CHAPTER III

SOLUTION OF f(x+y) = f(x)f(y)

In solving trigonometric functional equations treated in
this work, it turns out that solutions of the trigonometric functional
equations are expressible in terms of homomorphisms from a group G
into certain subgroups of the multiplicative group of complex numbers.,
In this chapter, we shall characterize these homomorphisms for the
case G = R°. Our main results are theorem 34246 and its corollary

and theorem 3.3.5,

3.1 Vector Sﬁgge

A non-empty set F with two binary operations +, ¢, known as
addition and multiplicatisﬁiiespectively, is said to form a_fiiig if

(1) F forms;a\Commﬁ%ative group under addition.

(ii) F* = F :RO} g Where O is fhe additive didentity, forms
a group under multipliqation.

(i4i) For any a,b,c & F, we have

a(b + ¢) ab + ac

and . (b +c)a = ba + ca .

(Fy +) and (F: *) will be refered to as the additive group
and the multiplicative group of I, respectively,

Let (F,*,*) be a field and (V,*+) be a commutative group
with a rule of multiplication which assigns to any a € F, u€v

a product au € V. Then V is called a vector space over F if the

following axioms hold :



, (1) For any a € F and any u, v & V, a(u+v) = au + av.

au + bu.

(2) TFor any ay b € F and any u € vV, (a+b)u

(3) For any a, b € F and any u €.V, (abdu = a(bu),

(4) TFor any u& V, we have 1.,u = u ,
where 1 is the multiplicative identity of ¥,

The elements of F and V will be refered to as scalars and
vectors, respectively,

Let V be a vector space over a field I' and let Uggeneegl &V,
If v = LUyt vees +°‘1§%r’ where diéF, i="75ee00ym, then we say

~ ’/,
that v is a linear combination of Uggsecey U oo The vectors

Viresesy Vo € V are said to be linearly independent if for any
scalars Bgaeeeesd £ T BaVqteses + &V = O implies that
aq = Oyeeney a = 0. An arbitrary set A of vectors is said to be

a linearly independent set‘if every finite subset of A is linearly

independent, If B fs:ajiinearly independent subset of V such that
for every v € V, v can be written as a linear combination of vectors
in B, we say that B is a basis of V, It can be shown that every

vector in V has a uanique representation as a linear combination of

elements of B,
Observe that the set R of real numbers can be considered as
a vector space over the field Q of rational numbers., It can be

shown that R has a basis over Q. Such a basis .is known as a Hamel
e

basis. A proof of the existence of such a basis will be given in

it

the Appendix.



3.2 Solution of f(x+y) = f(x) f(y)

%e2¢1 Theorem Let V be a vector space over a field F with

Gs s ~£V“: A€ I} as a basis. Let f be a function on V into a

#
commutative group G . Then f satisfies

£3.201.1) flx+y) = f£(x) £(y) ,
iff there exists a family { f‘ s o & I} of homomorphisms from
: n

v’
the additive group of I' into G/ such that for any x = 2 a; v,
g . i=1 i

in V, we have

£f(x) = &

n
) = I i (a ) .
. el oy |

3 4/ F
Proof Assume that f :/V a5 @ . 'satisfies (3.2.1,1)

"

For each TV, € B, define £ (a)

¢
Observe that for ecach o & I, FLoTE oG o

f(azﬁ).

And f‘(a+b) £((a+b) E‘) '

= f(av*+ quL) 3
= f(aVQL) £(oV, ),

= fi(a) f‘_(b) "
n

For any x € V, we have x = 5 a:.LV’Q:.L » where a; €T, V"‘iﬁ 3.

Hence f(x)

n

f ( Z aiVGL. ) .
i=1 o A

By (3+2.1.1), we have

n

() = 1L ey, .

i=1 i



10

Hence f(x)

bel

f(a).
p di c 8

p i

To prove the converse, assume that {f‘ ok € I} is a family of

t .
homomorphisms on the additive group of F into G and f is given

n

by f(‘_{: ai\fu.) = Ifa (ai).

i =6 ZL. i=1 "

Then for any x, y € V, we may write

n \ 1 n
Hot BT @ TN $oe« 2 BV,
i3 ey gtig B %4
where ag, b, € T and,vol‘icﬁ.
Hence,
Vi 2
P(x+y) = £ a ¥ e B ) &
329/ XA 121 W%y

g
= & I e uINT)
:k:ig = - d.i 2

.(ai+ bi) o

z
<1l 4"‘1

n .
R RE Y g (),

1= i
T I |
& £f (a,) 2. (B.0%
= 8 = I R
n n g
e BD a V) (P D
T e R RO &

£f(x) £(y).

2¢2¢2 Lemma Let h be a homomorphism from the additive group Q of _
4
rational numbers into a commutative group G « Then h(na) = (h(a))",

for all a € Q and all n € Z, where is the set of all integers.



Proof
ey

Let a € Q

11

Since h is a homombrphism, hence h(0) = 1,

Therefore h(0.a) = h(0)

1 (h(a))o.

Assume that k is a non-negative integer such that

Then,

Hence

For any negative integer

h(k.a)

h((k+1)a)

h(na)

Hence,

1 = h(O)
Therefore h(ma)
Thus h(na)
Bele

or O,

Proof

Then

=

1

(r(a))¥,

h(ka+a), {,(.’ G 3 . \.‘}?
L T e

h(ka) h(a), xfﬁ;v\_':f'ﬁ:

(r(a))* H(a),

{n(a) e,

(h(a))™  for all non-negative integers n.,

my, =m is a positive integer.

hi{ma +(=m)a),
h(ma) h((em)a),

h(ma)(n(a))™™,

(h(a))m .

(n(a))® for all neZ .

/ !
Theorem h is a homomorphism from @ into G s Where G is Rr*

/
iff there exists r € G such that h(a) = r

1 y for a € Q.

/
Assume that h is a homomorphism from Q into G ,

Let a € Q.

a = g s+ where 'p, g are integers, q £ O.
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Ve have
£y31 E 2
(h(q)) h(q.q) §
= h(P) 1
= h(po1) '
= (h(1)F .
oA
Hence h(E) = (h(1))%
i.e. we have h(a) = 2, ‘where r = u(1) € (}t

y /
Conversely, assume that there exists r € G such that

!
h(a) = AN for r € G,
Then,
h(a+b) | = RN r?, P "
= h(a) h(b).

Hence h is a homomorphism.

3e244 Theorem Let H = {V‘ 3 d-é]l} be a Hamel basis of R over Q.

|
A function f : 'R -——-oGI, where G is R’ or A s satisfies

(3.2.4.1) f(x+y) = f(x) £(y)

i
iff there exists a function b on H into G such that for each

n v
X = ;E; ait*. € R, where Ix‘él Hy, we have
i= % > 8

a

aiq‘.) b(YA ) "

i g1 i 3

£(

e P
Nl E
I
bt
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/

/
Proof Assume that f : R —> G , where G is R’ or A,

satisfies (3.2.%.1).

By Theorem 2241, we see that f must be of the form
n n
f(z a; Vv, ) = I[ £ (a;) %4
=T % f=1 % 2

/

where f‘ is a homomorphism from Q into G .
i :

By Theorem 3¢243, each ﬁx must/ be of the form

1
- a /
£, (a) 7B,y for some b € G
4 7 // d i
/ Y '/ )
Let b : H—>G  be defined by'bUQ ), = Bl ¢
: N i i

Then we have,

¢ n
‘fci;aiv‘i) et =)

N

!
On the other hand, if b is any function on H into G , and f

is defined by

n n
a.
o i
£ Yl ) AR
i=1 i i=1 i
n n
/
then, for any x = 2{: a,Vv 3y ¥ = z: a. V in<:R
. i, ! i ok,
=1 A 1= i
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we have

fx+y)

I
H
~~
l.J-
llr“1s
—
)
P-
<
£
S‘., ~
A

]
H
~
He
it
(\nd i3
N
o
He
e
m\
o
=
L X
e
N

ai+ ai
I b(v‘,L ) '
i=1 i
/

- a2 & a

“ .
ol Y= Tew >t
=1 @ i=1 i

&/ A n :
/ ‘ /
' f(i adiL.) f(z ay Vo‘.) '
Vil =" i

Y

i1

£(x) £(y).

3,245 Corollary Léfl;'jjij_; {V‘ - S I}be a Hamel basis of R over Q.

) 3
Asfunction f ¢ (R—"'L)i ‘satisfies

(S ete 551) f(x+y) =  f£(x) £(y)

%
iff there exists a function ¢ on H into E such that for each

n :
x=z a, V, € R, we have
i=1 %y
2 2 a,
g RO W [ vt
i=1 1%y i=1 i

3
Proof Assume that f : R ——> § satisfies (3.2.5.1).

Tot £(x) 3 ¢<x>.§ (x) ,

where @(x) = If(x)l and % (x) = %T% "



Observe that £ : R—->R"

.s

and % m——-}A .
Hence,

B(x+y) | £(x+y)|

il

l£(x) £(yl,

£ | s,

]

pGP(y)

Also,

AN

B§x+y5 :

| e(x) 2G|
F(X) a<y7 J

_ s

- oy Zl'ljv ,

e
,%I}E"(X) E(y) .

g<x+y>

Hi
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Therefore, by using Theorem 3,2,4, there exists a function b1 on H

into R+ and a function b, on H into [X such that for each

2
2
x =L aVcL EIR ’
i=1 & :
g a,
we have P(x) = ][ b1(Vd ) Bl
i=1 p b
£ E S
d = b (V P 2
an P e B, 000621

*
Let ¢ : H—— § = be defined by

°(V¢) = b,,(vd;‘) b2(V°L.).
o . i i
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So we have,

#(x) . §<x> ;

n n

T bq(vdu)ai. T b, (¥, y i "

=1 i =1 i

£(x)

]

=

¥
(b, (v, ) by (v, ) *
1 o

W
'F=js

aQ

=
2

-

I_I
L]

%
Conversely, if ¢ is a function on H into € , and f is defined by

7

n -

) 1L
. a,
£y a N/ lws et )t
19 T/ ol N\

then it can be verified /in the same way as in theorem 3.2.4,
that f(x+y) = f(x) £(y).

, : : ,
3.2.6 Theorem Letof +—R =G ;where ¢ is ord. £

satisfies

(3.26661) f(x+y) = - fGx) £(y)

/
iff for each i = 14444040, there exists a function fi on R to G

satisfying
fi(x+y) = fi(x) fi(y)
such that for each x = (x1,....,xn) € »" s Wwe have
n
£(x) - T gonpm
i=1 *

where the pi's are given by pi(x1,....,xn) = Xy 125 15000000



Proof Assume that f satisfies (3.2.6.1).

—~
For eagh i =17 sekn, lot li :

R0 21 18 & 4% and Sij

’K el . = xe,
i : i
where ei = (6;1,0000’ ’in ij
Set il gl .
i i
/
hence fi s R——=G and
fi(x+y) = (f.o ni)(x+y) ,

Also, from fi

fio Pi

’f(m;(x+y)) 2

f($x+y)éi),

f(xei+_yei) N

/

f(gei) f(yei),

2l ) 2T,

fi(x) fi(y) .

to,

7 0‘](]._)0 P;

where p; is defined by pi(x1,...., Xn)

Hence, for any x = (xq,...., xn), we have

fi0 pi(x)

1]

-
£OH (o, (g 000009 0)),

#(T (x,)),
- =

f(x.e.)o
Bl K

R —>R" pe defined by

we have

17

0 4f § #11%



Therefore,

Conversely, assume that

i = 1,0..’ ng SatiSfiQS

We have

=i

e

1}

-

£.0 Pi(x)

f(x+y)

18

B

i flxger)

b &

1}
=S

1]

f(x1e1)....f(xnen) s
= f(x1e1+ eeee + xnen) )
= f(x1,...., xn) ]

=y f(xs

= n
fﬁx) E ][ £, 0 pi(x), vhere each f. ,

.

p isY
fi€x+y) ® fi(x) £,(y) for all x, y € R.

n

XL (fi(pi(x+y))),

B

fi(xi+ yi) s

[
n
3

e

.
n
-

(fi(xi) fi(yi)) .

et s

n
£, (x,) ;E;fi(yi) ;

o
i
-

B

[
]
-

n .
fi(pi(x));g% £, (o, ()

f(X) f(Y)o ‘
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%
34247 Corollary By using corollary 3e2¢5, we see that f : Rn-f——ad
satisfies f(x+y) = £(x) £(y) 4if and only if for j = 1,...., n,

there exist functions cj on H, where H is a Hamel basis of R over Q,
. m

m
into { such that for each x = ( E a1in yeviany :zr aniYa )
i=1 i i

we have
m

o &y
f(x) = ][ c.(V“ KAl
j=1 i=1 9 %4

3¢3 Continuous Solution of flx+y) = f(x) £(y).

In this section, we shall determine all the continuous

*
solutions of f(x+y) = £(x)/f(y), where f is a function from R" into €

34317 Lemma Let g : R —=—=R be a continuous function satisfying

(3:.361.%) glx+y) <= glx) +gly) ,

then g(x) = bx for gome b in R,

Proof Ve first claim that g(na) = ng(a) for all integer n and all

a € R.
Since g is a homomorphism, hence g(0) = O .

Therefore g(0.a) = g(0) = 0 = 0.g(a).

Assume that k is a non-negative integer such that

g(ka) kg(a),

Then, g((k+1)a) g(ka+a),

= g(ka)+ g(a),

= kg(a)+ gla),

i

(k+1) gla).



Hence g(na) = ng(a) for all

For any negative integer m,

Hence,

0" = 8(0)
Thus g(ma)
Therefore g(na)

For r = § » where p, g are
we have

qg(r)

Thus g(r) g g(1
Let x € R., Since the set

we can find a sequence {rn§

Since g is continuous, hence

But lim glr ) = 1lim
n-——» o0 ¥ n-—eo

Therefore glix) = =xg(1)

Thus glx) & bzl

34342 Theorem Let g be a c

20

non-negative integer n.

-m is a positive integer..

glma + (-m)a) ,

= g(ma) + g((-m)a),}
= g(ma) + (-m) g(a),

mg(a) .

i

ng(a) for all integer n.

integers and q # O,

= QS(E) ’

o

N
g(q-q) N

glp) ,

it

= g(p.1),
- Pg(1)-

) = I‘g(").

of rational numbers is dense in R,

of rational numbers converging to X.

1lim glr ) = g(x).
n-— 00 B
rng(1) = xg(1).

’ x € R,

where b = g(1) € R,

ontinuous function on the set of real

numbers into the set of positive real numbers,.g satisfies



(R5.251) glx+y) = g(x) gly)

- 4 4 g(x) = e**  for some a in R, @ o

Proof  Assume that g satisfies (3.3.2.1).

Let h(x) In x , x > 0, rfk‘f  )

Put f = h O go
Since both h and g are continuous, hence f is also continuous.
We also have

flx+y) h(glx+y)) ,

#H

/?=“ la(g(x+y)) ,
/BRI (X &(y))

in g(x) + 1n g(y) ,

il

o h(g(x))+ nigly)) ,
sl ) + T(y).

Therefore, by lemma 3%+ thereexists a € (R such that

for all x € R Lfii)“'“”= ax.
Then,
BB NURYN N e ()Y

= £0x)

= S Rof o
Therefore gx) = e, ywhere a € R,
Conversely, 1let g(x) = e for some a in R,
Thus g(x+y) = o30xy) '

3 L2X+ay .

.

= g(x) gly).
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3.3.3 Theorem Let I : (R, +) ——> A be a continuous function.,

I satisfies

(34343.1) I(x+y) = T(x)I(y)

iff there exists a real number k such that I(x) = elkx .

Proof Assume that I satisfies (3.3.3.1).

1

Since I : R —> A , hence |I(x)I 1 for all x.

Thus | 1(1)} = W8,

Therefore 1 k € R such that I(1) = oi¥

.

By using the same arguméht as in the proof of lemma 3.2.2, it can be
shown that I(na) = (I(a))" for all integer n and a € R,

Thus, for any rational aumber =r = % s Wwhere n, m are integers

and m # O, we get

fr—

(T(x))"

i

EEH™

n

I(m.ﬁ) v
= I(n) ,
= I(n.1) ,

= (I(1))* .
olkn
ikn 2K 13

m m
) = e §

L]

Hence I(r) I(

=3 fa)

fl

for gome 1 = 0,1,00e0y m=1,

For any integer t # O, we have

ikn  2Nui iknt 2N 14
ol B W 1By o Br(EE) - o2t @b
n mt



-

o r{,-,(
21414 2 T3
m mt .
Therefore e = e for all integer t £ O,
Hence,
P oM 11 " all 14 2 11
SO i YU MO TRRR £
for all integer t # O.
i,
If 1 >0, then for some ti # 0 , we have 04 T <1
)
2“1% )i
Hence e o # 1, which is a contradiction.
Therefore, we have 1 = 0,
n ﬁ{ikg _— ;
Thus I(r) = I(E) 5 : = e for all rational r.

For any x € R, there exigts a sequence { rn} such that s € Q

and lim r, = X
n— 0
By continuity of I, I(x) = 1lim I(rr) = ldm e’ . o= ”:

- nh->o0 n- 00
ikx
Conversely, let I(x) =€ for some real number k.

Then we have

e:.k(x+y) - oikx+iky oikx iky

I(x+y) = &9 = I(x) I(y).

%
3.3.4 Theorem ILet h : ( R, +) —= ( @€, .) be a continuous function.

h satisfies

(3.304.1) h(x+y) = h(x) n(y)

iff there exists r € { such that h(x) = eTx,

Proof Assume that h satisfies (3.3.4.1).

Let g(x) = |h(x)| and 1I(x) = BLEY 7

g(x)

Observe that g BB ’

and I: R—A .
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Since h is continuous, so are g and I.
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Also, glx+y) = |h(x+y)l = |h(x) h(y)' "
= Inel Inm] = g0 gty .
By using Theorem 3.3.2, we get g(x) = ¢ for some ¢ € R.
Observe that I(x+y) = h(x+y) = h(x) h(y) ,
ETE%Y g(x) gly)
= h(x) ., h(y) = I(x) I(y).
i) - gly)
By using Theorem 3.3.3, we get I(x) = P | for some k & R,
Thus o) l(xy et
7 éikx. oOX \
# ¢ s (eik)x
=“; SR y Where r = (c+ik)e€ d:.
7/
Conversely, let h(x) = ‘=X where r €& a "
Then h(x+y) : ’ijT(Xfy) = gt Y F
‘“;“~~e?¥i o 4l n(x) hiy).

343e5 Theorem . Let f : R*— 5 (
f satisfies
(303-501) f(x+y) =

iff there exist r, € &‘, i =7,00.04n, such that for each x = (%g90009%,

o + +
e 1x1 L rnxn

*

be a continuous function.

£(x) £(y)

we have f(x) = "
Proof Assume that f satisfies (3.3.5.1) .

Using Theorem 3.2.H, there exist fi -

fi(x+y) = fi(x) fi(y) .

B
R——> ([ satisfying

i. = 1,¢coo,n,

<4

)
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such that for each x € Rn, we have

I
JORE i]g(fiopi)(x) ,

where each Py i ="74e0ey n, is given by pi(x1,....,xn) =Ky oe
Such an fi is given by fi = f o‘ﬁ; » where j[i is defined as in the
proof of Theorem 3,2.6.
Since f andj{i are continuous, hence each fi is continuous,
Byiusing Theoren 3.3.4, we have
X, dj

£L2) = % ~for egch i = 1,000eyn and r, € 0L,

- X e S5 i
Hence,

£(x)

I

/  n
*;g; (fio pi)(X) :

f,](x,l)..... fn(xn) ’

Crox rx
T n n

= £ eeees € [}

X
I

BT, teeoet T
- 351 n

=

LI

Conversely, assume that there exist r, & df, 1= "15e¢04n, such that

r1x1+cooo+ rnx

f(x) = ¢ ) fOI‘ GaCh X = (x,".-oc, Xn) e Rnc

Then we have

r1(x1+y1)+.....+rn(xn+ .Vn) 5

it

f(x+y)

., e(r1x1+oo¢o+rnxn)+(r1y1+0"'+rnyn) 9

r1x1+....+rnxn r1y1+.ooo+ I‘ny
= e . € :

£(x) £(y)%
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3.4 Txistence of Discontinuous Solution of f(x+y) = £(x) f(y).

The purpose of this section is to provide some examples of
a discontinuous solution of f(x+y) = f(x)f(y), where f is a function
*
from ( R™,+) into ( +*)e For simplicity, we give examples of

*
discontinuous solutions from RB to L .

Let H = {“* : A€ I& be a Hamel basis of R over Q. By using

*
remark 3.2.7, any function f : mﬁ——-a-d satisfying f(x+y) = f(x)f(y)

must be of the form

m gL L >3 mn aji
f(;a'livoci’ iéaaaiv¢i’ ;asivaai) N J]£ 1]; cj(v.Li) :
where Gqs 02; 03 arec /functions on H into di*.
Let us denote such function f by f . Hence each triple

c1,c2,c3
c = (01,c2,c3), where oy ¢ H-————*dﬁ, in= 1,2,3, defines a function
fc satisfying fc(x+y) = fc(x)fc(y). Discontinuous function fc
satisfying this equation can be obtained by choosing suitable
functions'c1, 5 and SE We shall first constructed cj:II-———>d*,
j =1,2,3, which will make fc a discontinuous solution of f(x+y) =
f(x)f(y).

Choose three distinct elements V, , V, , V of H and three
' gt e, ¢3

nonzero complex numbers Zyr Zoy z3 such that not all zi's are 1.

£
Define oy ¢ H—>C , 5 = 1,2,3, by putting

c1(V°L1) = By , c1(Vd_) = 1 for all o # oy s
c?-(v'*a) = B, 4 °2(de) = 1 for all o £ oLy
and CB(Vd 25 03(Y*) = 1 for all o £ Ay o

3
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By Remark 3.2.7, f_satisfies fo(x+y) = fc(x)fc(y). Next, we show
that fc is not continuous.

Suppose that fc‘is continuous. By Theorem 3.3.5, fc nust be
raXgt T X+ PoX

2¢ XD

of the form fc(x,l, X1 x3) =z 6 y where r, € ﬁ,

i=1,2,3
1
Observe that fc(2*1, 0, 0) = c1(211) = 5,
and f (V, +V , 0, 0) = ¢_(V )1 c, (V )1 = z‘. . = gz, .
. T M L7775 "1 d 1 1
L L o 1 2
Therefore £V, 4,0,0) = fc(zi + V. ,0,0).
1 1 2
T X,+ T .X.+ r,X
i 1.1 2 2
Since  f(x,, X, xB) N 33,
naN
Hence b 19 IRy ) ORO0)
2
= fC(vd..{*- Val. ,0,0) ’
r (v, + V)
==ty
B
Therefore, a:l o€ = 1,
Thus r1wi = 1704
2
Since vV, € H, we have V, # O.
2 2
Therefore r, = O,
Similarly, we have
r.V \ ' r. (V, +V, )
2 d 2" o
e 2 = £,(0,V, ,0) =2, =1£ (0, +V, ,0) =e 1 2
2 1 2
and
r.,V L r (V, +V, )
3z _ ¥ 3 e D Xq sz
e 5 :im fc(o,,o,v&B) =25 = fc(o,o,vd1+ V"LB) = e
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It follows that r2 = r3

Hence we have fc(x)

1 for all x = (x1, X9 x3).

"

Since not all zi's are 1, We may assume that z, £ 1.

Hence fc(wi 40,0) = z, # 1, which is a contradiction.
1 o r2x2+ r3x3
Therefore fc(x) cannot be of the form e

o lece £
c
is not continuous., Hence there exists a discontinuous solution of
f(x+y) = £(x)f(y).
It can be seen that if we choose n distinct elements
V. 4eeesy V. in H and any n non-zero complex NUNDErSZ,geeey 2

1 n *
such that not all zi's are 1 and define cj: H—> L by

n

B\ iz 3 = 34,

1 if "% £:J4,
n * 2
then fc P R ——— defined by
' a,.
£ (L sV, soseflosttoaica—c B | c.(v. ) 3%
¢y 14 &i L niel 5 i 37 oy

is a discontinuous solution of f(x+y) = f(x)f(y).
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