. Hence there exists $x_o \in \mathbb{R}$ such that x_o cannot be written as a linear combination of elements of H. Therefore H U $\{x_o\}$ is a linearly independent set. This contradicts the fact that H is maximal. Hence every real number x can be written as a linear combination of elements of H.

Next, suppose that some $x_0 \in \mathbb{R}$ can be expressed as two linear combinations of elements of H :

$$x_0 = \sum_{i=1}^{n} a_i V_{\alpha_i}$$
 and $x_0 = \sum_{i=1}^{n} b_i V_{\alpha_i}$.

By substraction, we have

$$0 = x_0 - x_0 = \sum_{i=1}^{n} (a_i - b_i) V_{d_i}.$$

Since $V_{\alpha_1}, \dots, V_{\alpha_n}$ are linearly independent, hence

$$a_{i} - b_{i} = 0$$
 for $i = 1, ..., n$.

i.e. we have $a_i = b_i$ for i = 1, ..., n.

Therefore, every $x \in \mathbb{R}$ can be uniquely represented as a linear combination of elements of H.